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Abstract

We consider the integro-differential equation describing the coagu-
lation process of water drops falling in the air in a three-dimensional
domain with presence of a horizontal wind. Under suitable hypothesis
and some conditions we prove the existence of the stationary solution
thus the global solution using the techniques developed in [10] and [2].
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1 Introduction

We consider the equation which describes the displacement of drops by the
gravitational force and by the horizontal wind as well as the coagulation

∗Accepted for publication in revised form on March 21-st, 2014
†hanane.belhireche@gmail.com, Laboratory of Applied Mathematics and Modeling,

University 8 mai 1945, P.O. Box 401, Guelma 24000, Algeria.
‡aissaouizine@gmail.com, Laboratory of Applied Mathematics and Modeling, Uni-

versity 8 mai 1945, P.O. Box 401, Guelma 24000, Algeria.
§fellaggoune@gmail.com, Laboratory of Applied Mathematics and Modeling, Univer-

sity 8 mai 1945, P.O. Box 401, Guelma 24000, Algeria.

150



GLOBAL SOLUTION FOR THE COAGULATION EQUATION 151

process. From a mathematical point of view, it is about the Smoluchowski
coagulation equation (see [18], [13], [19]) with the displacement of drops de-
termined by their mass; it is an integro-differential equation for an unknown
function σ = σ(m, t, x, y, z), that represents the density (compared to the air
volume) of the liquid water contained in the drops of mass m at time t and
at position (x, y, z) ∈ R3. The air motion in consideration is a horizontal
wind in the direction of the x axis which depends on y (i.e v = v(y)). In [10]
the authors proved the existence of the stationary solution with presence of
a constant horizontal wind whereas in [2] the authors proved the existence
and the uniqueness of the global solution of the same equation in a domain
with one-dimensional space. In this work, we prove the existence and the
uniqueness of the global solution in a three-dimensional domain with pres-
ence of a horizontal wind and with initial and boundary conditions (entry
conditions) in a suitable spaces.

From a technical point of view, this work uses the techniques developed
in [10] and [2], in particular the introduction of the curves family on which
we consider the coagulation integral operator, and their properties, and on
the construction of “cone of dependence” for the solution.

2 Position of the problem

Let’s consider the domain R2 × [0, 1], which represents a “horizontal” area
in which the drops move due to the gravitational force and with the wind.
Let’s indicate by σ(m, t, x, y, z) the density of the water liquid contained in
the drops of mass m at the point (x, y, z) ∈ R2×]0, 1[ at the moment t ∈ R+.

In the same way to [10] and [2], we suppose that the drops undergo the
coagulation process and at the same time move by the gravitational force
and the air motion in which they are undergoing the friction effect with this
last; these considerations bring us to the following equation (see [1], [16],
[10], [2])

∂tσ(m, t, x, y, z) +∇(x,y,z) · (σ(m, t, x, y, z)u(m)) = (1)

=
m

2

∫ m

0
β(m−m′,m′)σ(m′, t, x, y, z)σ(m−m′, t, x, y, z)dm′+

−m
∫ ∞

0
β(m,m′)σ(m, t, x, y, z)σ(m′, t, x, y, z)dm′,

where ∇(x,y,z) = (∂x, ∂y, ∂z), while β(m1,m2) represents the probability of
meeting between a drop with mass m1 and another with mass m2, and u(m)



152 Hanane Belhireche, Mohamed Zine Aissaoui, Fateh Ellaggoune

indicates the velocity of drops with mass m. We suppose that

β(·, ·) ∈ C(R+ × R+), β(m1,m2) ≥ 0 ∀(m1,m2) ∈ R+ × R+,

β(m1,m2) = β(m2,m1)

and we admit that u = u(m) is given by

u = u(m) =
(
v(y), 0,− g

α(m)

)
, (2)

where v(y) is the air velocity, g is a positive constant representing the grav-
itational acceleration and α(m) is the friction coefficient between drops and
air. The relation (2) corresponds, in a good approximation, at the real
velocity of drops in the atmosphere (see for example [17], [1], [16]).

As the small drops evaporate immediately due to the very high curve of
surface (see [15], [8]) and on the other hand the very large drops fragment
due to the friction with surrounding air, we consider that the drops are
absent apart from an interval [ma,mA] and consequently the function σ
verifies

σ(m) = 0 for m ∈ [0,ma[∪ ]mA,∞[.

This permit us to define the functions α(·), β(·, ·) such that

0 < inf
m∈R+

α(m) ≤ sup
m∈R+

α(m) <∞

and
β(m1,m2) = 0 for m1 +m2 > mA.

We pose
α0 = sup

m∈R+

α (m) . (3)

3 Stationary solution

We consider the following stationary equation of (1)

∇(x,y,z) · (σ(m,x, y, z)u(m)) = (4)

=
m

2

∫ m

0
β(m−m′,m′)σ(m′, x, y, z)σ(m−m′, x, y, z)dm′+

−m
∫ ∞

0
β(m,m′)σ(m,x, y, z)σ(m′, x, y, z)dm′

with the boundary condition (entry condition)

σ(m,x, y, 1) = σ(m,x, y). (5)
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3.1 Preliminaries

To solve the equation (4) with the condition (5), we will use the idea to
transform it into an ordinary differential equation, by introducing the change
of variables (m,x, y, z) 7→ (m̃, ξ, ỹ, z̃) defined by

m̃ = m,

ξ = x− v(y)α(m)
g (1− z),

ỹ = y,
z̃ = z

(6)

and let us define

σ̃(m̃, ξ, ỹ, z̃) = σ(m,x, y, z) = σ(m, ξ + v(y)
α(m)

g
(1− z), y, z).

