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Abstract

In this survey we present our recent results on analysis of gamma
function and related functions. The results obtained are in the the-
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174 Cristinel Mortici

1 A method for constructing asymptotic series and
applications

The problem of approximating the gamma function goes back to Laplace
formula which is the continuous version of the Stirling formula. In 1916
Srinivasa Ramanujan (see [4]) proposed a formula which was later studied
by E. A. Karatsuba in [13] and Alzer [2].

A method for improving some approximation formulas for large factorials
is to consider the corresponding asymptotic series. It is presented in [16] an
original approach to the asymptotic evaluation of sums and products. As for
usual, to an approximation formula f(n) ∼ g(n), it is associated the series

f(n) ∼ g(n) exp

( ∞∑
k=1

ak
nk

)
, (1)

also called an asymptotic series. Such series have the advantage that in a
truncated form, provides approximations to any accuracy n−k.

The strategy in [16] is based on the idea that when series (1) is truncated
at the mth term, the approximation obtained should be the most precise
possible among all approximations

f(n) ∼ g(n) exp

(
m∑
k=1

a′k
nk

)
, (2)

where a′1, a
′
2, . . . , a

′
m are any real numbers.

The first task is to compare the accuracy of two approximation formulas.
We do this by associate to an approximation formula f (n) ∼ g (n) the
relative error sequence rn by the relations

f (n) = g (n) exp rn , n ≥ 1.

We consider f (n) ∼ g (n) as better as rn converges to zero faster.
Now a new task appears, that is to measure the speed of convergence of

the sequence rn. The tool used is the following

Lemma 1 (Speed of Convergence Lemma). If (rn)n≥1 is conver-
gent to zero and

lim
n→∞

nk(rn − rn+1) = l , then lim
n→∞

nk−1rn =
l

k − 1
, (k ≥ 2) .

In other words, rn is of n−(k−1) speed of convergence, in case rn − rn+1 is
of order n−k.
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We cite from Batir [3]: “This lemma, despite of its simple appearance,
is a strong tool to accelerate and measure the speed of convergence of some
sequences having limit zero, and has proved by C. Mortici in [16]”. As the
reviewer of [16] asked, a detailed proof of Lemma 1 was presented for sake
of completness.

We introduce the relative error sequence (λn)n≥1 by

f(n) = g(n) exp

(
m∑
k=1

ak
nk

)
expλn , n ≥ 1.

In order to use Lemma 1, we write

λn − λn+1 =

m+1∑
k=2

xk − yk
nk

+O

(
1

nm+2

)
,

where
m∑
k=1

ak
nk
−

m∑
k=1

ak
(n+ 1)k

=
m+1∑
k=2

yk
nk

+O

(
1

nm+2

)
with

a1 −
(
k − 1

1

)
a2 + · · ·+ (−1)k

(
k − 1

k − 2

)
ak−1 = (−1)k yk, 2 ≤ k ≤ m+ 1

and assuming

ln
f(n)g(n+ 1)

g(n)f(n+ 1)
=

∞∑
k=2

xk
nk
. (3)

The following main result is stated in [16].

Theorem 1. Suppose there is some k such that 2 ≤ k ≤ m + 1 and
xk 6= yk, and let s = min {k | 2 ≤ k ≤ m+ 1, xk 6= yk} . Then

lim
n→∞

ns−1λn =
xs − ys
s− 1

∈ Rr {0} ,

and therefore the speed of convergence of (λn)n≥1 is n−(s−1).

If s ≥ 3, conditions xk = yk, for 2 ≤ k ≤ s − 1, are equivalent to the
triangular system

xk = (−1)k
(
a1 −

(
k − 1

1

)
a2 + · · ·+ (−1)k

(
k − 1
k − 2

)
ak−1

)
, (4)
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which defines uniquely the best coefficients ak, 1 ≤ k ≤ s− 2.
These theoretical results were applied in [16] to deduce the series as-

sociated with some approximation formulas: Stirling, Burnside, Glaisher-
Kinkelin, Wallis. Standard construction of these series makes appeal to
Bernoulli numbers and Euler-Maclaurin summation formula.

