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OPTIMAL CONTROL OF AN OBLIQUE
DERIVATIVE PROBLEM*

Daniel Wachsmuth' Gerd Wachsmuth?

Abstract

We investigate optimal control of an elliptic partial differential
equation (PDE) with oblique boundary conditions. These boundary
conditions do not lead directly to a weak formulation of the PDE. Thus,
the equation is reformulated as a variational problem. Existence of
optimal controls and regularity of solutions is proven. First-order op-
timality conditions are investigated. The adjoint state is interpreted as
the solution of a boundary value problem with non-variational bound-
ary conditions. Numerical results demonstrate the approximative so-
lution of the optimal control problem by finite element discretization.
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1 Introduction

In this article we consider an optimal control problem for an elliptic partial
differential equation with oblique boundary conditions. More precisely, we
study the optimal control of the equation

—0j(ai; Oy) + a; Oy +agy = f in Q, (1.1a)
b0y +boy=g onl =00. (1.1b)
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The control will act in the boundary condition. Here and throughout the
paper we follow the Einstein summation convention. All the assumptions on
the various coefficients will be made precise below.

In this model, the term b; J;y is not a co-normal derivative of the elliptic
differential operator. Thus the equation does not admit a weak formulation
in the standard way: integration by parts of the strong formulation (1.1a)
and inserting the boundary condition (1.1b) will not yield a variational for-
mulation. This difficulty also influences the analysis of the optimal control
problem: typically, necessary optimality conditions are expressed in terms of
solutions of adjoint equations, which are naturally obtained in a weak form.
Here, the question arises, whether the first-order necessary optimality condi-
tions can be expressed by adjoint equations, and what is the corresponding
weak and strong formulation of the adjoint equations. In the sequel we will
use a well-known strategy to obtain a weak formulation of the equation by
applying a suitable transformation of the differential operator, see [Troian-
iello, 1987, Proof of Lem. 3.18].

Oblique derivative problems have an abundance of applications, includ-
ing geodesy, quantum gravity and portfolio optimization, see, e.g., Rozanov
and Sanso [2002], Raskop and Grothaus [2006], Dowker and Kirsten [1997,
1999|, Herzog et al. [2013]. For the mathematical theory of problems with
those non-variational boundary conditions, we refer to Gilbarg and Trudinger
[1983], Grisvard [1985], Troianiello [1987]. Optimal control problems for el-
liptic equations with boundary control are studied, e.g., in Troltzsch [2010].
Control of semilinear and quasilinear equations is well studied, see, e.g.,
Casas and Dhamo [2012], Casas et al. [2005]. However, to the best of our
knowledge, all the available results involve only PDEs with Dirichlet, Neu-
mann, or Robin boundary conditions.

The investigation of the optimal control problem with oblique boundary
conditions proceeds as follows. First, a reformulation is introduced, which
turns the problem into a variational form. This variational formulation is
equivalent to the strong formulation for H?(Q)-functions. Then, we prove
existence and regularity of solutions of the weak formulation. Moreover, we
show that the solution is independent of the choice of parameters introduced
in the reformulation process.

Afterwards, we analyze the optimal control problem. The necessary op-
timality conditions are shown to involve an adjoint equation. Here, it is
interesting to note that the strong formulation of the adjoint equation and
the regularity of its solutions needs stronger smoothness assumptions on the
coefficients of the differential operator.

Finally, we present some numerical results.
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1.1 Notation

The partial derivative w.r.t. the coordinate x; is denoted by 9;. We use Ein-

stein’s summation convention for repeated indices over 1,..., N. If we state
a condition involving one (or more) isolated indices, e.g., 4, this condition is
meant to hold for all possible values of these indices, e.g., i =1,..., N. For

example, v; € CONI") means v; € COY(I) for all i = 1,.. -, N. By COH(Q),
CYYT) we denote the Lipschitz continuous functions on €, T, respectively.

Note that C%1(Q) = WH>(Q).

