
ISSN 2066-6594

Ann. Acad. Rom. Sci.
Ser. Math. Appl.
Vol. 6, No. 2/2014

OPTIMAL THICKNESS OF A

CYLINDRICAL SHELL∗

Paul Ziemann†

Abstract

In this paper an optimization problem for a cylindrical shell is
discussed. The aim is to look for an optimal thickness of a shell to
minimize the deformation under an applied external force. As a side
condition, the volume of the shell has to stay constant during the opti-
mization process. The deflection is calculated using an approach from
shell theory. The resulting control-to-state operator is investigated an-
alytically and a corresponding optimal control problem is formulated.
Moreover, necessary conditions for an optimal solution are stated and
numerical solutions are presented for different examples.
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1 Introduction

In this paper we discuss an optimization problem in linear elasticity,
particularly in shape optimization. In this field, much research has been
done in the last years. Some few representative books from Sokolowski
[1], Pironneau [2], Haslinger [3] and Delfour [4] should be mentioned here.
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In particular, the book from Neittanmaki, Sprekels and Tiba [5] deals with
similar problems, though they are using a different model for calculating the
deformation. A related problem is also investigated in a paper by Nestler [6],
where a simplified (rotational symmetric) case has been handled. That paper
was inspired by works from Lepik, Lepikult, Lellep and Schmidt [7, 8, 9, 10].

The task is to look for an optimal thickness of a cylindrical shell to min-
imize the deformation under an applied external force. In this paper, the
stationary case with a loading applied on the shell’s midsurface is treated.
As an additional restriction, the volume of the shell has to stay constant
during the optimization process. Moreover, the thickness should only vary
between specified bounds. The deflection is modelled using the “basic shell
model” from Chapelle and Bathe [11] which makes use of the Hypothesis
from Mindlin and Reissner. As a main result it is shown, that the resulting
control-to-state operator is continuous and Gâteaux-differentiable. Followed
by this, a corresponding optimal control problem is formulated and neces-
sary conditions for an optimal solution are deduced. Necessary conditions
for similar problems can be found e.g. for the rotational symmetric case in
[6] and for elastic beams with piecewise constant thickness in [12]; those re-
strictions are not necessary in this paper. We also investigate the particular
numerical implementation of the problem which makes use of an analytically
calculated formula for the objective gradient. Finally, numerical solutions
for different examples are presented and investigated in relation to the ful-
fillment of the necessary conditions and convergence properties on refined
grids.

2 Geometrical description of the shell

For the geometrical description, we first need a chart describing the
midsurface of the shell. Let ω ⊂ R2 be open and connected and ϕ : ω →
R3 be an injective mapping with ϕ ∈ W 2,∞(ω). We call S = ϕ(ω) the
midsurface of the shell. We assume that the vectors aα := ∂ϕ

∂ξα , α = 1, 2
are linearly independent and additionally consider an orthonormal vector
a3 := a1×a2

∥a1×a2∥ . We call a1, a2 a covariant basis of the tangent plane of

the midsurface and denote the corresponding contravariant basis by a1, a2.
Moreover, denote by aαβ := aα · aβ, α, β = 1, 2 the covariant components of
the first fundamental form.

In our particular case involving a cylindrical shell, the set ω can be
chosen as ω = {(0, L)×(ψa, ψb)} and the mapping ϕ is defined as ϕ(ξ1, ξ2) =
(ξ1, R cos ξ2, R sin ξ2), where R is the radius of the shell.
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We introduce t : S → R+, t ∈ C0,1(S) as the thickness of the shell and
suppress the parametrization ϕ in t ◦ ϕ : ω → R+ when the context is clear.
Let us define the 3D-reference domain

Ω(t) :=

{
(ξ1, ξ2, ξ3) ∈ R3 | (ξ1, ξ2) ∈ ω, ξ3 ∈

(
−t(ξ1, ξ2)

2
,
t(ξ1, ξ2)

2

)}
(1)

together with the mapping

Φ(t) : Ω(t) → R3, Φ(t)(ξ
1, ξ2, ξ3) = ϕ(ξ1, ξ2) + ξ3a3. (2)

Note that Φ(t) depends on the parameter t only via its domain, but not on
the right hand side. So the thickness parameter is surpressed for Φ and the
derived geometrical quantities in the following text.