To the Glaisher-Kinkelin constant defined by

A = lim
n→∞

112233 · · ·nn

nn2/2+n/2+1/12e−n2/4
,

the following asymptotic series is considered

112233 · · ·nn ∼ A · n
n2+n

2
+ 1

12 e−n
2/4 exp

( ∞∑
k=1

ak
nk

)
.

Here we have f(n) = 112233 · · ·nn and g(n) = A · n
n2+n

2
+ 1

12 e−n
2/4. The

values xk in (3) are

xk = (−1)k
(

1

2k + 2
− 1

2k + 4
− 1

12k

)
,

and the solution of the triangular system (4) is a1 = 0, a2 = 1/720, a3 =
0, a4 = −1/5040, a5 = 0, a6 = 1/10080, . . . . Hence

112233 · · ·nn ∼ A·n
n2+n

2
+ 1

12 e−n
2/4 exp

(
1

720n2
− 1

5040n4
+

1

10 080n6
− · · ·

)
.

The asymptotic series associated to Wallis formula is

π

2
∼

 n∏
j=1

4j2

4j2 − 1

 exp

( ∞∑
k=1

ak
nk

)
.

With f(n) = π
2 and g(n) =

∏n
j=1

4j2

4j2−1 in (3), we get

xk =
(−1)k

k

(
3k + 1

2k
− 2

)
.

The solution of the triangular system (4) is a1 = 1/4, a2 = −1/8, a3 = 5/96,
a4 = −1/64, . . . . Hence

π

2
∼

 n∏
j=1

4j2

4j2 − 1

 exp

(
1

4n
− 1

8n2
+

5

96n3
− 1

64n4
+ · · ·

)
.
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By using standard transforms on asymptotic series, it is obtained in [16] the
following formula

n∏
j=1

4j2

4j2 − 1
∼ π

2

(
1− 1

4n
+

5

32n2
− 11

128n3
+

31

768n4
− · · ·

)
,

which is an extension of the following formula presented by Hirschhorn in
[12]:

n∏
j=1

4j2

4j2 − 1
∼ π

2
− π

8n
+O

(
1

n2

)
as n→∞.

Undoubtedly the most used formula for estimating big factorials is the fol-
lowing

n! ∼
√

2πn
(n
e

)n
now known as Stirling’s formula. Classical methods for constructing the
corresponding asymptotic series use some equations involving numeric se-
ries and improper integrals, Euler-Maclaurin summation formula, Legendre
duplication formula, or the analytic definition of Bernoulli numbers. The
method proposed in [16] is quite elementary. For the asymptotic series

n! ∼
√

2πn
(n
e

)n
exp

( ∞∑
k=1

ak
nk

)
, (5)

with f(n) = n! and g(n) =
√

2πn
(
n
e

)n
, we have in (3)

xk = (−1)k
k − 1

2k(k + 1)
.

The solution of the triangular system (4) is a1 = 1/12, a2 = 0, a3 = −1/360,
a4 = 0, a5 = 1/1260, a6 = 0, a7 = −1/1680, which are coefficients in (5).

It is presented in [17] the following asymptotic expansion in terms of
Bernoulli numbers for every p ∈ [0, 1]:

Γ (x+ 1) ∼
√

2πe · e−p
(
x+ p

e

)x+ 1
2

· exp

{ ∞∑
k=1

ap (x)

xk

}
, n→∞, (6)

where

ap (x) =
1

k (k + 1)

[
Bk+1 − (−1)k pk

((
p− 1

2

)
k − 1

2

)]
.
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The class of approximations (6) was also recently studied by Nemes [22].
Particular case p = 1/2 is Burnside series [6]:

Γ (x+ 1) ∼
√

2π

(
x+ 1

2

e

)x+ 1
2

exp

( ∞∑
k=1

(
Bk+1 +

(−1)k

2k+1

)
1

k (k + 1)xk

)
,

while p = 1 case provides the following formula:

Γ (x+ 1) ∼
√

2π

e

(
x+ 1

e

)x+ 1
2

exp

( ∞∑
k=1

(
Bk+1 − (−1)k

k − 1

2

)
1

k (k + 1)xk

)
.