1.2 Standing assumptions

The domain © C RY is assumed to have a boundary 09 of class C11, see,
e.g., [Troianiello, 1987, p. 13]. In (1.1), the coefficients satisfy a;; € C%1(€),
ai,ap € L°(Q) and b;, by € C(I'). Moreover, a;; = aj; and

a;j(x)&& >a>0 for all z € Q and ¢ € RY. (1.2)

Furthermore, we require the oblique derivative condition (1.1b) to be regular,
i.e.,
bi(x)vi(x) >b>0 forallzel, (1.3)
where v(r) € RY is the outer unit normal vector at z € I'. Note that
Vi € C’Ovl(l“).
We further assume

ag >0, byp>0, esssupqgag-+ maxyby > 0. (14)

1.3 Preliminary result: Multipliers on the boundary

We recall that the trace operator is a linear mapping that maps H'(£2) onto
HY2(I'), see [Grisvard, 1985, Thm. 1.5.1.3]. The following lemma shows that
the product of a function in HY/ 2(T") with a Lipschitz continuous one belongs
to H'/2(T"). That is, the Lipschitz continuous functions are multipliers in
HY2(D).

Lemma 1.1. Letu € H'/?(T) and v € C%Y(T) be given. Then, the pointwise
product wv belongs to HY?(T') and

lwoll grzey < Cllull gy 10llcoary

where the constant C' depends only on ).



Optimal control of an oblique derivative problem 53

Proof. We start by extending u and v to functions on §2 denoted by % and v,
respectively. By applying [Troianiello, 1987, Thm. 1.2] and [Grisvard, 1985,
Thm. 1.5.1.3], we obtain

lall i) < Cllullgreey and  [[0f|gorq) < Cllvllcoar).

Now, it is easy to check, that

il sy < C Nl 19lcosa):

Applying [Grisvard, 1985, Thm. 1.5.1.3| again yields that the trace of 40
belongs to HY/2(Q) and

1@ 0] 172y < Cllall gy 10llcor@y < Cllull gz [lvllcoar).

Finally, it remains to prove that the trace of 4v coincides with uwv. Since
the product of the traces is the trace of the product for continuous functions,
this can be established by approximating @ with a continuous function. [

2 The state equation

Albeit (1.1a) is in divergence form (and can be understood in the sense of
distributions on  for y € H*(Q)), it is not straightforward to define the weak
solution of (1.1) for y € H'(Q), since (1.1b) is not a co-normal derivative.
Therefore, we consider the case of regular solutions y € H?(Q) first. Then,
(1.1b) can be understood in the sense of traces since d;y € H'(£2). We call
this a strong solution y € H?*(Q) of (1.1). We have the following result
concerning existence and uniqueness.

Theorem 2.1 (|Troianiello, 1987, Thm. 3.29]). For every f € L?(2) and
g € HY2(), there exists a unique strong solution y = y(f,g) € H*(Q) of
(1.1) and this solution satisfies

ly(f: D2y < C (1flz2e) + N9l 2 )
where C' > 0 does not depend on f and g.

The same result, but with slightly stronger assumptions on the boundary
data, can be found in [Grisvard, 1985, Thm. 2.4.2.6].

Following the approach of [Troianiello, 1987, Proof of Lem. 3.18], we are
going to define weak solutions y € H'(2) of (1.1). Therefore, we derive a
weak formulation of (1.1) such that the weak solutions coincide with the
strong solutions of (1.1) in the regular case f € L?(Q) and g € H'/*(I").
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To this end, let y € H?(Q2) and «a;, i € C%H(Q) be arbitrary. The
symmetry of the Hessian matrix for smooth functions implies the symmetry
of the weak Hessian matrix of y, i.e., 9;0;y = 0;0;y. Consequently, we obtain
(aij — avji) 0;05y = 0. Together with the product rule we find that (1.1a) is
equivalent to

—0j[(aij+au—aji) Opy+py y] + (ai+0; (o — i) + 1) Oiy+(ao+055) y = f.

The co-normal derivative associated with this differential operator in diver-
gence form is
vi [(aij + auj — ai) Oy + puj ).

Hence, we will to construct «;; and pu; such that
Vj (aij + a5 — Oéji) =60b; and Vj by = 0 by (2.1)

hold on T', where § € C%(T"), # > 6 > 0 is an appropriate scaling function.