We call B(t) := Φ(Ω(t)) the shell body, see e.g. figure 1. Let us denote
the local covariant and contravariant basis with gi and g

i, i = 1, 2, 3 and the
covariant and contravariant components of the metric tensor with gij = gi·gj ,
gij = gi · gj , i, j = 1, 2, 3, resp. Furthermore we assume t(ξ1, ξ2) < 2R
which is satisfied in general, since for any shell model one assumes that the
thickness is much smaller than the principal radii of curvature. In our case,
this means t(ξ1, ξ2) ≪ R. Back to our problem, we get

B(t) =


 ξ1

(R+ ξ3) cos(ξ2)
(R+ ξ3) sin(ξ2)

 | (ξ1, ξ2) ∈ ω, ξ3 ∈
(
−t(ξ1, ξ2)

2
,
t(ξ1, ξ2)

2

)
(3)

together with the contravariant basis

g1 =

1
0
0

 , g2 =
1

R+ ξ3

 0
− sin(ξ2)
cos(ξ2)

 , g3 =

 0
cos(ξ2)
sin(ξ2)

 . (4)

The surface and volume element for our shell are given by

dS =
√
a dξ1 dξ2, a = det(aαβ) = R2

dV =
√
g dξ1 dξ2 dξ3, g = det(gmn) =

√
a(1 + ξ3

R ).
(5)

3 Modeling the displacement

We consider a small displacement U : B(t) → R3 of the shell body.
For modeling we use the Reissner-Mindlin kinematical assumptions which
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Figure 1: Cylindrical shell with non-constant thickness

state that normals to the midsurface remain straight and unstretched during
deformation. This leads to the displacement ansatz

U(ξ1, ξ2, ξ3) = u(ξ1, ξ2) + ξ3θ(ξ1, ξ2) (6)

with u = u1a
1 + u2a

2 + u3a3 describing an infinitesimal displacement of
all points on a line normal to the midsurface in ϕ(ξ1, ξ2) and θ = θ1a

1 +
θ2a

2 representing a rotation vector. We introduce the space of admissible
displacements

V :=
{
(u, θ) | (u1, u2) ∈ H1(S)2, u3 ∈ H1(S), θ ∈ H1(S)2

}
∩BC (7)

where H1(S) and H1(S)2 are Sobolev-spaces for scalar functions and first
order tensors on the midsurface, resp. Again, we suppress the parametriza-
tion in u ◦ ϕ and θ ◦ ϕ defined on ω when the meaning is clear. Let us
assume for the boundary conditions BC that the shell body is softclamped
over the whole boundary ∂S, i.e. u|∂S = 0. We next consider the linear
3D-Green-Lagrange-strain tensor which is given by

eij =
1

2
(gi · U ,j + gj · U ,i), i, j = 1, 2, 3, (8)

where U ,i means the partial derivative of U w.r.t. ξi. By Hooke’s Law, we
get for the components of the stress tensor

σij =

3∑
k,l=1

H ijklekl (9)



218 Paul Ziemann

with H ijkl = L̃1g
ijgkl + L̃2(g

ikgjl + gilgjk) and L̃1, L̃2 being the Lamé
constants. Using the assumption that the normal stress σ33 is zero this
simplifies to

σαβ =
2∑

λ,µ=1

Cαβλµeλµ, C
αβλµ = E

2(1+ν)

(
gαλgβµ + gαµgβλ + 2ν

1−ν g
αβgλµ

)
,

σα3 =

2∑
λ=1

1

2
Dαλeλ3, Dαλ = 2E

1+ν g
αλ, α, β = 1, 2,

(10)
where E is Young’s modulus and ν is Poisson’s ratio. Calculating these
quantities for our original problem leads to

e :=

 e11
e22√
2e12

 =

 u1,1 + ξ3θ1,1

u2,2 +Ru3 + ξ3
(
θ2,2 +

1
Ru2,2 + u3

)
+ (ξ3)2

R θ2,2
1√
2
(u1,2 + u2,1) +

ξ3√
2

(
θ1,2 + θ2,1 +

1
Ru2,1

)
+ (ξ3)2√

2R
θ2,1


ζ :=

(
e13
e23

)
= 1

2

(
θ1 + u3,1

θ2 + u3,2 − 1
Ru2

)
.

(11)
This special vector notation is chosen according to [13] and allows us to
rewrite the equilibrium conditions in an elegant way for implementation
purposes. Introducing the two-dimensional Lamé-constants

L1 = E
ν

(1 + ν)(1− ν)
, L2 =

E

2(1 + ν)
(12)

we get for the stress tensor and its matrix representation

C :=


L1 + 2L2

1
(R+ξ3)2

L1 0

1
(R+ξ3)2

L1
1

(R+ξ3)4
(L1 + 2L2) 0

0 0 2
(R+ξ3)2

L2



D :=

4L2 0

0 4
(R+ξ3)2

L2

 .