As usually truncations of these series provide upper- and lower- estimates.
The following double inequalities were presented in [17]:

Theorem 2. For every x ≥ 1, we have

√
2π

(
x+ 1

2

e

)x+ 1
2

exp a (x) < Γ (x+ 1) <
√

2π

(
x+ 1

2

e

)x+ 1
2

exp b (x) ,

where

a (x) = − 1

24x
+

1

48x2
− 23

2880x3
+

1

640x4
+

11

40 320x5
+

1

5376x6
− 143

215 040x7

and

b (x) = a (x) +
143

215 040x7
.

Theorem 3. For every x ≥ 1, we have√
2π

e

(
x+ 1

e

)x+ 1
2

exp c (x) < Γ (x+ 1) <

√
2π

e

(
x+ 1

e

)x+ 1
2

exp d (x) ,

where

c (x) =
1

12x
− 1

12x2
+

29

360x3
− 3

40x4
+

17

252x5
− 5

84x6

and

d (x) = c (x) +
89

1680x7
.

Liu [15] established the following integral version of Stirling’s formula

Γ (n+ 1) =
√

2πn
(n
e

)n
· exp

(∫ ∞
n

1
2 − {t}

t
dt

)
.
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An extension to Nemes’ family was presented in [18]. The following formula
is valid for every p ∈ [0, 1] :

Γ (n+ 1) =
√

2πe · e−p
(
n+ p

e

)n+ 1
2

· exp

(∫ ∞
n

(
3
2 − p− {t}

t+ p
+

p

p {t}+ [t]
− 1

t

)
dt

)
.

According to our discussion in general case, the Stirling series in terms of
Bernoulli numbers

Γ (n+ 1) ∼
√

2πn
(n
e

)n
exp

{ ∞∑
k=1

B2k

2k (2k − 1)n2k−1

}
(7)

is of best performance from the approximation point of view when it is
truncated at every term. However better results can be obtained if we
consider the truncations in (7) as rational functions of the form

m∑
k=1

B2k

2k (2k − 1)n2k−1
=

Rm
(
n2
)

12nTm (n2)
,

where Rm, Tm are polynomials of (m− 1) th degree, with the leading co-
efficients equal to unity. It is indicated in [19] how can be constructed
polynomials Pm, Qm of (m− 1) th degree such that the approximation

Γ (n+ 1) ∼
√

2πn
(n
e

)n
exp

Pm
(
n2
)

12nQm (n2)
(8)

is the best possible among all approximations of the form

Γ (n+ 1) ∼
√

2πn
(n
e

)n
exp

P ′m
(
n2
)

12nQ′m (n2)
,

where P ′m and Q′m are every polynomials of (m− 1) th degree with leading
coefficient equal to unity. New obtained approximations (8) are more accu-
rate than the mth approximation of the classical Stirling series (7). Initial
approximations

n! ∼
√

2πn
(n
e

)n
exp

n2 + 53
210

12n
(
n2 + 2

7

) =: ρ1 (9)
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n! ∼
√

2πn
(n
e

)n
exp

n4 + 2559
1430n

2 + 22999
90090

12n
(
n4 + 782

429n
2 + 263

858

) =: ρ2 (10)

are more accurate than the classical approximations arising from Stirling
series truncated at the second, respective at the third term, namely

n! ≈
√

2πn
(n
e

)n
exp

30n2 − 1

360n3
=: σ1, (11)

n! ≈
√

2πn
(n
e

)n
exp

210n4 − 7n2 + 2

2520n5
=: σ2. (12)

In order to offer an initial image, we consider a comparison table to prove
the superiority of (9)-(10) over (11)-(12).

n ln (n!/σ1) ln (ρ1/n!)