In the following, we will simply write m, y, z and σ(m, ξ, y, z) instead of m̃,
ỹ, z̃ and σ̃(m̃, ξ, ỹ, z̃), thus, the equation (4) will be

∂

∂z
σ(m, ξ, y, z) = (7)

= −mα(m)

2g

∫ m

0
β(m−m′,m′)σ(m′, η(m,m′, ξ, y, z), y, z)×

×σ(m−m′, η(m,m−m′, ξ, y, z), y, z)dm′+

+
mα(m)

g

∫ ∞
0

β(m,m′)σ(m, ξ, y, z)σ(m′, η(m,m′, ξ, y, z), y, z)dm′,

where

η(m,m′, ξ, y, z) = ξ + v(y)
α(m)− α(m′)

g
(1− z)

and the condition (5) will be:

σ(m, ξ, y, 1) = σ(m, ξ, y). (8)

Consequently we will reformulate the equation (7) into an ordinary dif-
ferential equation in a Banach space (or in a Frechet space). To suitably
treat the integral operator in a functional framework, we introduce, for each
fixed y ∈ R, z ∈ [0, 1], the curves family given by:

γτ = γτ,y,z = {(m, ξ) ∈ R+ × R | ξ = τ − v(y)
α(m)

g
(1− z)}, τ ∈ R. (9)
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This curves family γτ is similar to that used in [10], however this last depends
of y .

In a similar way to [10] we define a measure µγ on the curves γτ . More
precisely, indicating by PR+ the projection of γτ on R+, we define the mea-
surable sets of γτ and the measure µγ on γτ by the relations

i) A′ ⊂ γτ is measurable if and only if PR+A
′ is measurable according to

Lebesgue on R+,

ii) µγ(A′) = µL,R+(PR+A
′), where µL,R+(·) is the Lebesgue’s measure on

R+.

As the curves γτ , τ ∈ R, are parallel, it is seen that the projection PR+ and
the measure µγ(·) do not depend on τ ∈ R.

We remember that the measure µγ(·) has the same properties with those
proved in [10], indeed we have the following lemmas.

Lemma 1 Let A a measurable set (according to Lebesgue) on R+ ×R. We
pose

Aτ = {m ∈ R+ | ∃ξ ∈ R such that (m, ξ) ∈ γτ ∩A },
Am = {τ ∈ R | ∃ξ ∈ R such that (m, ξ) ∈ γτ ∩A}.

Then we have

µL,R+×R(A) = µ̃(A) =

∫ ∞
−∞

µγ(Aτ )dτ =

∫
γ0

µL,R(Am)µγ(dm) =

=

∫ ∞
0

µL,R(Am)dm. (10)

(We indicate by dm, dτ , dξ etc... instead of µL,R+(dm), µL,R(dτ), µL,R(dξ)
etc...).

Lemma 2 Let σ(m, ξ) ∈ L1(R+ × R). Then, for almost any τ ∈ R the
restriction of σ(m, ξ) to γτ belongs to L1(γτ , µγ).

Lemma 3 Let σ(m, ξ) ∈ L1(R+ × R). Then we have∫
R+×R

σ(m, ξ)dmdξ =

∫
R+×R

σ(m, ξ)dµ̃ =

=

∫ ∞
−∞

(∫
γτ

σ(m, ξ)µγ(dm)
)
dτ =

∫
γ0

(∫ ∞
−∞

σ(m, ξ(m, τ))dτ
)
µγ(dm) =

=

∫ ∞
0

(∫ ∞
−∞

σ(m, ξ)dξ
)
dm =

∫ ∞
−∞

(∫ ∞
0

σ(m, ξ)dm
)
dξ,

where ξ(m, τ) = τ − v(y) α(m)
g (1− z).
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Lemma 4 Let f and g two functions belonging in L1(γτ , µγ). We pose

(f ∗ g)(m) =

∫
γτ

f(m−m′)g(m′)µγ(dm′).

Then we have f ∗ g ∈ L1(γτ , µγ) and

‖f ∗ g‖L1(γτ ,µγ) ≤ ‖f‖L1(γτ ,µγ)‖g‖L1(γτ ,µγ).

For the proof of this lemmas see [10].

We pose

τ(m, ξ, y, z) = ξ + v(y)
α(m)

g
(1− z), γ[0,m]

τ = γτ ∩ [0,m]× R. (11)

Then we can write the equation (7) in the form

∂

∂z
σ(z) = Fz(σ(z)), σ(z) = σ(·, ·, ·, z) (12)

with

Fz(σ(z)) = Fz(σ(z))(m, ξ, y) =

= −mα(m)

2g

∫
γ
[0,m]
τ(m,ξ,y,z)

β(m−m′,m′)σ(m′, η′, y, z)σ(m−m′, η′′, y, z)µγ(dm′)+

+
mα(m)

g

∫
γτ(m,ξ,y,z)

β(m,m′)σ(m′, η′, y, z)σ(m, ξ, y, z)µγ(dm′),

where η′ and η′′ are defined such that

(m′, η′) ∈ γτ(m,ξ,y,z), (m−m′, η′′) ∈ γτ(m,ξ,y,z).

3.2 Existence and uniqueness of the solution with the data
in L1

To prove the existence and the uniqueness for the solution of the equation
(12) with the condition (8), we suppose that:

σ(·, ·, ·) ∈ L1(R+ × R2) ∩ L∞(R+ × R2), (13)

σ(m, ξ, y) ≥ 0 a.e. in R+ × R2, (14)

supp(σ) ⊂ [ma,mA]× R2, (15)
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‖σ‖L∞(R+×R2) <
1

M1(mA −ma)
, (16)

where

M1 = sup
2ma≤m≤mA,ma≤m′≤m−ma

mα(m)

2g
β(m−m′,m′). (17)

Then we have the following result.