(13)

Now consider a force f ∈ L2(S) which is applied orthogonal to the mid-
surface and formulate the equilibrium conditions for the stationary case
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according to the basic shell model from Chapelle and Bathe [11]: Find
(u, θ) ∈ V with∫

Ω(t)

2∑
α,β,λ,µ=1

Cαβλµeαβ(u, θ)eλµ(v, ψ) +Dαλeα3(u, θ)eλ3(v, ψ) dV

=

∫
ω
fv3 dS

(14)

for all (v, ψ) ∈ V. We define the bilinear form A(t)(u, θ; v, ψ) for the left
hand side and the linear form F (v, ψ) for the right hand side of (14). The
bilinear form can be rewritten using matrix-vector-notation and symmetry
properties of the strain and stress tensor as

A(t)(u, θ; v, ψ) =

∫
Ω(t)

eTCe+ ζTDζ dV. (15)

4 Analysis of the model equations

We know from [11] that A(t) is coercive and continuous for fixed t, as
well as F is continuous. According to the Lax-Milgram-Lemma there is a
unique solution to (14). Therefore the control-to-state operator G which
maps the control t to the corresponding displacement (u, θ) is well-defined.
Let us define the set

Ureg := {t ∈ C0,1(S) | 0 < tmin ≤ t(ξ1, ξ2) ≤ tmax < 2R in S} (16)

which is a closed subset of C0,1(S). We now want to investigate the conti-
nuity of G : Ureg → V.

Lemma 1 For all t ∈ Ureg the bilinear forms A(t) have a common coercivity
constant, i.e.

A(t)(u, θ;u, θ) ≥ c ∥(u, θ)∥2V ∀ (u, θ) ∈ V. (17)

Proof. The proof can easily be derived from the original proof of coercivity
in [11].

2

We next consider a sequence tn ∈ Ureg that converges strongly to t̄ ∈ Ureg

w.r.t. to ∥t∥C0,1(S) = ∥t∥∞ + Lip(t) and denote the corresponding sequence
of states by yn := (un, θn) := G(tn). Using the above Lemma we see that

c ∥(un, θn)∥2V ≤ A(tn)(un, θn;un, θn) = F (un, θn) ≤ ∥f∥L2(S) ∥(un, θn)∥V ,
(18)
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i.e. the sequence yn is bounded. Hence there is a weakly convergent subse-
quence, also denoted by yn, with weak limit ȳ ∈ V.

Lemma 2 The weak limit ȳ is solution of (14) with thickness t̄.

Proof. We first find an alternative form for A(t), namely

A(t)(u, θ; v, ψ) =

∫
Ω(tmax)

3∑
i,j,k,l=1

H ijkleij(u, θ)ekl(v, ψ)χ(t) dV (19)

with

χ(t)(ξ
1, ξ2, ξ3) :=

{
1, if − t(ξ1,ξ2)

2 < ξ3 < t(ξ1,ξ2)
2

0, otherwise
. (20)

This can be done since the integrand does not explicitly depend on t and
χ(t) is the characteristic function for Ω(t). Another expression in terms of
the L2(B(tmax)) scalar product for second order tensors is

A(t)(u, θ; v, ψ) =

∫
Ω(tmax)

⟨σ(v, ψ)χ(t), e(u, θ)⟩dV

= ⟨σ(v, ψ)χ(t), e(u, θ)⟩L2(B(tmax))
,

(21)

where σ(v, ψ)χ(t) has components

(σ(v, ψ)χ(t))
ij = σ(v, ψ)ijχ(t). (22)

We have σ(v, ψ)χ(tn) → σ(v, ψ)χ(t̄) in L2(B(tmax)) for fixed (v, ψ) ∈ V,
because∥∥σ(v, ψ)χ(tn) − σ(v, ψ)χ(t̄)

∥∥2
L2(Btmax )

≤
3∑

i,j,k,l=1

∣∣∣∣∣
∫
Ω(tmax)

gikgjlσ
ij(v, ψ)σkl(v, ψ)(χ(tn) − χ(t̄)) dV

∣∣∣∣∣ . (23)

It holds χ(tn) − χ(t̄) → 0 pointwise a.e., so we can conclude

gikgjlσ
ij(v, ψ)σkl(v, ψ)(χ(tn) − χ(t̄)) → 0 pointwise a.e. (24)

Furthermore |gikgjlσij(v, ψ)σkl(v, ψ)χ(tmax)| is an integrable majorant and
we get the convergence of the right hand side from (23) to 0. From (un, θn)⇀
(ū, θ̄) in V it follows that all components and covariant derivatives converge
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weakly to the corresponding limit in L2(S), and so e(un, θn) ⇀ e(ū, θ̄) in
L2(B(tmax)). We get

⟨σ(v, ψ)χ(tn), e(un, θn)⟩L2(B(tmax))
→ ⟨σ(v, ψ)χ(t̄), e(ū, θ̄)⟩L2(B(tmax))

, (25)

and therefore F (v, ψ) = lim
n→∞

A(tn)(un, θn; v, ψ) = A(t̄)(ū, θ̄; v, ψ).

2

From the uniqueness of the limit (ū, θ̄) we conclude that the whole se-
quence converges weakly.

Theorem 1 The convergence of (un, θn) to (ū, θ̄) is also strong. Hence the
operator G : Ureg → V is continuous.

Proof. It holds for (v, ψ) ∈ V

0 = lim
n→∞

(
A(tn)(un − ū; θn − θ̄; v, ψ) +A(tn)(ū, θ̄; v, ψ)−A(t̄)(ū, θ̄; v, ψ)

)
.