Let us assume we have constructed a;;, (15, ¢, such that (2.1) holds. Then,
the above reasoning shows that if y € H?(12) is a solution of (1.1), we obtain
by using integration by parts

a(y,v):/gfvdx—l—/FGQUds for all v € H'(Q), (2.2)

where the bounded bilinear form a : H'(Q) x H'(2) — R is given by

a(y,v) = /Q [(aij + ouj — aji) Oy + 1y y) Ojv
+ (ai + 9 (a5 — aji) + pi) Oy v + (ao + Ojpj) yvdz.  (2.3)

Conversely, if y € H?(2) solves (2.2), y is also a strong solution of (1.1), see
[Troianiello, 1987, Lem. 2.6]. Moreover, this shows that for all f € L?(€)
and g € HY?(Q) the solution of (2.2) is independent of a;; and p; (as long
as (2.1) is satisfied), since the solution of (2.2) coincides with the strong
solution of (1.1) and the strong solution is unique by Theorem 2.1.

It remains to construct a;;, i € C%1(Q) and § € C%1(T) such that (2.1)
is satisfied. Multiplying the first equation of (2.1) by v; (and consequently
summing over %) yields
Q5 Vi Vj

0 = on I (2.4)

b; v;

Due to (1.2) and (1.3), # € C%Y(T) is well defined and uniformly positive.
Owing to the second equation of (2.1), we could choose p; such that p; =
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0bovj on I'. By extension, we find a function p; € C%1(Q) such that p; =
6 bov; on I', see [Troianiello, 1987, Thm. 1.2].

It remains to choose the parameter a;;. Note that the first equation of
(2.1) is equivalent to

Vj (Ozij — Oéji) =0 bi — Vj aij.

Now, we define 7; = 6b; — v;ja;; and find 71 = 0 by definition of 8, see
(2.4). It remains to choose a;j such that v (a;; — ;) = 7. This can be
accomplished by choosing a;; € C%1(Q) such that o;; = v;7; on I'. This
implies

Vj (Ozij — Oéji) =T; = 9[), —Vjaj; on I. (2.5)

Hence, (2.1) is satisfied by this choice of a;, u; € C%1(Q) and 6 € CON(T).

Now, we define the notion of weak solutions of (1.1). The solution of
the variational formulation (2.2) can be analogously defined for less regular
functions. Let f € (H'(Q))" and g € (H'/?(T))’ be given. We call y € H'(Q)
a weak solution of (1.1) if and only if

a(y,v) = (f, )@y, m@) + (9:00) ey mzm  for all v e H'Y(Q)
(2.6)
holds. Note that multiplication with § € C%!(I') is a bounded, linear op-
erator in Hl/Q(F), see Lemma 1.1. The above reasoning shows that every
strong solution y € H%(Q) is also a weak solution.

Theorem 2.2. For every f € (H'(Q)) and g € (HY/?2(T)Y, there exists a
unique weak solution y = y(f,g) of (1.1). Moreover, there exists C > 0
independent of f and g such that

ly(fs D)) < C (1F Ly + gl ey

Proof. We have

a(l,v):/ﬂagvdx—l—/rﬂbgvds.

Hence, a(1,v) > 0 for all v € H'(Q2), v > 0 and there exists v € H'(1),
v > 0 such that a(1,v) > 0, see (1.4). By classical arguments based on the

weak maximum principle and the Fredholm alternative one finds, see e.g.
[Troianiello, 1987, Cor. on p. 99| [Trudinger, 1973, Thm. 3.2],

a(y,v) = (F,v) g )y, mi() forallve HY(Q)
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possesses a unique solution y = y(F) € HY(Q) for all F € (H'(Q)). More-
over, the open mapping theorem implies the existence of C' > 0 such that

ly(E)mr ) < CIF a @) -

Choosing

(F,v) oy, m @) = o) @)y,m@) + (95 00) 2wy, mreg)
yields the claim. O

It remains to discuss the dependency of the weak solution of (1.1) on the
(more or less arbitrarily chosen) functions a;; and ;.

Lemma 2.3. The bilinear form a : H'(Q) x H'(Q) = R does not depend
on j, l;. In particular, the weak solution of (1.1) is independent of those
functions.