Proposition 1 If σ(m, ξ, y) satisfies the conditions (13)–(16), then the equa-
tion (12) with the condition (8) admits one and only one solution σ verifying

σ ∈ C([0, 1];L1(R+ × R2))× L∞(R+ × R2 × [0, 1]). (18)

Proof. As in the equation (12) neither the derivative nor the integral
compared to y arise, this circumstance implies that the equation for each
fixed y ∈ R can be solved independently. That permit us to consider (12),
(8) separately for each y ∈ R. Therefore, we pose σ(m, ξ, z) = σ(m, ξ, y, z),
σ(m, ξ) = σ(m, ξ, y) and we write v instead of v(y), the proposition is proved
in the same meaner as proposition 5.1 in [10]. �

3.3 Existence and uniqueness of the solution with the data
in L∞

To prove the existence and the uniqueness of the solution for (12), (8) in a
general case, we will use the “cone of dependance” property.

Let ω in R+×R2 a measurable set such that 0 < mes(ω) <∞, we define

D[ω] =
⋃

(m,ξ,y)∈ω

D(m,ξ,y), (19)

where

D(m,ξ,y) =
⋃

0≤z≤1

( ⋃
τ−(m,ξ,y,z)≤τ≤τ+(m,ξ,y)

γτ,y,z

)
= (20)

= {(m′, η′, y′, z′) ∈ R+ × R2 × [0, 1] / η′ = τ − v(y′)
α(m′)

g
(1− z′),

y′ = y, τ−(m, ξ, y′, z′) ≤ τ ≤ τ+(m, ξ, y′)}

with{
τ+(m, ξ, y) = τ(m, ξ, y, 0) = ξ + v(y)α(m)

g ,

τ−(m, ξ, y, z) = τ+(m, ξ, y)− v(y)α0
g z = ξ + v(y)α(m)

g − v(y)α0
g z.

(21)
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We also define Dω(z) by

Dω(z) =
⋃

(m,ξ,y)∈ω

( ⋃
τ−(m,ξ,y,z)≤τ≤τ+(m,ξ,y)

γτ,y,z

)
= (22)

= {(m′, η′, y′, z′) ∈ D[ω] | z′ = z}

thus Dω(z1) is the intersection of
⋃

(m,ξ,y)∈ω

D(m,ξ,y) with the plan z = z1.

According to the definition of the set D(m,ξ,y) we remark that

(m′, η′, y′, z′) ∈ D(m,ξ,y) ⇒ γτ(m′,η′,y′,z′),y′,z′ ⊂ D(m,ξ,y),

τ(m1, ξ1, y1, 0) = τ(m2, ξ2, y2, 0)⇒ D(m1,ξ1,y1) = D(m2,ξ2,y2);

consequently, if (m1, ξ1) and (m2, ξ2) are on a curve γτ,y,0, then they define
the same set.

The “cone of dependence” property is given by the following lemma.

Lemma 5 Let σ[1] and σ[2] be two functions defined on R+ ×R2 satisfying
the conditions of proposition 1. Let σ[1] (resp. σ[2]) be the solution of (12),
(8) with σ = σ[1] (resp. σ = σ[2]). If we have

σ[1] = σ[2] on Dω(1), (23)

then

σ[1] = σ[2] a.e. in D[ω]·

Proof. Writing the equation (12) into an integral form, we have

σ[i](m, ξ, y, z) = σ[i](m, ξ, y)+

+
mα(m)

2g

∫ 1

z

∫
γ
[0,m]

τ(m,ξ,y,z′),y,z′

β(m−m′,m′)σ[i](m′, η′, y, z′)σ[i](m−m′, η′′, y, z′)

µγ(dm′)dz′ − mα(m)

g

∫ 1

z

∫
γτ(m,ξ,y,z′),y,z′

β(m,m′)σ[i](m′, η′, y, z′)×

×σ[i](m, ξ, y, z′)µγ(dm′)dz′, i = 1, 2.

Making the difference for i = 1 and i = 2, we have∣∣σ[1](m, ξ, y, z)− σ[2](m, ξ, y, z)
∣∣ ≤ ∣∣σ[1](m, ξ, y)− σ[2](m, ξ, y)

∣∣+
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+Cβ

[ ∫ 1

z

∫
γ
[0,m]

τ(m,ξ,y,z′),y,z′

(∣∣σ[1](m−m′, η′′, y, z′)− σ[2](m−m′, η′′, y, z′)
∣∣

σ[2](m′, η′, y, z′) +
∣∣σ[1](m′, η′, y, z′)−σ[2](m′, η′, y, z′)

∣∣σ[1](m−m′, η′′, y, z′)
)

µγ(dm′)dz′ +

∫ 1

z

∫
γτ(m,ξ,y,z′),y,z′

(∣∣σ[1](m, ξ, y, z′)− σ[2](m, ξ, y, z′)
∣∣σ[2](m′, η′, y, z′)+

+
∣∣σ[1](m′, η′, y, z′)− σ[2](m′, η′, y, z′)

∣∣σ[1](m, ξ, y, z′)
)
µγ(dm′)dz′

]
,

where

Cβ = max[ sup
0<m′<m<∞

mα(m)

2g
β(m−m′,m′), sup

m,m′∈R+

mα(m)

g
β(m,m′)].

We deduce from it that∣∣σ[1](m, ξ, y, z)− σ[2](m, ξ, y, z)
∣∣ ≤ ∣∣σ[1]((m, ξ, y)− σ[2](m, ξ, y)

∣∣+ (24)

+Cβ

[ ∫ 1

z

(
‖σ[1](·, ·, y, z′)− σ[2](·, ·, y, z′)‖L∞(γτ(m,ξ,y,z′),y,z′ )

‖σ[2](·, ·, y, z′)‖L1(γτ(m,ξ,y,z′),y,z′ )
+ ‖σ[1](·, ·, y, z′)‖L1(γτ(m,ξ,y,z′),y,z′ )

‖σ[1](·, ·, y, z′)− σ[2](·, ·, y, z′)‖L∞(γτ(m,ξ,y,z′),y,z′ )

)
dz′+

+

∫ 1

z

(
‖σ[1](·, ·, y, z′)− σ[2](·, ·, y, z′)‖L∞(γτ(m,ξ,y,z′),y,z′ )

‖σ[2](·, ·, y, z′)‖L1(γτ(m,ξ,y,z′),y,z′ )
+ (mA −ma)×

‖σ[1](·, ·, y, z′)− σ[2](·, ·, y, z′)‖L∞(γτ(m,ξ,y,z′),y,z′ )

‖σ[1](·, ·, y, z′)− σ[2](·, ·, y, z′)‖L∞(γτ(m,ξ,y,z′),y,z′ )

)
dz′
]
.

