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Abstract

Amixed boundary value problem is studied for the unsteady motion

of a second grade �uid in a rectangular edge. A part of the boundary

applies a shear stress fta to the �uid and the other one is moving in its

plane with the velocity gtb. Dimensionless velocity and shear stresses

are obtained using integral transforms. They satisfy all imposed ini-

tial and boundary conditions and can easily be reduced to constantly

accelerating boundary conditions. Finally, some characteristics of the

�uid motion are graphically underlined.
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1 Introduction

The behavior of many materials such as clay coating, drilling muds, sus-
pensions, certain oils and greases, polymer melts, elastomers and di�erent
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emulsions cannot be described by Navier-Stokes equations. For this reason,
many non-Newtonian models have been proposed. One of the most popular
among them is the model of second grade �uids. This is particularly so due
to the fact that the calculations will generally be simpler. Usually, the equa-
tion of motion for incompressible second grade �uids is of higher order than
the corresponding Navier-Stokes equation. A marked di�erence between the
Navier-Stokes theory and that of second grade �uids is that, ignoring the
non-linearity in the Navier-Stokes equation does not lower the order of the
equation. However, ignoring the higher order non-linearities in the case of
second grade �uids reduce the order of the equation. The no-slip boundary
condition is su�cient for a Newtonian �uid but for a second grade �uid, it
may not be su�cient. A critical review on the boundary conditions, the
existence and uniqueness of solution has been given by Rajagopal [1] and a
listing of some problems that have been solved for such �uids may be found
in [2] and [3]. The �rst exact solutions for unsteady unidirectional �ows of
second grade �uids seem to be those obtained by Ting [4].

The Rayleigh-Stokes problem for an edge, as well as the �rst problem
of Stokes for the �at plate, has received much attention due to its practical
importance and fundamental value for theory. One of the most interest-
ing solutions for this problem was given by Zierep [5] for Newtonian �uids.
Its extension to the motion induced by a constantly accelerating edge has
been realized in [6] and [7] for Newtonian and Maxwell, second grade and
Oldroyd-B �uids. However, there is no result in the literature in which the
shear stress is given on the edge or on one of its sides. The �rst exact solu-
tions for motions of second grade �uids in which the shear stress is given on a
part of the boundary seem to be those of Bandelli and Rajagopal [8]. These
solutions have been recently extended to second grade �uids with fractional
derivatives in [9-11].

The purpose of this paper is to study a similar problem whose solution
leads to a mixed boundary value problem. More exactly, we intend to study
the problem in which a side of the edge applies a shear ft to the �uid while
the other part is moving in its plane with a velocity gt. For completness,
the more general boundary conditions fta and gtb are considered and the
solutions are obtained using integral transforms. These solutions, presented
in integral form, satisfy all imposed initial and boundary conditions and can
easily be reduced to give the similar solutions corresponding to di�erent val-
ues of a and b greater than zero. Finally, some characteristics of the �uid
motion are brought to light by graphical illustrations.
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2 Governing Equations

The Cauchy stress tensor T for an incompressible second grade �uid is re-
lated to the �uid motion in the following manner [4,8]

T = −pI + S, S = µA1 + α1A2 + α2A
2
1, (1)

where −pI is the indeterminate part of the stress due to the constraint of
incompressibility, S is the extra-stress tensor, µ the dynamic viscosity, α1

and α2 are normal stress moduli and A1 and A2 are the �rst two Rivlin-
Ericksen tensors. The Clausius-Duhem inequality and the assumption that
the speci�c Helmholtz free energy is minimum at equilibrium provide the
following restrictions for material parameters [12]

µ ≥ 0, α1 ≥ 0 and α1 + α2 = 0.

The sign of the material moduli α1 and α2 has been the subject to much
controversy. A comprehensive discussion on the restrictions for µ, α1 and
α2 can be found in the work by Dunn and Rajagopal [13]. If the second
inequality is reversed, so that α1 < 0, then the corresponding �uid model
leads to an unacceptable instability. In the following we are looking for a
velocity �eld of the form [6,7]

V = V(y, z, t) = u(y, z, t)i, (2)

where i is the unit vector along the x-direction of the Cartesian coordinate
system x, y and z. For such �ows the constraint of incompressibility is
automatically satis�ed. In the absence of a pressure gradient in the �ow
direction, the governing equation is [14]

∂u(y, z, t)

∂t
= (ν + α

∂

∂t
)