We give two different proofs of this lemma. In the first one, we show
directly that a(u,v) for u € H%(Q) is independent of a;j, y;, whereas in the
second one, we use the independence of the weak solutions in the regular
case.

First proof of Lemma 2.3. We will show that a(y,v) is independent of ay;
and p; for y € H?(Q) and v € H'(Q). The density of H?(Q) in H*(Q) yields
the claim. We consider the terms involving «;; and p; separately. We have

/ (O[Z‘j — O[ji) 8iy ij + 8]‘(051']' — Ozji) 8Z~yvdx
Q

B / 0 [(evij — i) v] Dy da

Q
= / [(Olij — Olji) U] ajc'hy dx + /(aij — Otjl') v&-y Vj ds
Q r
= O—i—/nvaiyds
r

In the last line, we used symmetry of the Hessian and (2.5). The last ex-
pression is independent of «;.
Now, we consider the terms in a(y,v) depending on p;. We have

/Qﬂjyajv+ﬂz'3iyv+3jujyvdx—/Qaj (njyv)dz

:/,ujyjyvds:/ﬁboyvds.
r r
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This expression is independent of p;.
This shows that a(u,v) is independent of ;; and p;. O

Second proof of Lemma 2.3. We already know that if f € L?(Q) and g €
H'Y2(T'), the weak solution y € H'(Q) belongs even to H2(Q) and is therefore
independent of «;j, u; by Theorem 2.1. Since the mapping (f,g) — y(f,9)
is continuous by Theorem 2.2 and since L*(Q) and HY?(I') are dense in
(H'(Q))" and (H'2(I')), the weak solution of (1.1) is independent of the
chosen functions «;j, ;. Hence, also the bilinear form a is independent of
a;j and ;. ]

Remark 2.4. We remark the that the requirement a;; = aj; can be dropped.
The bilinear form would then take the form

1
a(y,v) = /Q [(2(% + aji) + aij — aji) iy + 11 y} djv

1
+ (ai + 8j (2(aij — ajz-) + oy — Ozji) + /Lz‘) oy v
+ (ap + Ojpj) yvde.

The proof of the existence theorem 2.2 in Troianiello [1987] does not rely
on the symmetry of the bilinear form. The H?-regqularity of solutions, Theo-
rem 2.1, as proven in Troianiello [1987] needs to be modified to accomodate
for unsymmetric coefficients.

3 Coercivity of the bilinear form

In this section, we study the coercivity of the bilinear form a, which was
introduced in (2.3).

It is known from Garding’s inequality, see also [Troianiello, 1987, Sec-
tion 2.2.1|, that

a(v,0) = C1 [o]% () — Ca [0]2eqy  for all v € H'(Q),

with C7 > 0 and Cy € R is satisfied.

In this section, we will estimate the constant Cs. In particular, we will
study which terms in the bilinear form a contribute to Cs. As a by-product,
we give conditions which allow the choice Cy = 0, i.e., under which a is
coercive in H' ().

In order to use an integration by parts formula on the boundary, we
assume that Q possesses a C? boundary.
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By definition of a, see (2.3), we have
a(v,v) = / a;j iy 0y + ag y?dx
Q

+ / (qij — i) Opy Ojy + O (auj — aji) iy y dx
@ (3.1)
+ /Qujyaijr pi Oy y + O y* d

+ / a; Oy yde.
Q

Let us rewrite the second and third line of the right-hand side of (3.1). By
symmetry, the first term on the second line is zero. Let us assume y € C*°(£2)
in order to rewrite

/Qaj(aij — ay;) Oy yda
= — /ﬂ(aij —aj;) 0;(0iyy) dr + /F(aij —aji) vj Oy yds

1 1
=0+ = /Tiai(yQ)ds: = /TV[‘(yZ)dS
2 Jr 2 Jr

/ divp(7) y2 ds,
I

N | =

where Vr, divp(7) are the surface gradient and divergence of 7, see [Delfour
and Zolésio, 2001, Def. 9.5.1, (9.5.6)]. Here, we used the integration-by-parts
formula [Delfour and Zolésio, 2001, (9.5.27)] (and, therein, 7; v; = 0). Note
that this formula actually requires 7 € C1(I'), but this can be relaxed by a
density argument. Using the density of C°°(Q) in H'(€), see [Delfour and
Zolésio, 2001, Thm. 2.6.3] or [Attouch et al., 2006, Prop. 5.4.1], and using
divp(r) € L>(T"), we find that