Now let’s consider a generic point (m, ξ, y, z) of D[ω], by virtue of (20)–
(21) there exists (m0, ξ0, y0) ∈ ω ⊂ R+ × R2 such that

ξ0 + v(y0)
α(m0)

g
− v(y0)

α0

g
z = τ−(m0, ξ0, y0, z) ≤

≤ ξ + v(y)
α(m)

g
(1− z) ≤ τ+(m0, ξ0, y0) = ξ0 + v(y0)

α(m0)

g
,

y = y0.
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From this inequalities, the inequality v(y)α(m)
g ≤ v(y)α0

g < 0, implies that

for 0 ≤ z ≤ z′ ≤ 1, we have{
ξ0 + v(y0)α(m0)

g − v(y0)α0
g z
′ ≤ ξ + v(y)α(m)

g (1− z′) ≤ ξ0 + v(y0)α(m0)
g ,

y = y0,

by virtue of (11) and (21), we have{
τ−(m0, ξ0, y0, z

′) ≤ τ(m, ξ, y, z′) ≤ τ+(m0, ξ0, y0),
y = y0

and, according to the definition (22) of the set Dω(z), we prove that

γτ(m,ξ,y,z′),y,z′ ⊂ Dω(z′) for 0 ≤ z ≤ z′ ≤ 1.

We recall that we have moreover, for i = 1, 2

‖σ[i](·, ·, y, z)‖L1(γτ (m,ξ,y,z),y,z,µγ) ≤ (mA −ma)‖σ[i](·, ·, y, z)‖L∞(Dω(z)),

for almost any (m, ξ, y) ∈ R+ × R2.
From (24) we deduce that

‖σ[1](·, ·, ·, z)− σ[2](·, ·, ·, z)‖L∞(Dω(z)) ≤ ‖σ[1] − σ[2]‖L∞(Dω(1))

+C

∫ 1

z

(
‖σ[1](·, ·, ·, z′)‖L∞(Dω(z′)) + ‖σ[2](·, ·, ·, z′)‖L∞(Dω(z′))

)
×

×‖σ[1](·, ·, ·, z′)− σ[2](·, ·, ·, z′)‖L∞(Dω(z′))dz
′,

where C is a constant independent of z, using the Gronwall’s lemma, we
obtain

‖σ[1](·, ·, ·, z)− σ[2](·, ·, ·, z)‖L∞(Dω(z)) ≤ ‖σ[1] − σ[2]‖L∞(Dω(1))× (25)

× exp
(
C

∫ 1

z
(‖σ[1](·, ·, ·, z′)‖L∞(Dω(z′)) + ‖σ[2](·, ·, ·, z′)‖L∞(Dω(z′)))dz

′
)
.

However, under the assumption (23) we have

‖σ[1] − σ[2]‖L∞(Dω(1)) = 0,

that enables us to deduce from (25) that

‖σ[1](·, ·, ·, z)− σ[2](·, ·, ·, z)‖L∞(Dω(z)) ≤ 0
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and, taking into account the relation D[ω] =
⋃

0≤z≤1
Dω(z), we have

σ[1](m, ξ, y, z) = σ[2](m, ξ, y, z) a.e. in D[ω].

The lemma is proved. �

Now we can prove the principal theorem.

Theorem 1 If σ1 ∈ L∞(R+ × R2) satisfies the conditions

σ1(m, ξ, y) ≥ 0 a.e. on R+ × R2, (26)

σ1(m, ξ, y) = 0 for m ∈ [0,ma] ∪ [mA,∞[, (27)

‖σ1‖L∞(R+×R2) <
1

M1(mA −ma)
, (28)

then the equation (12) with the condition (8) admits one and only one so-
lution verifying

σ ∈ L∞(R+ × R2 × [0, 1])

with
σ(m, ξ, y, z) ≥ 0 a.e. in R+ × R2 × [0, 1],

σ(m, ξ, y, z) = 0 for m ∈ [0,ma] ∪ [mA,∞[·

Proof. We consider a measurable and bounded sets family ωi, i ∈ N∗,
defined by

ωi =
{

(m, ξ, y) ∈ R+ × R2 / ma ≤ m ≤ mA, −i ≤ ξ ≤ i, −i ≤ y ≤ i
}
.

(29)
The definition of D[ω] permits us to define a number N such that

Dωi(1) ⊂
{

(m, ξ, y) ∈ R+ × R2 / ma ≤ m ≤ mA, −i−N ≤ ξ ≤ i+N,

−i− 1 ≤ y ≤ i+ 1
}
.

We consider the function ψi ∈ C∞(R2); ψi ≥ 0 such that

ψi(ξ, y) =

{
1 if |ξ| ≤ i+N and |y| ≤ i+ 1,
0 if |ξ| ≥ i+N + 1 and |y| ≥ i+ 2,

(30)

then we have

Dωi(1) ⊂ {(m, ξ, y) ∈ R+ × R2 / ψi(ξ, y) = 1} for i ∈ N∗. (31)
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Let the equations family

∂zσ
[i](m, ξ, y, z) = F (σ[i](z))(m, ξ, y), i ∈ N∗ (32)

(with F (·) defined in (12)), completed by the condition

σ[i] = ψi σ on R+ × R2. (33)

According to the proposition 1, the problem (32)–(33) admits one solution

σ = σ[i] ∈ C([0, 1];L1(R+ × R2) ∩ L∞(R+ × R2 × [0, 1])),

such that
σ[i] ≥ 0 a.e. in R+ × R2 × [0, 1],

σ[i](m, ξ, y, z) = 0 for m ∈ [0,ma] ∪ [mA,∞[.