[
∂2

∂y2
+

∂2

∂z2

]
u(y, z, t), (3)

where ν = µ/ρ is the kinematic viscosity, α = α1/ρ and ρ is the constant
density of the �uid. The non-trivial shear stresses τ1(y, z, t) = Sxy(y, z, t)
and τ2(y, z, t) = Sxz(y, z, t) are given by

τ1(y, z, t) = (µ+α1
∂

∂t
)
∂u(y, z, t)

∂y
, τ2(y, z, t) = (µ+α1

∂

∂t
)
∂u(y, z, t)

∂z
. (4)

The governing equation (3) with appropriate initial and boundary condi-
tions can be solved by di�erent methods. We shall use the Laplace transform
to eliminate the time variable and the Fourier sine transform for the spatial
variable z.
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3 Flow within an in�nite edge

Suppose that an incompressible second grade �uid occupies the space of the
�rst dial of a rectangular edge [5-7] (−∞ < x < ∞ , y ≥ 0 , z ≥ 0). At time
t = 0+ a side of the boundary is pulled in its plane with a time-dependent
shear stress fta and the other one is subject to a translation motion in its
plane of velocity gtb. Due to the shear the �uid is gradually moved. Its
velocity is of the form (2), the governing equations are given by Eqs. (3) and
(4) while the initial and boundary conditions are given by

u(y, z, 0) = 0, y, z ≥ 0, (5)

τ1(0, z, t) = (µ+ α1
∂

∂t
)
∂u(y, z, t)

∂y

∣∣∣
y=0

= fta, z, t ≥ 0, a > 0, (6)

u(y, 0, t) = gtb, y, t ≥ 0, b > 0, (7)

where a, b, f and g are constants. Furthermore, the natural condition

u(y, z, t) → 0 as y, z →∞, (8)

has to be also satis�ed.
Introducing the dimensionless variables

t∗ = t
(α
ν

) , y
∗ = y

µg
f

(α
ν

)b−a
, z∗ = z

µg
f

(α
ν

)b−a
, u∗ = u

g(α
ν

)b
, τ∗1 = τ1

f(α
ν

)a
,

τ∗2 = τ2
f(α
ν

)a
,

(9)

the governing equation (3) takes the form (for simplicity the ∗ notation
was neglected)

∂u(y, z, t)

∂t
=

1

Re
(1 +

∂

∂t
)

[
∂2

∂y2
+

∂2

∂z2

]
u(y, z, t), (10)

where Re = 1
α

[
µg(α

ν
)b−a

f

]2

is the Reynolds number. The dimensionless non-

trivial shear stresses τ1(y, z, t) and τ2(y, z, t) are given by

τ1(y, z, t) = (1 +
∂

∂t
)
∂u(y, z, t)

∂y
, τ2(y, z, t) = (1 +

∂

∂t
)
∂u(y, z, t)

∂z
, (11)

while the initial and boundary conditions become

u(y, z, 0) = 0, τ1(0, z, t) = (1 +
∂

∂t
)
∂u(y, z, t)

∂y

∣∣∣
y=0

= ta, u(y, 0, t) = tb,

u(y, z, t)→ 0 as y, z →∞.
(12)
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3.1 Calculation of the velocity �eld

Applying the Laplace transform to Eq. (10) and using the initial condition
we �nd that [15]

qū(y, z, q) =
1

Re
(1 + q)

[
∂2

∂y2
+

∂2

∂z2

]
ū(y, z, q). (13)

The Laplace transform ū(y, z, q) of u(y, z, t) has to satisfy the conditions

∂ū(y, z, q)

∂y

∣∣∣
y=0

=
Γ(a+ 1)

qa+1(1 + q)
; ū(y, 0, q) =

Γ(b+ 1)

qb+1
, (14)

ū(y, z, q)→ 0 as y2 + z2 →∞, (15)

where Γ(·) is the Gamma function.
Now multiplying Eq. (13) by

√
2/π sin(ηz) and integrating the result with

respect to z from 0 to in�nity, we get

∂2ūs(y, η, q)

∂y2
−
[
qRe + (1 + q)η2

(1 + q)

]
ūs(y, η, q) = −

√
2

π

Γ(b+ 1)

qb+1
η, (16)

where the Fourier sine transform

ūs(y, η, q) =

√
2

π

∫ ∞
0

ū(y, z, q) sin(ηz)dz,

of ū(y, z, q) has to satisfy the conditions

ūs(y, η, q)→ 0 as y →∞ and η → 0 ,
∂ūs(y, η, q)

∂y

∣∣∣
y=0

=

√
2

π

Γ(a+ 1)

ηqa+1(1 + q)
.