(26)
We now take (v, ψ) := (un− ū, θn− θ̄) and get for the last two terms of (26)

lim
n→∞

(
A(tn)(ū, θ̄;un − ū, θn − θ̄)−A(t̄)(ū, θ̄;un − ū, θn − θ̄)

)
= 0, (27)

because ∣∣A(tn)(ū, θ̄;un − ū, θn − θ̄)−A(t̄)(ū, θ̄;un − ū, θn − θ̄)
∣∣

≤
∣∣∣⟨σ(ū, θ̄)(χ(tn) − χ(t̄)), e(un − ū, θn − θ̄)⟩L2(B(tmax))

∣∣∣ . (28)

Analog to the proof of the above Lemma we can show

σ(ū, θ̄)(χ(tn) − χ(t̄)) → 0 in L2(B(tmax))

e(un − ū, θn − θ̄) ⇀ 0 in L2(B(tmax)).
(29)

Both statements yield the convergence of the last term from (28) to 0.

From (26) it follows

0 = lim
n→∞

A(tn)(un−ū, θn− θ̄;un−ū, θn− θ̄) ≥ lim
n→∞

c
∥∥(un − ū, θn − θ̄)

∥∥2
V

≥ 0

(30)
and therefore the strong convergence (un, θn) → (ū, θ̄) in V. 2

Theorem 2 The control-to-state-operator G : Ureg → V is Gâteaux-diffe-
rentiable. For a fixed point t ∈ Ureg with state (u(t), θ(t)) and a direction
q ∈ C0,1(S) with t+λq ∈ Ureg for all sufficiently small λ ≥ 0 it holds G′(t)q =
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(r, ρ), where (r, ρ) is the (unique) solution to the variational problem: Find
(r, ρ) in V such that

A(t)(r, ρ; v, ψ) = Zq(v, ψ) (31)

holds for all (v, ψ) ∈ V where the linear form Zq is given by

Zq(v, ψ) = −
∫
ω

∑
ξ3i ∈{±

t
2
}

([
⟨σ(v, ψ), e(u(t), θ(t))⟩

(
1 +

ξ3

R

)]
ξ3=ξ3i

)
q

2
dS.

(32)

Proof. Consider a direction q ∈ C0,1(S), 0 ≤ λ ∈ R as well as t ∈ Ureg like
in the theorem statement. For the solutions (u(t+λq), θ(t+λq)) and u(t), θ(t) of
(14) to the thicknesses t and t+ λq, resp. it holds

A(t)(u(t), θ(t); v, ψ) = F (v, ψ)

A(t+λq)(u(t+λq), θ(t+λq); v, ψ) = F (v, ψ)
(33)

for all (v, ψ) in V. It follows

0 =
1

λ

[
A(t+λq)(u(t+λq), θ(t+λq); v, ψ)−A(t)(u(t), θ(t); v, ψ)

]
=

∫
Ω(tmax)

⟨σ(v, ψ),
e(u(t+λq), θ(t+λq))− e(u(t), θ(t))

λ
⟩χ(t) dV

+

∫
Ω(tmax)

⟨σ(v, ψ), e(u(t+λq), θ(t+λq))⟩
χ(t+λq) − χ(t)

λ
dV.

(34)

For the last summand from equation (34) the mapping Zλ : V ×V → R,

Zλ(u, θ; v, ψ) :=

∫
Ω(tmax)

⟨σ(v, ψ), e(u, θ)⟩
χ(t+λq) − χ(t)

λ
dV (35)

is defined.

Lemma 3 The limit

− lim
λ→0

Zλ(u(t+λq), θ(t+λq); v, ψ) =: Zq(v, ψ) (36)

exists and is in V∗.

Proof. It holds that Zλ can be estimated for fixed λ, because

|Zλ(u, θ; v, ψ)| ≤
1

λ

∫
Ω(tmax)

|⟨σ(v, ψ), e(u, θ)⟩| dV ≤ 1

λ
C ∥(v, ψ)∥V ∥(u, θ)∥V .

(37)
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The last inequality comes from the boundedness of A(tmax).
We now want to determine the pointwise limit

lim
λ→0

Zλ(u, θ; v, ψ). (38)

At first we consider the innermost integral by defining z : S → R,

z :=

∫ tmax
2

− tmax
2

⟨σ(v, ψ), e(u, θ)⟩
χ(t+λq) − χ(t)

λ

√
g dξ3. (39)

It holds a.e. in S

|z(ξ1, ξ2)| ≤ b(ξ1, ξ2)

∫ tmax
2

− tmax
2

∣∣∣∣χ(t+λq) − χ(t)

λ

∣∣∣∣ dξ1 = b(ξ1, ξ2)|q(ξ1, ξ2)| (40)

where b ∈ L1(S) because of the boundedness of H ijkl and the polynomial
dependence of eij and

√
g in ξ3. So there is an integrable majorant and we

can write

lim
λ→0

Zλ(u, θ; v, ψ) = lim
λ→0

∫
ω

∫ tmax
2

− tmax
2

⟨σ(v, ψ), e(u, θ)⟩
χ(t+λq) − χ(t)

λ
dV

=

∫
ω
lim
λ→0

∫ tmax
2

− tmax
2

⟨σ(v, ψ), e(u, θ)⟩
χ(t+λq) − χ(t)

λ
(1 +

ξ3

R
) dξ3 dS.