10 7. 8× 10−9 3. 6× 10−11

100 7. 9× 10−14 3. 6× 10−18

250 8. 1× 10−16 6. 0× 10−21

n ln (σ2/n!) ln (n!/ρ2)

10 5. 8× 10−11 5. 2× 10−15

100 5. 9× 10−18 5. 7× 10−26

250 9. 7× 10−21 3. 1× 10−27

Rigorous proofs of these facts are presented in [19]. Remark that the first
approximations (8) are the approximations obtained by truncation the clas-
sical Stieltjes continued fraction to gamma function, but the proof of this
result is left as an open problem in [19].

In order to show our method, let us search the best constants a1, a2 in
m = 2 case:

n! ∼
√

2πn
(n
e

)n
exp

n2 + a1
12 (n3 + a2n)

.

For the relative error sequence zn defined by

n! =
√

2πn
(n
e

)n
exp

n2 + a1
12 (n3 + a2n)

exp zn , (n ≥ 1) ,

we used Maple software for symbolic computation to deduce

zn − zn+1 =

(
−1

4
a1 +

1

4
a2 −

1

120

)
1

n4
− 2

(
−1

4
a1 +

1

4
a2 −

1

120

)
1

n5

+

(
5

6
a2 −

5

6
a1 +

5

12
a1a2 −

5

12
a22 −

1

42

)
1

n6

+

(
5

4
a1 −

5

4
a2 −

5

4
a1a2 +

5

4
a22 +

5

168

)
1

n7
+O

(
1

n8

)
.

Now the fastest sequence zn is obtained when the first two coefficients in
this power series vanish, that is a1 = 53

210 , a2 = 2
7 .
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In case m = 3, we define the sequence tn by

n! =
√

2πn
(n
e

)n
exp

n4 + b1n
2 + b2

12 (n5 + b3n3 + b4n)
exp tn , (n ≥ 1) .

As

tn − tn+1 =

(
−1

4
b1 +

1

4
b3 −

1

120

)
1

n4
− 2

(
−1

4
b1 +

1

4
b3 −

1

120

)
1

n5

+

(
5

6
b3 −

5

12
b2 −

5

6
b1 +

5

12
b4 +

5

12
b1b3 −

5

12
b23 −

1

42

)
1

n6
+O

(
1

n7

)
,

we get b1 = 2559
1430 , b2 = 22 999

90 090 , b3 = 782
429 , b4 = 263

858 . In this case,

tn − tn+1 = − 80 713

12 972 960n12
+O

(
1

n13

)
.

The following estimates were stated in [19]:

Theorem 4. For every positive integer n, we have

exp

(
P2

(
n2
)

12nQ2 (n2)
− 13

35280n7

)
<

n!√
2πn

(
n
e

)n < exp
P2

(
n2
)

12nQ2 (n2)
.

We illustrate our method by providing

The proof of Theorem 4. We have to prove that an > 0 and bn < 0,
where

an =
P2

(
n2
)

12nQ2 (n2)
− ln

n!√
2πn

(
n
e

)n ,
bn =

P2

(
n2
)

12nQ2 (n2)
− 13

35280n7
− ln

n!√
2πn

(
n
e

)n .
As an, bn converge to zero, it suffices to show that an is strictly decreasing,
while bn is strictly increasing. In this sense, an+1 − an = f (n) , bn+1 − bn =
g (n) , where

f (x) =

(
x+

1

2

)
ln

(
1 +

1

x

)
− 1 +

P2

(
(x+ 1)2

)
12 (x+ 1)Q2

(
(x+ 1)2

) − P2

(
x2
)

12xQ2 (x2)

and

g (x) = f (x)−
(

13

35280 (x+ 1)7
− 13

35280x7

)
.
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The function f is strictly concave, while g is strictly convex with f (∞) =
g (∞) = 0, so f (x) < 0 and g (x) > 0, for every x ∈ [1,∞) and the theorem
is proved.�

In the same manner, the following result is stated in [19]:

Theorem 5. For every positive integer n, we have

exp

(
P3

(
n2
)

12nQ3 (n2)
− 80713

142702560n11

)
<

n!√
2πn

(
n
e

)n < exp
P3

(
n2
)

12nQ3 (n2)
.