In addition, according to the definition of the sets ωi, we have

D[ωi] ⊂ D[ωi′ ] for i ≤ i′,

therefore, by virtue of lemma 5 and of (33), we have

σ[i] = σ[i′] a.e. in D[ωi] for i ≤ i′.

Defining σ by

σ =

{
σ[1] in D[ω1],

σ[i] in D[ωi]\D[ωi−1], i = 2, ·, ·, ·,

we have
σ = σ[i] a.e. in Dωi(1) ∀i ∈ N∗

and from (32), (61) we obtain

∂zσ(m, ξ, y, z) = F (σ(z))(m, ξ, y) in D[ωi] ∀i ∈ N∗,

σ = σ[i] = σ on Dωi(1).

Remembering the relations R+ × R2 × [0, 1] ⊂
⋃
i∈N∗

D[ωi] and R+ × R2 ⊂⋃
i∈N∗

Dωi(1) which result from the definition of ωi, D[ωi], Dωi(1), we can

conclude that there exists a solution of (12), (8). To prove the uniqueness,
let’s consider two possible solutions σ1 and σ2 with σ1 6= σ2 on a set of
strictly positive measure, then we can choose a measurable set ω such that
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0 < mes(ω) < ∞ and that mes({(m, ξ, y, z) ∈ D[ω] / σ1 6= σ2}) > 0.
However as σ1 and σ2 are solutions of (12), (8), σ1 = σ2 on R+ × R2 × {1}
and in particular σ1 = σ2 on R+×R2×{1}

⋂
D[ω]; consequently, according

to lemma 5, we have σ1 = σ2 in D[ω], this proves that it is not possible
to have two solutions σ1 and σ2 which are different on a set from strictly
positive measure. The uniqueness of the solution is proved. �

For the existence and the uniqueness of the solution in the (m,x, y, z)
co-ordinates, we have the following theorem.

Theorem 2 If σ ∈ L∞(R+ × R2) satisfies the conditions

σ(m,x, y) ≥ 0 a.e on R+ × R2,

σ(m,x, y) = 0 for m ∈ [0,ma] ∪ [mA,∞[,

‖σ‖L∞(R+×R2) <
1

M1(mA −ma)
,

then the equation (4) with the condition (5) admits one solution σ and only
one verifying

σ ∈ L∞(R+ × R2 × [0, 1]),

such that

σ(m,x, y, z) ≥ 0 a.e on R+ × R2 × [0, 1],

σ(m,x, y, z) = 0 for m ∈ [0,ma] ∪ [mA,∞[.

Proof. We associate to the problem (4)-(5), where the unknown function
to find is σ, the problem (12), (8) by a bijective mapping defined by the
change of variables (m,x, y, z) 7→ (m̃, ξ, ỹ, z̃) introduced in (6) with

σ(m,x, y, z) = σ̃(m, ξ + v(y)
α(m)

g
(1− z), y, z).

If σ̃(m, ξ, y, z) is the solution of the problem (12), (8) in which the existence
and the uniqueness have been proved in theorem 1, then, we obtain the
existence and the uniqueness of the solution σ for (4)-(5) verifying the same
conditions. �
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4 Global solution for the coagulation equation of
the drops in fall with a horizontal wind

We will consider the problem to find a function σ(m, t, x, y, z), that verifies
the equation (1) for

(m, t, x, y, z) ∈ R+ × R+ × R2 × [0, 1]

and the following boundary condition (entry condition) and initial condition

σ(m, t, x, y, 1) = σ1(m, t, x, y), (34)

σ(m, 0, x, y, z) = σ0(m,x, y, z). (35)

In the same way to the stationary case, to solve the equation (1) with
the conditions (34)-(35), we will transform it into an ordinary differential
equation, by introducing the following variables (m, t, x, y, z) 7→ (m̃, t̃, ξ, ỹ, z̃)

m̃ = m,

ξ = x− v(y)α(m)
g (1− z),

ỹ = y,
z̃ = z,

t̃ = t− α(m)
g (1− z)

(36)

and the unknown function to find would be

σ̃(m̃, t̃, ξ, ỹ, z̃) = σ(m, t, x, y, z) =

= σ
(
m, t̃+

α(m)

g
(1− z), ξ + v(y)

α(m)

g
(1− z), y, z

)
,

we will note bym, y, z and σ(m, t̃, ξ, y, z) instead of m̃, ỹ, z̃ and σ̃(m̃, t̃, ξ, ỹ, z̃),
the equation (1) is changed into

∂

∂z
σ
(
m, t̃, ξ, y, z

)
= (37)

= −m α(m)

2g

∫ m

0
β(m−m′,m′)σ(m′, t̃∗(m,m′, t̃, z), η(m,m′, ξ, y, z), y, z)×

×σ(m−m′, t̃∗(m,m−m′, t̃, z), η(m,m−m′, ξ, y, z), y, z)dm′+

+
m α(m)

g

∫ ∞
0

β(m,m′)σ(m, t̃, ξ, y, z)×
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×σ(m′, t̃∗(m,m′, t̃, z), η(m,m′, ξ, y, z), y, z)dm′,

where {
t̃∗(m,m′, t̃, z) = t̃+ α(m)−α(m′)

g (1− z),
η(m,m′, ξ, y, z) = ξ + v(y)α(m)−α(m′)

g (1− z).

We introduce for each fixed y ∈ R, z ∈ [0, 1], the curves family

γτ,ζ = γτ,ζ,y,z =
{

(m, t̃, ξ) ∈ R+ × R2 / t̃ = τ − α(m)

g
(1− z), (38)

ξ = ζ − v(y)
α(m)

g
(1− z)

}
with τ, ζ ∈ R.