(41)
Now we investigate the limit

lim
λ→0

∫ tmax
2

− tmax
2

f(ξ3)
χ(t+λq) − χ(t)

λ
dξ3

= lim
λ→ 0

1

λ

[∫ (t+λq)
2

− (t+λq)
2

f(ξ3) dξ3 −
∫ t

2

− t
2

f(ξ3) dξ3

]
.

(42)

for a continuous function f ∈ C([− tmax
2 , tmax

2 ]). This simplifies to the deriva-
tive of the integral bounds with respect to λ at λ = 0 which evaluates
according to Leibniz’s formula to(

f

(
t

2

)
+ f

(
− t

2

))
q

2
. (43)

Therefore, we get

lim
λ→0

Zλ(u, θ; v, ψ) =

∫
ω

∑
ξ3i ∈{±

t
2
}

([
⟨σ(v, ψ), e(u, θ)⟩(1 + ξ3

R
)

]
ξ3=ξ3i

)
q

2
dS.

(44)
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Because of the convergence for fixed (u, θ) and (v, ψ), the mappings Zλ are
uniformly bounded by the Banach-Steinhaus theorem, i.e.

Zλ(u, θ; v, ψ) ≤ C ∥(u, θ)∥V ∥(v, ψ)∥V . (45)

Now we want to determine for fixed thickness t and direction q

lim
λ→0

Zλ(u(t+λq), θ(t+λq); v, ψ). (46)

It holds

|Zλ(u(t+λq), θ(t+λq); v, ψ)− Z(u(t), θ(t); v, ψ)|
≤ |Zλ(u(t+λq) − u(t), θ(t+λq) − θ(t); v, ψ)|+ |(Zλ − Z)(u(t), θ(t); v, ψ)|
≤ C

∥∥(u(t+λq) − u(t), θ(t+λq) − θ(t))
∥∥
V
∥(v, ψ)∥V

+ |(Zλ − Z)(u(t), θ(t); v, ψ)|
→ 0, λ→ 0

(47)
Since (u(t), θ(t)) is fixed, we write Z(v, ψ) instead of Z(u(t), θ(t); v, ψ) and
consider from now on Z as a mapping V → R. Hence we get

lim
λ→0

Zλ(u(t+λq), θ(t+λq); v, ψ) = Z(v, ψ) (48)

with Z ∈ V∗. To indicate the dependence from the initially chosen q, we
finally define

Zq(v, ψ) := −Z(v, ψ) (49)

and we get the linear form Zq(v, ψ) ∈ V∗.

2

Back to the proof of theorem 2 we again consider equation (34). Because
of the linearity of eij it follows∫

Ω(tmax)

⟨σ(v, ψ),
e(u(t+λq), θ(t+λq))− e(u(t), θ(t))

λ
⟩χ(t) dV

= A(t)

(
(u(t+λq), θ(t+λq))− (u(t), θ(t))

λ
; v, ψ

)
.

(50)

By taking the limit in (34) and using the continuity of A(t) we get

A(t)

(
lim
λ→0

(u(t+λq), θ(t+λq))− (u(t), θ(t))

λ
; v, ψ

)
= Zq(v, ψ) (51)
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for all (v, ψ) ∈ V. Now we insert (v, ψ) =
(u(t+λq),θ(t+λq))−(u(t),θ(t))

λ in this
equation. This yields

c

∥∥∥∥(u(t+λq), θ(t+λq))− (u(t), θ(t))

λ

∥∥∥∥2
V

≤ A(t)

(
(u(t+λq),θ(t+λq))−(u(t),θ(t))

λ ;
(u(t+λq),θ(t+λq))−(u(t),θ(t))

λ

)
= Zq

(
(u(t+λq),θ(t+λq)))−(u(t),θ(t))

λ

)
≤ C

∥∥∥∥(u(t+λq), θ(t+λq))− (u(t), θ(t))

λ

∥∥∥∥
V

(52)

and we see that the sequence
(u(t+λq),θ(t+λq))−(u(t),θ(t))

λ is bounded. Hence,
there is a subsequence λn → 0 such that

(u(t+λnq), θ(t+λnq))− (u(t), θ(t))

λn
→ (r, ρ), λn → 0 (53)

weakly in V. Passage to the limit in (51) leads to the variational equation:
Find (r, ρ) ∈ V, such that

A(t)(r, ρ; v, ψ) = Zq(v, ψ) (54)

for all (v, ψ) ∈ V. From the Lax-Milgram-Lemma we know that this equa-
tion has a unique solution, so the whole sequence converges to (r, ρ) for
λ→ 0.