2 Landau constants

E. Landau studied the asymptotic behaviour of the constants

Gn = 1 +

(
1

2

)2

+

(
1 · 3
2 · 4

)2

+ ...+

(
1 · 3 · ... · (2n− 1)

2 · 4 · ... · (2n)

)2

,

(now known as Landau constants) proving the asymptotic formula Gn ∼
(1/π) lnn, see e.g. [14]. Then Watson [24] proposed

Gn = c0 +
1

π
ln (n+ 1)− 1

4π (n+ 1)
+O

(
1

n2

)
,

where c0 = 1
π (γ + 4 ln 2) = 1.06627... and γ = 0.577... is Euler-Mascheroni

constant. Further improvements were presented by Brutman [5]

1 +
1

π
ln (n+ 1) < Gn < 1.0663 +

1

π
ln (n+ 1)

and Falaleev [9]

1.0662 +
1

π
ln

(
n+

3

4

)
< Gn < 1.0916 +

1

π
ln

(
n+

3

4

)
. (13)

It is showed in [20] that 3/4 is the best possible constant that can be used
in (13). The proofs are based on inequalities

s (x) < ln Γ (x+ 1) < t (x) (14)

where

s (x) = ln
√

2π +

(
x+

1

2

)
lnx− x+

1

12x
− 1

360x3
+

1

1260x5
− 1

1680x7
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and

t (x) = ln
√

2π+

(
x+

1

2

)
lnx−x+

1

12x
− 1

360x3
+

1

1260x5
− 1

1680x7
+

1

1188x9
.

They are a consequence of a result of Alzer [2, Theorem 8].
By (14), we get

eu(x) <
1

16x

(
Γ (2x+ 1)

(Γ (x+ 1))2

)2

< ev(x), (15)

where

u (x) = 2s (2x)− 4t (x)− x ln 16 , v (x) = 2t (2x)− 4s (x)− x ln 16.

Mortici [20] used (15) to establish the following

Theorem 6. For every integer n ≥ 1, we have

c0 +
1

π
ln

(
n+

3

4

)
< Gn < c0 +

1

π
ln

(
n+

3

4
+

11

192n

)
. (16)

Proof. As n = 1, 2 cases can be easily proven, we assume n ≥ 3. The
sequence

an = Gn − c0 −
1

π
ln

(
n+

3

4

)
converges to zero and it suffices to show that (an)n≥3 is strictly decreasing.
As

an−an−1=
1

16n

(
Γ (2n+ 1)

(Γ (n+ 1))2

)2

− 1

π
ln

(
1 +

1

n− 1
4

)
<ev(n)− 1

π

4∑
k=1

(−1)k−1

k
(
n− 1

4

)k ,
we have to prove that f (x) < 0, where

f (x) = v (x)− ln

(
1

π

4∑
k=1

(−1)k−1

k
(
x− 1

4

)k
)
.

This function has its derivative f ′ > 0 on [3,∞). Now f is strictly increasing
on [3,∞), with f (∞) = 0, so f (x) < 0, for every x ∈ [3,∞).