1
/ 0j(aij — o) Oy yde = —= /din(T) y? ds
Q 2 Jr

holds for all y € H(1).
It remains to study the third line in (3.1). We have

/Q“jyaijr“i Biyy + Ojj y* de = /Qaj(uj y?) da

:/l/j,uijdS:/Hbonds.
r r
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Altogether, we obtain

a(v,v) = /Q(aij Oy Oy + ap y?) da

- ) (3.2)

+ [ (0bo — = divp(7)) y°ds + [ a; diyyda.
r 2 Q

Note that the last term comes from the convection term a; d;y in the PDE

(1.1). If we neglect this term then the bilinear form a can only be not coercive

if 0bg— % divp 7 < 0 holds. This is only possible if 7 is not constant, i.e., the

angle between the normal vector v; and the oblique vector b; is not constant!
Note that the condition

1
Gbo—i divp(t) >k >0 onT
is used sometimes in the literature to prove existence of weak solutions, see,
e.g., |[Raskop and Grothaus, 2006, Thm. 3.7|. However, this condition is not

necessary for existence and uniqueness, see Theorem 2.1, Theorem 2.2 and
the example in Section 5.3.

4 The optimal control problem

Let us now turn to analyzing the optimal control problem. It is given as:
minimize the functional

, a
J(y,u) == jy) + By HUH%Q(F) (4.1)
over all pairs (y,u) € H'(Q) x L*(T") satisfying the weak formulation

a(y,v) = /Fu9vds for all v € HY(Q) (4.2)

of the PDE (1.1) and the control constraint
U € Upg :={v € L2T) : ug(z) < v(z) < up(z) fa.a. z €T}, (4.3)

Here, j : H'(Q2) — R is a given Fréchet differentiable function, a > 0, and
g, up € L2(T) satisfy u,(z) < up(z) for almost all 2 € T

Theorem 4.1. The optimal control problem (4.1)—(4.3) admits solutions.
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Proof. Let us denote the feasible set for the problem (4.1)-(4.3) by F, i.e.
F:={(y,u) € HY(Q) x L*(T') : u € Uyuq, (y,u) satisfy (4.2)}.

By assumption, the set Uyq is non-empty. Moreover, for each control v €
L?(T) the weak formulation (2.6) is uniquely solvable for y € H'(£2). Hence,
the set of feasible points F' of the optimal control problem is not empty.

In addition, the set U,q is compact with respect to the weak topology
of L?(I"). Let us argue that the set of associated states y is compact in the
norm topology of H!(Q). The linear mapping u + y, where y solves (4.2), is
linear and continuous from H~1/2(T") to H(2), hence compact from L?(T)
to HY(Q), cf. [Troianiello, 1987, Lemma 1.51]. This proves that the set of
states solving (4.2) with u € Uyq is compact in H'(Q). Thus, the feasible set
F is compact in H'(Q) x L?(T") with the norm topology and weak topology,
respectively.

The function J is continuous with respect to the first argument, lower
semicontinuous with respect to the second argument in the mentioned topolo-
gies. Now the existence of optimal controls and states follows from the
Weierstraft theorem. O

Let us now turn to necessary optimality conditions.

Theorem 4.2. Let (y,u) be a local solution of (4.1)—(4.3). Then there exists
p € HY(Q) such that

a(v,p) =j'(H)v Yve H(Q) (4.4)
and
(aﬂ—l—eﬁ, U _'L_L)LQ(I‘) >0 VYu € Uy,
where 0 is given by (2.4).