Let τ , ζ, γ
[0,m]
τ,ζ such that

τ(m, t̃, z) = t̃+
α(m)

g
(1− z), ζ(m, ξ, y, z) = ξ + v(y)

α(m)

g
(1− z),

γ
[0,m]
τ,ζ = γτ,ζ ∩ [0,m]× R2.

We note by

κ = (τ, ζ), ϑ = (t̃, ξ), q = q(y) = (1, v(y))T ,

then the curves defined in (38) can be written in the following form

γκ = γκ,y,z =

{
(m,ϑ) ∈ R+ × R2 / ϑ = κ− q(y)

α(m)

g
(1− z)

}
(39)

with

κ(m,ϑ, y, z) = ϑ+ q(y)
α(m)

g
(1− z), γ[0,m]

κ = γκ ∩ [0,m]× R2.

The curves family γκ is similar to that defined in (9) in the stationary
case, so in the same way, we define a measure µγ on the curves γκ and the
equation (37) will be

∂

∂z
σ(z) = Fz(σ(z)), σ(z) = σ(·, ·, ·, ·, z), (40)

where

Fz(σ(z)) = Fz(σ(z))(m,ϑ, y) = (41)
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= −mα(m)

2g

∫
γ
[0,m]
κ(m,ϑ,y,z)

β(m−m′,m′)σ(m′, ϑ′, y, z)σ(m−m′, ϑ′′, y, z)µγ(dm′)+

+
mα(m)

g

∫
γκ(m,ϑ,y,z)

β(m,m′)σ(m′, ϑ′, y, z)σ(m,ϑ, y, z)µγ(dm′)

with ϑ′ and ϑ′′ are defined by the relation

(m′, ϑ′) ∈ γκ(m,ϑ,y,z), (m−m′, ϑ′′) ∈ γ[0,m]
κ(m,ϑ,y,z).

We remark that this equation is in the same type of the equation (12) in the
stationary case and that the integral operator appearing in (41) verifies the
same properties in lemmas 1, 2, 3 and 4.

In the same way, the boundary and the initial conditions will be changed
into

σ
(
m, t̃, ξ, y, 1

)
= σ∗1(m, t̃, ξ, y) = σ∗1(m,ϑ, y) (42)

and

σ(m,−α(m)

g
(1− z), ξ, y, z) = σ∗0(m, ξ, y, z), (43)

where σ∗0 and σ∗1 are the functions obtained of σ0 and σ1 by the change of
variables introduced in (36).

4.1 Solution with an entry condition in class L1

We define the domain in which we will consider the equation (40) by

Ω = ∪
κ∈R∗+×R, y∈R, 0<z<1

γκ,y,z = (44)

=

{
(m,ϑ, y, z) = (m, t̃, ξ, y, z) ∈ R+ × R3×]0, 1[ / t̃ >

α(m)

g
(z − 1)

}
and we pose

Γa =

{
(m,ϑ, y, z) = (m, t̃, ξ, y, z) ∈ R+ × R3 × [0, 1] / t̃ =

α(m)

g
(z − 1)

}
,

Γb = {z = 1} ∩ Ω.

The conditions (42)–(43) can be written in the form

σ = σ∗1 on Γb, σ = σ∗0 on Γa. (45)
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Proposition 2 Let σ(a) ∈ L1(Γa) ∩ L∞(Γa) and σ(b) ∈ L1(Γb) ∩ L∞(Γb)
such that

σ(a)(m,ϑ, y, z) ≥ 0 a.e. on Γa, σ(b)(m,ϑ, y) ≥ 0 a.e. on Γb,

σ(a)(m,ϑ, y, z) = σ(b)(m,ϑ, y) = 0 for m ∈ [0,ma] ∪ [mA,∞[.

If

max(‖σ(a)‖L∞(Γa), ‖σ(b)‖L∞(Γb)) <
1

M1(mA −ma)
,

then there exists unique solution σ of the equation (40) satisfying to the
conditions

σ = σ(b) on Γb, σ = σ(a) on Γa, (46)

with

σ ∈ C([0, 1];L1(Ωz) ∩ L∞(Ω)), (47)

where

Ωz = {(m,ϑ, y) = (m, t̃, ξ, y) ∈ R+ × R2 × R / t̃ >
α(m)

g
(z − 1)}. (48)

Proof. In (40) and (41), the absence of derivative and integral compared
to y is remarked, as in (12), this implies that the equation (40) can be solved
separately for each y ∈ R.

We define for each point (m,ϑ) ∈ R+ × R2 the number ζ1(m,ϑ) ∈ [0, 1]
such that

ζ1(m,ϑ) = ζ1(m, t̃, ξ) = ζ1(m, t̃) =

{
max(0, 1 + t̃

α(m)g) if t̃ ≤ 0,

1 if t̃ > 0
(49)

and we have

(m,ϑ, y, ζ1(m,ϑ)) ∈ Γb ∪ Γa ∀(m,ϑ, y) ∈ R+ × R2 × R, t̃ ≥ −α(m)

g
,

these permit us to replace (t, x) ∈ R2 by the time axis, then we find the
conditions for the proof of proposition 4.1 in [2], consequently renewing the
stages of the proof of this one, we prove the proposition. �
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4.2 Existence and uniqueness of the global solution in time
with a horizontal wind

In the same way to the stationary case, to obtain the existence and the
uniqueness of the global solution with an horizontal wind in a general case,
we use the “cone of dependence” property and the proposition 2.