(17)
Solution of the ordinary di�erential equation (16) with the boundary

conditions (17) is

ūs(y, η, q) =
√

2
π

Γ(b+1)
qb+1 η (1+q)

qRe+(1+q)η2
−
√

2
π

Γ(a+1)
qa+1(1+q)

×
1

η
√
W (η,q)

e−y
√
W (η,q),

(18)

where

W (η, q) =
qRe + (1 + q)η2

(1 + q)
. (19)

Applying the inverse Laplace transform [16] to the �rst term

ūs1(η, q) =

√
2

π
η

Γ(b+ 1)

qb+1

[
1

Re + η2
+

Re
Re + η2

· 1

(Re + η2)q + η2

]
, (20)



Exact Solutions for Some Unsteady Motions 79

of Eq. (18) and using the convolution theorem, we �nd that

us1(η, t) =

√
2

π

η

η2 +Re
tb +

√
2

π

ηRe
(η2 +Re)2

∫ t

0
(t−s)b exp

(
− η2s

η2 +R2
e

)
ds.

(21)
The last term of Eq. (18) can be written as a product of two functions

ūs2(η, q) = −
√

2
π

Γ(a+1)
qa+1(1+q)

1
η

√
W (η, q) and

ūs3(y, η, q) = 1
W (η,q)e

−y
√
W (η,q).

(22)

The inverse Laplace transforms of ūs2(η, q) and ūs3(y, η, q)

us2(η, t) = −
√

2
π

√
(η2+Re)

η

∫ t
0 (t− s)aI0

(
sRe

2(η2+Re)

)
×

exp
(
− (2η2+Re)s

2(η2+Re)

)
ds +

√
2
π

Re
η
√

(η2+Re)

∫ t
0

∫ σ
0 (σ − s)ae−sI0

(
(t−σ)Re

2(η2+Re)

)
×

exp
(
− (2η2+Re)(t−σ)

2(η2+Re)

)
dσds.

(23)

us3(y, η, t) =
∫∞

0

√
uRe
t e−terfc

(
y

2
√
u

)
I1

(
2
√
uRet

)
e−u(η2+Re)du+

1
η2+Re

e−y
√
η2+Re δ(t),

(24)

where δ(·) is Dirac delta function, are obtained using Eqs. (A.1)-(A.4) from
Appendix and the convolution theorem. Finally writing

us(y, η, t) = us1(η, t) + (us2 ∗ us3)(y, η, t), (25)

where the ∗ denotes the convolution product, we obtain

us(y, η, t) =

√
2

π

η

η2 +Re
tb +

√
2

π

ηRe

(η2 +Re)
2

t∫
0

(t− s)bexp
(
− η2s

η2 +Re

)
ds

−
√

2

π

e−y
√
η2+Re

η
√
η2 +Re

∫ t

0
(t− s)aI0

(
sRe

2(η2 +Re)

)
exp

(
−(2η2 +Re)

2(η2 +Re)
s

)
ds

+

√
2

π

Ree
−y
√
η2+Re

η(
√
η2 +Re)3

×
∫ t

0

∫ σ

0
(σ − s)aI0

(
(t− σ)Re
2(η2 +Re)

)
exp

(
−(2η2 +Re)

2(η2 +Re)
(t− σ)− s

)
dsdσ −

√
2

π

√
η2 +Re
η

×∫ ∞
0

∫ t

0

∫ σ

0
(σ − s)a

√
uRe
t− σ

erfc

(
y

2
√
u

)
I0

(
sRe

2(η2 +Re)

)
×
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I1

(
2
√
uRe(t− σ)

)
×exp

(
−(2η2 +Re)

2(η2 +Re)
s− (t− σ)−u(η2 +Re)

)
ds dσdu

+

√
2

π

Re

η
√
η2 +Re

×
∫ ∞

0

∫ t

0

∫ τ

0

∫ σ

0
(σ − s)a

√
uRe
t− τ

erfc

(
y

2
√
u

)
×

I0

(
(τ − σ)Re
2(η2 +Re)

)
I1

(
2
√
uRe(t− τ)

)
×

exp

(
−(2η2 +Re)

2(η2 +Re)
(τ − σ)− s− (t− τ)−u(η2 +Re)

)
ds dσ dτ du. (26)

Now, applying the inverse Fourier sine transform to Eq. (26) we get the
velocity �eld

u(y, z, t) = tb e−z
√
Re+

2Re
π

∫ ∞
0

∫ t

0

η sin(ηz)