Proof. Let us denote by S : (HY(Q))" — H(Q) the linear mapping F
S(F), where S(F) solves a(S(f),v) = (f,v) 1 ())y,m1(q)- According to The-
orem 2.2, S is continuous. Let us denote by S* : (H'(Q)) — H'(Q) its ad-
joint operator. Let now ¢, F € (H'(Q)) be given, and set p := S*¢ € H ().
Then it holds
a(SF,p) = (F.p) i ()y,m o) = (F,570) (m (@), m (9
= (SF, ¢)(m1()y,H (Q)-

Since F € (H'(Q)) is arbitrary, and S is surjective, it follows that

a(v,p) = (v, ¢>(H1(Q))/’H1(Q) for all v € Hl(Q)
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Defining p := S*5'(7), the proof follows from standard arguments, see, e.g.,
[Troltzsch, 2010, Sect. 2.8]. O

Let us now investigate the adjoint equation (4.4). As the bilinear form a
is not symmetric, the strong formulation of (4.4) will differ in general from
(1.1), which is the strong formulation of the state equation (4.2).

In order to establish the strong formulation, we first prove H?(2)-regu-
larity of the adjoint state p. We cannot conclude this regularity of p without
further assumptions on the coefficients of the differential operator, which is
due to the fact that the role of test function and solution is switched when
compared to the state equation.

Theorem 4.3. Let us assume that ) has C?*'-boundary, and the coefficient
functions satisfy a;j € CY1(Q), a; € C¥Y(Q) and b; € CHL(T).
Let 5'(y) € L*(Q) and p € H' () solve (4.4). Then p € H*(Q).

Proof. The weak formulation of the adjoint equation (4.4) reads

a(v,p) = /Q [(aij + aij — i) Biv + 11 v] Ojp+ (@i + 9 (evj — i) + ) Do p
+ (ap + Ojuj)vpdr = j' (v Yo € H'(Q). (4.5)

Due to the increased smoothness of the coefficients, the coefficients in the
weak formulation can be constructed to satisfy a;; € C11(2): The function 6
defined in (2.4) satisfies § € C%1(I), which implies 7; € C1}(T'). Then «ay; €
CH1(Q) can be chosen as an extension of v;7; € CH(T), see [Troianiello,
1987, Thm. 1.3].

Hence, the coefficients in the weak formulation (4.5) satisfy the assump-
tions of |Troianiello, 1987, Theorem 3.17 (ii)|, in particular a; + 0;j(cy; —
aji) + p; € C%1(Q), which gives the regularity p € H?(Q). O

With the help of this regularity result, we can prove that the adjoint state
P is the strong solution of a boundary value problem with non-variational
boundary conditions. Here again, the regularity of coefficients of the differ-
ential operator is essential.

Theorem 4.4. Let the assumptions of Theorem 4.3 be satisfied. Then p €
H?(Q) satisfies

—(%((lij 0; ) — Oi(a;ip) +aop = j/(ﬂ) in Q,
(4.6a)

(2viai; —0b;) 0jp + (aiui—i—ebo—i—din(Gb—ay))p: 0 on T
(4.6b)
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Here, 0b — av refers to the vector field with components 6b; — a;jv;.

Proof. By assumption, it holds a(v,p) = j'(g)v for all v € H*(Q). Using
integrating by parts in (4.5) in the terms involving derivatives of the test
function v, we obtain

a(v,p) =
/Q —0i[(aij + aij — aji) Ojp| v — 8 [(ai + 9;(aij — aji)) p] v + agpv da

+ /(aij + a5 — Oéji) v; Gjpv + (ai + Bj(aij — Oéji) + Nz) Vipvds, (47)
T

where we used p;0;jp — 0;(uip) + Ojpu;p = 0. Differentiating the terms
involving «;; we find

05 [ (aij— i) 95p] = [9i(vij—aji) 9jp] +(vij— i) Didjp = [95(cvij— i) O;p)]
and

9 [(9j(cvij — az0)) p] = (9i0j(cij — i) p + (9j(cij — i) O
= — [8Z(Oéw — Odji) 8j ]

Hence, the domain integral in (4.7) becomes
/ —0; [(aij + a5 — Oéji) 6jp] v — 0 [(al + 8]‘(062']' - Oéji)) p] v +agpvdx
Q
= / —0; [aij 8jp] v — 0 [aip] v 4+ agpvde.
Q