We consider a set ω ∈ R+×R3 such that 0 < mes(ω) <∞ and we define

D[ω] =
⋃

(m,ϑ,y)∈ω

D(m,ϑ,y), (50)

where
D(m,ϑ,y) =

( ⋃
0≤z≤1

( ⋃
κ−(m,ϑ,y,z)≤κ≤κ+(m,ϑ,y)

γκ,y,z

))
= (51)

= {(m′, ϑ′, y′, z′) ∈ R+ × R3 × [0, 1]/ ϑ′ = κ− q(y′)α(m′)

g
(1− z′),

y′ = y, κ−(m,ϑ, y, z′) ≤ κ ≤ κ+(m,ϑ, y)}
with{

κ+(m,ϑ, y) = κ(m,ϑ, y, 0) = ϑ+ q(y)α(m)
g ,

κ−(m,ϑ, y, z) = κ+(m,ϑ, y)− q(y)α0
g z = ϑ+ q(y)α(m)

g − q(y)α0
g z.

(52)
We define Dω(z) by

Dω(z) =
⋃

(m,ϑ,y)∈ω

( ⋃
κ−(m,ϑ,y,z)≤κ≤κ+(m,ϑ,y)

γκ,y,z

)
=

= {(m′, ϑ′, y′, z′) ∈ D[ω] | z′ = z}.
We remark that D[ω] in the evolution case is defined in a similar way to

the stationary case (see (19), (20), (21)) then we have the following lemma.

Lemma 6 Let σ
[1]
(a) and σ

[2]
(a) two functions defined on Γa, σ

[1]
(b) and σ

[2]
(b) two

functions defined on Γb. We suppose that σ
[1]
(a), σ

[2]
(a), σ

[1]
(b), σ

[2]
(b) satisfy the con-

ditions of the proposition 2. Let σ[1](resp. σ[2]) the solution of the equation

(40) with the condition (46) and σ(a) = σ
[1]
(a), σ(b) = σ

[1]
(b) (resp. σ(a) = σ

[2]
(a),

σ(b) = σ
[2]
(b)). If we have

σ
[1]
(b) = σ

[2]
(b) on Γb ∩D[ω], σ

[1]
(a) = σ

[2]
(a) on Γa ∩D[ω], (53)

then
σ[1] = σ[2] a.e. in D[ω].
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Proof. Writing the equation (40) into an integral form, we have

σ[i](m,ϑ, y, z) = σ[i](m,ϑ, y, ζ1(m,ϑ))+

+
mα(m)

2g

∫ ζ1

z

∫
γ
[0,m]

κ(m,ϑ,y,z′),y,z′

β(m−m′,m′)σ[i](m′, ϑ′, y, z′)σ[i](m−m′, ϑ′′, z′)

µγ(dm′)dz′ − mα(m)

g

∫ ζ1

z

∫
γκ(m,ϑ,y,z′),y,z′

β(m,m′)σ[i](m′, ϑ′, y, z′)σ[i](m,ϑ, y, z′)

µγ(dm′)dz′, i = 1, 2.

From (45) it results that

σ[i](m,ϑ, y, ζ1(m,ϑ)) =


σ

[i]
(a) on Γa,

σ
[i]
(b) on Γb,

ζ1(m,ϑ) is the number defined in (49).
Making the difference for i = 1 and i = 2, we have

|σ[1](m,ϑ, y, z)− σ[2](m,ϑ, y, z)| ≤ |σ[1](m,ϑ, y, ζ1)− σ[2](m,ϑ, y, ζ1)|+

+Cβ

[∫ ζ1

z

∫
γ
[0,m]

κ(m,ϑ,y,z′),y,z′

(∣∣σ[1](m−m′, ϑ′′, y, z′)−σ[2](m−m′, ϑ′′, y, z′)
∣∣σ[2](m′, ϑ′, y, z′)+

+
∣∣σ[1](m′, ϑ′, y, z′)− σ[2](m′, ϑ′, y, z′)

∣∣σ[1](m−m′, ϑ′′, y, z′)
)
µγ(dm′)dz′+

+

∫ ζ1

z

∫
γκ(m,ϑ,y,z′),y,z′

(∣∣σ[1](m,ϑ, y, z′)− σ[2](m,ϑ, y, z′)
∣∣σ[2](m′, ϑ′, y, z′)+

+
∣∣σ[1](m′, ϑ′, y, z′)− σ[2](m′, ϑ′, y, z)

∣∣σ[1](m,ϑ, y, z′)
)
µγ(dm′)dz′

]
,

we deduce from it that

|σ[1](m,ϑ, y, z)−σ[2](m,ϑ, y, z)| ≤ |σ[1](m,ϑ, y, ζ1)−σ[2](m,ϑ, y, ζ1)|+ (54)

+Cβ

[ ∫ 1

z

(
‖σ[1](·, ·, ·, z′)− σ[2](·, ·, ·, z′)‖L∞(γκ(m,ϑ,y,z′),y,z′ )

‖σ[2](·, ·, ·, z′)‖L1(γκ(m,ϑ,y,z′),y,z′ )
+ ‖σ[1](·, ·, ·, z′)‖L1(γκ(m,ϑ,y,z′),z′ )
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‖σ[1](·, ·, ·, z′)− σ[2](·, ·, ·, z′)‖L∞(γκ(m,ϑ,y,z′),y,z′ )

)
dz′+

+

∫ 1

z

(
‖σ[1](·, ·, ·, z′)− σ[2](·, ·, ·, z′)‖L∞(γκ(m,ϑ,y,z′),y,z′ )

×

×‖σ[2](·, ·, ·, z′)‖L1(γκ(m,ϑ,y,z′),y,z′ )
+

+(mA −ma)‖σ[1](·, ·, z′)‖L∞(γκ(m,ϑ,y,z′),y,z′ )
×

×‖σ[1](·, ·, ·, z′)− σ[2](·, ·, ·, z′)‖L∞(γκ(m,ϑ,y,z′),y,z′ )

)
dz′
]
.

We remark that this inequality is similar to the inequality (24) in the proof
of lemma 5 and by the same way we obtain the result. �

Now we can prove the principal theorem.