For the right-hand side inequality (16), define the sequence

bn = Gn − c0 −
1

π
ln

(
n+

3

4
+

11

192n

)
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and proceed as above. We have

bn − bn−1 =
1

16n

(
Γ (2n+ 1)

(Γ (n+ 1))2

)2

− 1

π
ln

(
1 +

1 + 11
192n −

11
192(n−1)

n− 1
4 + 11

192(n−1)

)

> eu(n) − 1

π

5∑
k=1

(−1)k−1

k

(
n− 1

4
+ 11

192(n−1)

1+ 11
192n
− 11

192(n−1)

)k .
The function

g (x) = u (x)− ln

 1

π

5∑
k=1

(−1)k−1

k

(
x− 1

4
+ 11

192(x−1)

1+ 11
192x
− 11

192(x−1)

)k
 ,

is strictly decreasing on [3,∞), with g (∞) = 0, so g (x) > 0, for every
x ∈ [3,∞).�

Zhao [25] extended the asymptotic expansion of Gn to

Gn = c0 +
1

π
ln (n+ 1)− 1

4π (n+ 1)
+

5

192π (n+ 1)2
+O

(
1

(n+ 1)3

)
,

then Mortici [20] proved the following improvement

Theorem 7. For every integer n ≥ 1, we have

c0 +
1

π
ln (n+ 1)− 1

4π (n+ 1)
+

5

192π (n+ 1)2
(17)

+
3

128π (n+ 1)3
− 341

122880π (n+ 1)4
− 75

8192π (n+ 1)5
< Gn

< c0 +
1

π
ln (n+ 1)− 1

4π (n+ 1)
+

5

192π (n+ 1)2
+

3

128π (n+ 1)3
−

-
341

122880π (n+ 1)4

and the following asymptotic formula holds as n→∞ :

Gn = c0 +
1

π
ln (n+ 1)− 1

4π (n+ 1)
+

5

192π (n+ 1)2
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+
3

128π (n+ 1)3
− 341

122880π (n+ 1)4
+O

(
1

(n+ 1)5

)
.

Cvijović and Klinowski [8] presented some estimates in terms of the digamma
function

c0 +
1

π
ψ

(
n+

5

4

)
< Gn < 1.0725 +

1

π
ψ

(
n+

5

4

)
and

0.9883 +
1

π
ψ

(
n+

3

2

)
< Gn < c0 +

1

π
ψ

(
n+

3

2

)
(n ≥ 0),

as Alzer [1] proved the following double sharp inequality

c0 +
1

π
ψ (n+ α) < Gn < c0 +

1

π
ψ (n+ β) , (n ≥ 1) ,

where α = 5/4 and β = ψ−1 (π (1− c0)) = 1.26621... .
Mortici [20] improved the above results of Cvijović, Klinowski and Alzer

as follows:

Theorem 8. For every positive integer n, we have

c0 +
1

π
ψ

(
n+

5

4

)
+

1

64πn2
− 3

128πn3
< Gn

< c0 +
1

π
ψ

(
n+

5

4

)
+

1

64πn2
− 3

128πn3
+

173

8192πn4
. (18)

Cases n = 1, 2 are true, so we assume n ≥ 3. The sequence

tn = Gn − c0 −
1

π
ψ

(
n+

5

4

)
− 1

64πn2
+

3

128πn3

is strictly decreasing. As

tn − tn−1 =
1

16n
(Γ (2n+ 1))2

(Γ (n+ 1))4
− 1

π
(
n+ 1

4

)
− 1

64πn2
+

3

128πn3
+

1

64π (n− 1)2
− 3

128π (n− 1)3
,

we have to prove that m < 0, where

m (x) = v (x)−
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− ln

(
1

π
(
x+ 1

4

) +
1

64πx2
− 3

128πx3
− 1

64π (x− 1)2
+

3

128π (x− 1)3

)
.

But m is strictly increasing with m (∞) = 0, so m < 0 on [3,∞).

For the right-hand side inequality (18), the sequence

zn = Gn − c0 −
1

π
ψ

(
n+

5

4

)
− 1

64πn2
+

3

128πn3
− 173

8192πn4

is strictly increasing and the argument is similar.�

Recent studies on Landau and Lebesgue constants were performed by
Chen and Choi [7], Granath [10], or Nemes [23].
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