2

5 Optimization problem

In this section, the actual optimization problem shall be discussed. In our
case the minimization uses the compliance functional, where the deformation
is weighted with the incoming force. We state the optimization problem as
follows:

min
t∈C0,1(S),(u,θ)∈V

J(u, θ; t) := F (u, θ) +
λ

2
∥t∥2H1(S)

s.t. : A(t)(u, θ; v, ψ) = F (v, ψ) ∀ (v, ψ) ∈ V

tmin ≤ t(ξ1, ξ2) ≤ tmax in S∫
ω
t dS = C

(55)

The constant C represents the volume of the shell and tmin, tmax are the lower
and upper bound for the thickness, resp. The introduction of a regularization
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term was essential for the quality of the numeric solutions. Additionally, we
introduce the set

Uad := {t ∈ C0,1(S) | tmin ≤ t(ξ1, ξ2) ≤ tmax in S,

∫
ω
t dS = C} ⊂ Ureg.

(56)
Note that the set Uad is convex, closed and bounded. By using the control-
to-state operator G we can define the reduced objective functional Js(t) :=
J(G(t); t) which we will use in this section. The problem (55) can be rewrit-
ten in the form

min
t∈Uad

Js(t) = F (G(t)) +
λ

2
∥t∥2H1(S) (57)

Theorem 3 Let the set of admissible thicknesses be restricted to

UM
ad := {t ∈ Uad | Lip(t) < M} (58)

for fixed M > 0. Then the problem (57) has at least one solution.

Proof. We know from the Arzela-Ascoli theorem that UM
ad is a closed se-

quential compact subset of C(ω̄). Moreover, the objective Js is a composi-
tion of continuous mappings. Therefore a minimum exists by the Weierstrass
theorem.

2

The aim in this section is to derive necessary conditions for an (locally)
optimal solution. As a further result we will also get an expression for the
directional derivatives of the objective which is very useful for later numerical
calculations. We first define the adjoint state as the solution to:

Find (p, η) ∈ V, such that

A(t)(p, η; v, ψ) = ∇1J(u, θ; t)(v, ψ) (59)

holds for all (v, ψ) ∈ V, where ∇1J(u0, θ0; t0) denotes the Fréchet-derivative
of J with respect to (u, θ) at the point (u0, θ0; t0). We note that because of
∇1J(u0, θ0; t0)(v, ψ) = F (v, ψ) in our case the adjoint state is equal to the
corresponding original state (u(t), θ(t)).

Theorem 4 The directional derivative of the reduced objective Js at point
t in direction q is given by

J ′
s(t)q = Zq(u(t), θ(t)) + λ⟨t, q⟩H1(S) = Zq(G(t)) + λ⟨t, q⟩H1(S). (60)
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Proof. The proof is straightforward by using the chain rule and symmetry
of A(t) and can be found e.g. in [5]. The resulting expression then simplifies
because of ∇2J(u0, θ0; t0)q = λ⟨t0, q⟩H1(S) and the equality of adjoint and
original state.

2

With the help of the directional derivative (60) of the reduced objective
we can state necessary conditions for a (locally) optimal solution:

Corollary 1 Let t∗ ∈ Uad be a (locally) optimal solution for the problem
(55) with corresponding state (u(t∗), θ(t∗)). Then it holds

J ′
s(t

∗)(q − t∗) = Z(q−t∗)(u(t∗), θ(t∗)) + λ⟨t∗, q − t∗⟩H1(S) ≥ 0 (61)

for all directions q ∈ Uad.

Note, that we need the convexity of Uad for this statement.

6 Numerical implementation

For the numerical solution of the optimization problem a Fortran pro-
gram was written. The state equation is solved using standard FEM-methods.
We use an approach with general shell elements based on biquadratic 9-node
Lagrange elements that can be found in [11] or [14]. The finite element dis-
placements are thus given by

Vh =
n∑

i=1

hi(ξ
1, ξ2)(v(i) + ξ3η(i)), η(i) · a(i)3 = 0 (62)

where v(i) = (v
(i)
1 , v

(i)
2 , v

(i)
3 )T , η(i) = (η

(i)
1 , η

(i)
2 , η

(i)
3 )T , t(i) and a

(i)
3 denote the

translational and rotational displacement components in Cartesian coordi-
nates, the thickness and the unit normal vector at node i, respectively. The
hi are chosen as the shape functions arising from biquadratic ansatz func-
tions λj , j = 1, . . . , 9 on the reference element. In local element coordinates,
this reads

Vh|E =

9∑
j=1

λj(r, s)(v
(j) + z

t(i)

2
η(i)). (63)

As in (7) we divide into translational and rotational components and con-
sider the finite element displacement space