Theorem 3 If σ∗0 ∈ L∞(Γa) and σ∗1 ∈ L∞(Γb) satisfy to the conditions

σ∗0(m, ξ, y, z) ≥ 0 a.e. on Γa, σ∗1(m,ϑ, y) ≥ 0 a.e. on Γb, (55)

σ∗0(m, ξ, y, z) = 0, σ∗1(m,ϑ, y) = 0 for m ∈ [0,ma] ∪ [mA,∞[, (56)

max
(
‖σ∗0‖L∞(Γa); ‖σ∗1‖L∞(Γb)

)
<

1

M1(mA −ma)
, (57)

then the equation (40) with the condition (45) admits one solution σ and
only one verifying

σ ∈ L∞(Ω)

with

σ(m,ϑ, y, z) ≥ 0 a.e. in Ω,

σ(m,ϑ, y, z) = 0, for m ∈ [0,ma] ∪ [mA,∞[.

Proof. We consider a measurable and bounded sets family ωi, i ∈ N∗,
defined by

ωi =
{

(m,ϑ, y) = (m, t̃, ξ, y) ∈ R+ × R3 / ma ≤ m ≤ mA, (58)

−α(m)

g
≤ t̃ ≤ i, −i ≤ ξ ≤ i, −i ≤ y ≤ i

}
= Ω0 ∩ {(m,ϑ, y) = (m, t̃, ξ, y) ∈ [ma,mA]× R3 / t̃ ≤ i},
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where Ω0 is the set defined in (48) with z = 0. The definition of D[ω] (see
(50)) permits us to define a number N such that

Dωi(1) ⊂
{

(m,ϑ, y) = (m, t̃, ξ, y) ∈ R+ × R3 / ma ≤ m ≤ mA,

t̃ ≤ i+N, −i−N ≤ ξ ≤ i+N, −i− 1 ≤ y ≤ i+ 1
}

(59)
and we consider a function ψi ∈ C∞(R3); ψi ≥ 0 such that

ψi(ϑ, y) = ψi(t̃, ξ, y) =

{
1 if t̃ ≤ i+N, |ξ| ≤ i+N, |y| ≤ i+ 1
0 if t̃ ≥ i+N + 1, |ξ| ≥ i+N + 1, |y| ≥ i+ 2,

(60)
then we have

Dωi(1) ⊂ {(m,ϑ, y) ∈ R+ × R3 / ψi(ϑ, y) = 1} i ∈ N∗. (61)

The theorem will be proved in the same way to theorem 5.1 of [2] (see
also theorem 1 of the stationary case) by renewing the same stages. �

The existence and the uniqueness of the solution in the (m, t, x, y, z)
co-ordinates is given in the following theorem.

Theorem 4 If σ0 ∈ L∞(R+ × R2 × [0, 1]) and σ1 ∈ L∞(R+ × R+ × R2)
satisfy the conditions

σ0(m,x, y, z) ≥ 0 a.e. on R+ × R2 × [0, 1],

σ1(m, t, x, y) ≥ 0 a.e. on R+ × R+ × R2,

σ0(m,x, y, z) = σ1(m, t, x, y) = 0 for m ∈ [0,ma] ∪ [mA,∞[,

max
(
‖σ0‖L∞(R+×R2×[0,1]); ‖σ1‖L∞(R+×R+×R2)

)
<

1

M1(mA −ma)
,

then the equation (1) with the conditions (34) and (35) admits one solution
σ and only one verifying

σ ∈ L∞(R+ × R+ × R2×]0, 1[),

where

σ(m, t, x, y, z) ≥ 0 a.e. in R+ × R+ × R2×]0, 1[,

σ(m, t, x, y, z) = 0 for m ∈ [0,ma] ∪ [mA,∞[.
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Proof. We associate to the problem (1), (34),(35), where the unknown
function to find is σ, the problem (40), (45) by a bijective mapping defined
by the change of variables (m, t, x, y, z) 7→ (m̃, t̃, ξ, ỹ, z̃) introduced in (36)
with

σ(m, t, x, y, z) = σ̃
(
m, t− α(m)

g
(1− z), x+ v(y)

α(m)

g
(1− z), y, z

)
.

If σ̃(m, t̃, ξ, y, z) is the solution of the problem (40), (45) in which the exis-
tence and the uniqueness have been proved in theorem 3, then, we obtain
the existence and the uniqueness of the solution σ of (1), (34),(35) verifying
the same conditions. �
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issus de la physique hors équilibre. Thesis of enabling. Univ. Versailles
Saint-Quentin, 2001.

[12] S. Mischler, M. Rodriguez Ricard. Existence globale pour l’équation de
Smoluchowski continue non homogène et comportement asymptotique
des solutions. C. R. Acad. Sci. Paris, Sér. I, Math. 336: 407-412, 2003.

[13] H. Müller. Zur allgemeinen Theorie der raschen Koagulation. Kolloid-
chem. Beib. 27: 223-250, 1928.

[14] B. Niethammer, J.J.L. Velazquez. Optimal bounds for self-similar so-
lutions to coagulation equations with multiplicative kernel. To appear
on Commun. PDE.

[15] F. Prodi, A. Battaglia. Meteorologia - Parte II, Microfisica.
Grafica Pucci. Roma, 2004. (See also site: http://www.meteo.uni-
bonn.de/mitarbeiter/battaglia/teaching.html ).

[16] S. Selvaduray, H. Fujita Yashima. Equazioni del moto dell’aria con la
transizione di fase dell’acqua nei tre stati: gassoso, liquido e solido.
Accad. Sci. Torino, Memorie Cl. Sci. Fis., Serie V. 35: 37-69, 2011.

[17] P.-X. Sheng, J.-T. Mao, J.-G. Li, A.-C. Zhang, J.-G. Sang, N.-X. Pan.
Atmosphere Physique (in Chinese). Publ. Univ. Pékin, Pékin, 2003.
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[19] V. M Voloshtchuk. Théorie cinétique de coagulation (in Russian).
Gidrometeoizdat, Leningrad, 1984.