(η2 +Re)2
(t−s)b exp

(
− η2s

η2 +Re

)
dsdη

− 2

π

∞∫
0

t∫
0

e−y
√
η2+Re

η
√
η2 +Re

sin(ηz)(t− s)aI0

(
sRe

2(η2 +Re)

)
exp

(
−(2η2 +Re)

2(η2 +Re)
s

)
dsdη

+
2Re
π

∫ ∞
0

∫ t

0

∫ σ

0

sin(ηz)e−y
√
η2+Re

η(
√
η2 +Re)3

(σ − s)aI0

(
(t− σ)Re
2(η2 +Re)

)
×

exp

(
− 2η2 +Re

2(η2 +Re)
(t− σ)− s

)
dsdσdη − 2

π

∞∫
0

∞∫
0

t∫
0

σ∫
0

√
η2 +Re
η

sin(ηz)×

(σ − s)a
√

uRe
t− σ

erfc

(
y

2
√
u

)
I0

(
sRe

2(η2 +Re)

)
I1

(
2
√
uRe(t− σ)

)
exp

(
−(2η2 +Re)

2(η2 +Re)
s− (t− σ)−u(η2 +Re)

)
ds dσ du dη+

2Re
π

∞∫
0

∞∫
0

t∫
0

τ∫
0

σ∫
0

sin(ηz)

η
√

(η2 +Re)
(σ − s)a

√
uRe
t− τ

erfc

(
y

2
√
u

)
×

I0

(
(t− τ)Re
2(η2 +Re)

)
I1

(
2
√
uRe(t− τ)

)
×

exp

(
−(2η2 +Re)

2(η2 +Re)
(τ − σ)− s− (t− τ)−u(η2 +Re)

)
ds dσ dτ du dη. (27)
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3.2 Calculation of shear stresses

Applying the Laplace transform to Eqs. (11) and then the Fourier sine
transform to the �rst relation, we �nd that

τ̄s1(y, η, q) = (1 + q)
∂ūs(y, η, q)

∂y
, τ̄2(y, z, q) = (1 + q)

∂ū(y, z, q)

∂z
. (28)

Introducing Eq. (18) in Eq. (28)1, it results that

τ̄s1(y, η, q) =
√

2
π

Γ(a+1)
qa+1

1
η −

√
2
π

Γ(a+1)
qa+1

1
η

[
qRe+(1+q)η2

(1+q)

]
×

1−e−y
√
W (η,q)

W (η,q) .
(29)

Let us denote by

T̄s1(η, q) =

√
2

π

Γ(a+ 1)

qa+1

1

η
, T̄s2(η, q) = −

√
2

π

Γ(a+ 1)

qa+1

1

η

[
qRe + (1 + q)η2

(1 + q)

]
,

(30)
and

T̄s3(y, η, q) =
1− e−y

√
W (η,q)

W (η, q)
. (31)

Applying the inverse Laplace transform to Eq. (30) we �nd that

Ts1(η, t) =

√
2

π

ta

η
, Ts2(η, t) = −

√
2

π

η2 +Re
η

ta+

√
2

π

Re
η

∫ t

0
(t−s)ae−sds.

(32)
As regards the last term T̄s3(y, η, t), in view of the identities (A.2)2 and
(A.3), it results that

Ts3(η, t) =
∫∞

0

√
uRe
t e−terf

(
y

2
√
u

)
I1

(
2
√
uRet

)
e−u(η2+Re)du+

1−e−y(η2+Re)
η2+Re

δ(t).
(33)
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Combining the above results, it is easy to show that

τs1(η, t) =

√
2

π

ta

η
−
√

2

π
ta

1− e−y(η2+Re)

η
+

√
2

π

Re
η

1− e−y(η2+Re)

η2 +Re
×∫ t

0
(t− s)ae−sds−

√
2

π

η2 +Re
η

∫ ∞
0

∫ t

0
sa
√
uRe
t− s

erf

(
y

2
√
u

)
×

I1

(
2
√
uRe(t− s)

)
exp

(
−u(η2 +Re)− (t− s)

)
ds du

+

√
2

π

Re
η

∫ ∞
0

∫ t

0

∫ σ

0
(σ − s)a

√
uRe
t− σ

erf

(
y

2
√
u

)
I1

(
2
√
uRe(t− σ)

)
exp

(
−u(η2 +Re)− (t− σ)− s

)
ds dσ du. (34)