Vh := {(vh, ηh) | vh =
n∑

i=1

hi(ξ
1, ξ2)v(i), ηh = π(

n∑
i=1

hi(ξ
1, ξ2)η(i)),

η(i) · a(i)3 = 0} ∩BC,

(64)
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where π denotes the projection operator onto the tangential plane at point
(ξ1, ξ2) ∈ S and BC imposes appropriate boundary conditions on the dis-
placements. Accordingly, the nodal thicknesses t(i) are interpolated using
the shape functions hi which leads to th =

∑n
i=1 hit

(i). The strain-vector e is
calculated using strain-displacement matrices arising from (11). The matri-
ces C and D are calculated using (13) and the value of the discretized bilin-
ear form A(th)(uh, θh; vh, ηh) is obtained using (15) together with Gaussian
quadrature. Accordingly, the discretized linear form Fh(vh, ηh) is calculated.
We now have to solve: Find (uh, θh) ∈ Vh, such that

A(th)(uh, θh; vh, ψh) = Fh(vh, ψh) for all (vh, ψh) ∈ Vh. (65)

Let the mapping Gh : Rn → Vh, t⃗ 7→ (uh, θh) which maps the vector of the
nodal thicknesses t⃗ via the function th to the solution of (65) be defined.
Finally, the volume constraint is discretized using Gaussian quadrature for
th over S. We can now state the finite dimensional optimization problem

min
t⃗∈Rn

Jh(⃗t) = Fh(Gh(⃗t))

s.t. : Bht⃗ = C

t⃗min ≤ t⃗ ≤ t⃗max

(66)

where the first constraint represents the volume condition and the second
one the pointwise bounds on the thickness.

The linear system arising from (65) is solved using a combination of
direct methods (Pardiso solver, see e.g. [15]) and the pcg-method. Namely,
the system is solved directly once at the beginning of an iteration of the
optimizer, while in the following line search steps the pcg-method is used. As
a preconditioner, the LU-factorization obtained from the direct solution does
very good work. This combination allows us to benefit from the advantages
of both direct and indirect methods.

The actual optimization is done with IpOpt, an Interior-Point algorithm
for Large-Scale nonlinear optimization. Here, the expression obtained in (60)
for the directional derivative of the objective is used to calculate the gradient
of the discrete objective which depends only on the nodal thicknesses. This
reduces the running time of the optimizer and raises the accuracy of the
solution considerably. The discrete gradient is calculated by evaluating the
expression

[∇Jh(⃗t)]i = Zhi
(Gh(⃗t)) + λ⟨th, hi⟩H1(S) (67)

where we go through all shape functions hi.
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Moreover, we can perform an “optimality test” using equation (61). For
a computed solution t⃗∗ this is done by checking

min
t∈Uad

J ′
s(t

∗)t
?
= J ′

s(t
∗)t∗, (68)

where the optimization problem can be brought into the discrete form

min
q∈Rn

∇Jh(⃗t∗) · q

s.t. : Bhq⃗ = C

t⃗min ≤ q⃗ ≤ t⃗max.

(69)

This is a standard linear program with solution q⃗∗. In general, our numerical
solution t⃗∗ will not be optimal, so there will be a difference ∇Jh(⃗t∗) · (q⃗∗ −
t⃗∗) = −ε < 0, where ε is an indicator for the precision of t⃗∗.

7 Examples

We discuss a part of a tube where different forces are applied on the
midsurface. For this, we consider the domain ω = (0, 1) × (0, π2 ) together
with ϕ(ξ1, ξ2) = (ξ1, cos(ξ2), sin(ξ2)) to describe the midsurface. We choose
E = 210 and ν = 0.3 for the material parameters. The minimal and maximal
thickness as well as the volume of the shell are chosen as tmin = 0.05 and
tmax = 0.15 and C = π

20 , respectively. This allows us to start with a constant
thickness of 0.1 as a feasible initial solution. The regularization parameter λ
is chosen in a way that the regularization term is about two to three orders
of magnitude smaller than the objective value.

Example 1 We choose a rotational symmetric force f(ξ1, ξ2) = ξ1(1− ξ1)
which is also symmetric in ξ1. The corresponding optimal thickness profile
over the domain ω is shown in figure 2. We see that the thickness follows
approximately the profile of the force and is in particular symmetric in both
ξ1 and ξ2. The calculation started on a coarse grid and was refined iteratively
on finer grids. In the table from figure 2 the differences between the solution
on a very fine grid with step-size of 2−8 in ξ1-direction (“exact” solution)
and on coarser grids are listed, taken in the max-norm on the particular
grid. The step size in ξ1-direction for each grid is given in the first column.
The step-size in ξ2-direction is chosen to have the same number of nodes.
This shows good convergence properties for the thickness when the grid is
refined. Moreover, we can see by solution of (69), that the parameter ε in
the optimality test can be chosen as 4.5 ·10−7 which is an indicator for good
accuracy of the computed solution t∗h.
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t(
ξ
1
,
ξ
2
)