Apply the inverse Fourier sine transform to Eq. (34) we get

τ1(y, z, t) =
2

π
ta
∫ ∞

0

e−y
√
η2+Re

η
sin(ηz)dη +

2

π
Re

∫ ∞
0

∫ t

0

sin(ηz)

η
×

1− e−y
√
η2+Re

η2 +Re
(t− s)ae−s ds dη − 2

π

∫ ∞
0

∫ ∞
0

∫ t

0

η2 +Re
η

sin(ηz)×

(t− s)a
√
uRe
s
erf

(
y

2
√
u

)
I1

(
2
√
Reus

)
exp

(
−u(η2 +Re)− s

)
ds du dη

+
2

π
Re

∫ ∞
0

∫ ∞
0

∫ t

0

∫ σ

0

sin(ηz)

η
(σ − s)a

√
uRe
t− σ

erf

(
y

2
√
u

)
×

I1

(
2
√
uRe(t− σ)

)
exp

(
−u(η2 +Re)− (t− σ)− s

)
ds dσ du dη. (35)

In order to determine the second shear stress τ2(y, z, t), we apply the inverse
Fourier sine transform to Eq. (18) and introduce the result in Eq. (28)2. It
results that

τ̄2(y, z, q) =
2

π

∫ ∞
0

η2cos(ηz)
Γ(b+ 1)

qb+1

[
(q + 1)2

qRe + (1 + q)η2

]
dη (36)

− 2

π

∫ ∞
0

cos(ηz)
Γ(a+ 1)

qa+1

e−y
√
W (η,q)√

W (η, q)
dη.

The inverse Laplace transforms of the two terms

T̄21(z, q) =
2

π

∫ ∞
0

η2cos(ηz)
Γ(b+ 1)

qb+1

[
(q + 1)2

qRe + (1 + q)η2

]
dη, (37)
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T̄22(y, z, q) = − 2

π

∫ ∞
0

cos(ηz)
Γ(a+ 1)

qa+1

e−y
√
W (η,q)√

W (η, q)
dη, (38)

of Eq. (36) are (see also (A.4)2 for the �rst of them)

T21(z, t) = −b
√
Ret

b−1e−z
√
Re − 2R2

e

π
tb
∫ ∞

0

cos(ηz)

(η2 +Re)2
dη

+
2R2

e

π

∫ ∞
0

∫ t

0

η2 cos(ηz)

(η2 +Re)3
(t− s)b exp

[
− η2s

η2 +Re

]
ds dη, (39)

T22(y, z, t) = − 2

π

∫ ∞
0

∫ t

0

e−y
√
η2+Re

η2 +Re

cos(ηz)√
η2 +Re

[
a(η2 +Re) + η2s

]
sa−1×

I0

[
Re(t− s)

2(η2 +Re)

]
exp

[
− 2η2 +Re

2(η2 +Re)
(t− s)− u(η2 +Re)

]
ds dη

− 2

π

∫ ∞
0

∫ ∞
0

∫ t

0

∫ σ

0

cos(ηz)√
η2 +Re

[
a(η2 +Re) + η2s

]
sa−1

√
uRe
t− σ

erfc

(
y

2
√
u

)
×

I0

[
Re(σ−s)
2(η2+Re)

]
I1

[
2
√
uRe(t− σ)

]
×

exp

[
− 2η2 +Re

2(η2 +Re)
(σ − s)− (t− σ)− u(η2 +Re)

]
ds dσ du dη. (40)

Combining the above results and using again (A.4)2, we obtain for τ2(y, z, t)
the expression

τ2(y, z, t) = −b
√
Ret

b−1e−z
√
Re −

√
Re
2

tb(z
√
Re + 1)e−z

√
Re

+
2R2

e

π

∫ ∞
0

∫ t

0

η2 cos(ηz)

(η2 +Re)3
(t− s)b exp

[
− η2s

η2 +Re

]
ds dη

− 2

π

∫ ∞
0

∫ t

0

e−y
√
η2+Re

η2 +Re
cos(ηz)

[
a(η2 +Re) + η2s

]√
η2 +Re

sa−1×

I0

[
Re(t− s)

2(η2 +Re)

]
exp

[
− 2η2 +Re

2(η2 +Re)
(t− s)

]
ds dη



84 Constantin Fetecau, Muhammad A. Imran, Ahmad Sohail

− 2

π

∫ ∞
0

∫ ∞
0

∫ t

0

∫ σ

0
cos(ηz)

√
uRe
t− σ

erfc

(
y

2
√
u

)
×

I1

[
2
√
uRe(t− σ)

]
I0

[
Re(σ − s)
2(η2 +Re)

]
.