ξ2 ξ1
0

0.2
0.4

0.6
0.8

1

0
0.5

1
1.5

2
0.05

0.075

0.1

0.125

0.15

step− size hξ1
∥∥t⃗ex − t⃗h

∥∥
∞

2−4 1.16 · 10−2

2−5 1.23 · 10−3

2−6 9.92 · 10−4

2−7 6.87 · 10−4

Figure 2: Results for example 1, loading f(ξ1, ξ2) = ξ1(1− ξ1)

Example 2 We choose a periodic force f(ξ1, ξ2) = sin(2πξ1). The corre-
sponding optimal thickness profile over the domain ω is shown in figure 3.
Again, the thickness follows approximately the magnitude of the incoming
force. It is noticeable for the first two examples that the optimal thickness
does depend on ξ2 while the incoming force does not. This could be due to
the fact that we consider a part of a tube rather than the full tube. The
table from figure 3 again shows good convergence properties for smaller step
sizes on the grid, though there is a slightly bigger error than in the first
example. The parameter ε from (69) can be chosen as 2.37 · 10−6 which
indicates good accuracy of the computed solution.

Example 3 In this example we choose an exponential load f(ξ1, ξ2) =
(exp(ξ1)− 1)(exp(ξ2)− 1) which is also asymmetric in ξ1 and ξ2. The cor-
responding optimal thickness profile over the domain ω is shown in figure
4. We see that the thickness is maximal in the region with largest incoming
force. But also the two elevations with peaks at (0.578, 0) and (0, 0.626)
should be mentioned. The values in the table from figure 4 show the conver-
gence properties on finer grids and the parameter ε from (69) can be chosen
as 6.34 · 10−6 which both indicates good accuracy of the solution.

Example 4 We choose a discontinuous force f(ξ1, ξ2) = 1[ 1
4
, 3
4
]×[π

4
− 1

4
,π
4
+ 1

4
].

The corresponding optimal thickness profile over the domain ω is shown in
figure 5. It is noticeable that the optimal thickness is maximal in a region
shaped like a cross while the incoming force is applied at a region shaped like
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t(
ξ
1
,
ξ
2
)

ξ2 ξ1
0

0.2
0.4

0.6
0.8

1

0
0.5

1
1.5

2
0.050.05

0.075

0.1

0.125

0.150.15

step− size hξ1
∥∥t⃗ex − t⃗h

∥∥
∞

2−4 4.22 · 10−2

2−5 2.40 · 10−2

2−6 7.68 · 10−3

2−7 1.55 · 10−3

Figure 3: Results for example 2, loading f(ξ1, ξ2) = sin(2πξ1)

t(
ξ
1
,
ξ
2
)

ξ2 ξ1
0

0.2
0.4

0.6
0.8

1

0
0.5

1
1.5

2
0.05

0.075

0.1

0.125

0.15

step− size hξ1
∥∥t⃗ex − t⃗h

∥∥
∞

2−4 2.48 · 10−2

2−5 5.04 · 10−3

2−6 1.04 · 10−3

2−7 2.12 · 10−4

Figure 4: Results for example 3, loading f(ξ1, ξ2) = (exp(ξ1)−1)(exp(ξ2)−1)
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a square, see figure 6. The discontinuity of the incoming force is reflected
quite good in the optimal thickness. The table from figure 5 shows similar
convergence properties as in the second example. The parameter ε from (69)
can be chosen as 3.15 · 10−6 which indicates good accuracy of the computed
solution.

t(
ξ
1
,
ξ
2
)

ξ2 ξ1
0

0.2
0.4

0.6
0.8

1

0
0.5

1
1.5

2
0.050.05

0.075

0.1

0.125

0.150.15

step− size hξ1
∥∥t⃗ex − t⃗h

∥∥
∞

2−4 4.45 · 10−2

2−5 1.96 · 10−2

2−6 7.04 · 10−3

2−7 1.88 · 10−3

Figure 5: Results for example 4, loading f(ξ1, ξ2) = 1[ 1
4
, 3
4
]×[π

4
− 1

4
,π
4
+ 1

4
]

ξ
2

ξ1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Figure 6: View from above, black line = discontinuity of f
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8 Concluding remarks

In this paper we discussed thickness optimization problems for cylindri-
cal shells where the load is applied to the shell’s midsurface. In particular we
showed the continuity and Gâteaux-differentiability of the control-to-state
operator arising from the model equations. The result was used to deduce an
expression for the directional derivative of the objective which was the com-
pliance functional in our case. This allowed us to state necessary conditions
for an optimal solution. An effective numerical implementation based on
direct methods was possible on quite fine grids by using the discretized ex-
pression for the directional derivative together with finite element methods.
Different examples were investigated where the optimal thickness followed
the incoming force in a reasonable way. The computed thicknesses on re-
fined grids showed a good convergence behaviour as well as the evaluation
of the necessary conditions indicated good accuracy of the solutions.
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