[
a(η2 +Re) + η2s

]
sa−1√

η2 +Re
×

exp

[
− 2η2 +Re

2(η2 +Re)
(σ − s)− (t− σ)− u(η2 +Re)

]
ds dσ du dη. (41)

4 Numerical results and conclusions

In this note a mixed initial and boundary-value problem has been solved by
means of integral transforms. More accurately, solutions are established for
the dimensionless velocity u(y, z, t) and non-trivial shear stresses τ1(y, z, t)
and τ2(y, z, t) corresponding to the motion of a second grade �uid in an edge.
The motion of the �uid is due to the two sides of the edge. One of them (in
the plane y = 0) applies a time-dependent shear stress to the �uid and the
other one (in the plane z = 0) is moving in its plane parallel to the corner
line with a prescribed velocity. Direct computations show that the solutions
that have been obtained, in form of simple and multiple integrals, satisfy all
imposed initial and boundary conditions.

In order to reveal some relevant physical aspects of the obtained results
the diagrams of the velocity u(y, z, t) and the shear stresses τ1(y, z, t) and
τ2(y, z, t) have been drawn against z for di�erent values of y, t and Reynolds
number Re. A series of calculations were performed for di�erent situations
with typical values using the program Mathcad 14.0. From Figs. 1 it clearly
results that the velocity of the �uid u(y, z, t), as expected, decreases with
respect to z and increases with regards to y. This is due to the skin friction
τ1(0, z, t) applied on the side y = 0. Of course, the velocity of the �uid on the
side z = 0 is the same for each y. The in�uence of the Reynolds number Re
on the �uid motion is shown by Figs. 2. The velocity of the �uid decreases
for increasing Re. Last two �gures give similar representations for the ad-
equate shear stresses τ1(y, z, t) and τ2(y, z, t). The results of Figs. 3 are in
accordance with those resulting from Figs. 1. The skin friction τ1(y, z, t) in
parallel planes to the bottom wall y = 0 decreases with respect to z but is
an increasing function of y. The second shear stress τ2(y, z, t), as it results
from Figs. 4, is a decreasing function with respect to both variables y and z.
This result also seem to be a realistic one. The units of material constants
are SI units in all �gures.
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Figure 1: Pro�les of the velocity u(y, 0, t) for Re = 5, a = b = 1 and for
di�erent values of y and t.
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Figure 2: Pro�les of the velocity u(y, 0, t) for y = 0.5, a = b = 0.5 and for
di�erent values of Re and time.
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Figure 3: Pro�les of the shear stress τ1(y, z, t) for Re = 5, a = b = 1 and for
di�erent values of y and t.
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Figure 4: Pro�les of the shear stress τ2(y, z, t) for y = 0.5, a = b = 0.5 and
for di�erent values of Re and time.
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Finally, it is worth pointing out that besides the velocity �eld we also
provide exact solutions for the shear stresses that are induced due to the
�ow. Such solutions, in additions to serving as approximations to some spe-
ci�c initial-boundary value problems also serve a very important purpose,
namely they can be used as tests to verify numerical schemes that are de-
veloped to study more complex unsteady �ow problems. Of special interest
is the case a = b = 1 corresponding to constantly accelerating velocity and
shear stress on the boundary. However, in all cases the motion of the �uid
is unsteady and remains unsteady.
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Appendix

L−1

[
1√

(q + a)2 − b2

]
= e−atI0(bt); L−1

[
e
u
q − 1

]
=

√
u

t
I1

(
2
√
ut
)
.

(A.1)
where I0 and I1 are the modi�ed Bessel functions of �rst kind.

L−1

[
e−y
√
q

q

]
= erfc

(
y

2
√
t

)
;∫ ∞

0
erfc

(
y

2
√
u

)
e−u(η2+Re)du =

1

η2 +Re
e−y
√
η2+Re . (A.2)

L−1

[
e−y
√
W (η,q)

W (η, q)

]
=

∫ ∞
0

erfc

(
y

2
√
u

)
g(u, t)du, g(u, t) = L−1

[
e−uW (η,q)

]
.

(A.3)∫ ∞
0

η sin(ηz)

η2 + a2
dη =

π

2
e−az, Re(a) ≥ 0;∫ ∞

0

cos(bx)

(x2 + a2)2
dx =

π

4a3
(ab+ 1)e−ab; a, b > 0. (A.4)
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