Since v € H'(f) was arbitrary, this shows (4.6a).
Employing the relations (2.1) we find

v; (Ozij — iji) =V a,ji — ij =V aij — ij

and we can transform the boundary integral in (4.7) to

/(aij + g — Ozji) v 8jpv + (ai + Gj(aij — Oéjz‘) + ,Ui) v;pvds
r

= /(2Via¢j — ij) 8jpv + ([az + aj(aij — aji)] v; + 91)0) puds.
I
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Here, only the term 0;(ci; — ;i) v; depends on the parameterization. Re-
verting to vector notation, we obtain

vi 0j(cij — aji) = v div(a —a')
= v divr(a —a') +v; 9 (aij — aji) v v;
= v divp(a —a').
We continue with
v divp(a —a') =divr(v (e —a')) = Vrv: (a —a')

= divp 7 = divp(0b — av)

where we have used Vv = (Vrv)', see [Delfour and Zolésio, 2001, eq.
(5.10)], and relation (2.1). Collecting these results we have the following
transformation of the boundary integrals

/F(aij + a5 — ajl-) v; ajp’l) + (ai + 8]‘(Oéij - Ozji) + Ni) v;puds
= /(2 vi a;; — 6b;) Ojpv + ((ai + 0j(ayj — ayi)) vi + 9b0) pvds
r
= 2v;a;; — 0b;) dipv + (a;v; + 0by + divp(0b — av)) pvds.
J 3) Yj
T

Since v € H()) was arbitrary, the claim follows. O
Example 4.5. Let us discuss the strong formulation of the adjoint equation
for the following simple optimal control problem: minimize
1 2 @ 2
J(y,u) = B ly = vallz2) + By llullz2ry
subject to
—Ay+y=0 1inQ,
Vy -(wv+7)=u onT,

where T is a tangential vector field, T'v = 0. In the notation as above, we
have
b=v+rT1, by=0, 0=1, 0b—av =r.

Hence the adjoint equation is given by
—Ap+p=y—ys in,
Vp' - (v—71)+divp(r) -p=0 onT.
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5 Numerics

In this section, we will discuss the numerical solution of the PDE (1.1) and
the associated optimal control problem, see Section 4.
5.1 A specific setting

Throughout this section we will study numerical aspects for one particular
instance of (1.1) and the associated control problem. Let Q = B;1(0) C R? be
the unit circle. The outer unit normal vector v and the (left) unit tangential
vector ¢ are given by

v(z) = (331,1’2)T, t(x) = (—$2,$1)T,

respectively. Note that both vectors can be extended to smooth functions
on R2. We consider the PDE

—Ay+y=/f inQ, (5.1a)

Vy' v+ (c1+cz)t]=g onT, (5.1b)

where ¢1,c2 € R are constant parameters. In the notation of (1.1), we have
aij = ij, a; =0, ap =1,

bi(l'l,mg) = I/i(xl,l'g) + (01 + co :z:l)ti, bo = 0.

5.2 The discrete forward problem
The choice

0=1, pi =0,

Ti(x1, x2) = (c1 + ca w1) ti(21, T2), Qij = T Vj,
satisfies (2.1). In vector and matrix notation, we have

7(2) = (—(c1 + cam1) @, (1 + ca 1) 1) |

. 2 5.2
a(z) = 7(z) z/(a:)T = (c1 +coxy) ( 332% ' T x22> .

The weak formulation (2.6) is solved by linear finite elements on a triangular
mesh. Note that the discrete domain 2y, is strictly included in €.
The discrete solution y for the right-hand side

fl@)=exp(— (21 -1/2)* = 23),  g(a)=0
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Figure 1: Solution of the problem for ¢; € {0,1,2,5} and ¢z = 0 for the
choice (5.2).

with parameterization (5.2) is plotted in Figure 1.
Alternatively, one may choose

921, M:():

T(z1,22) = (€1 + co ) t(z1,22), az1,22) = <8 (e1 —562 ml)) ,

(5.3)
which also satisfies (2.1). The solution with right-hand side f as above
and parameterization (5.3) is plotted in Figure 2. Note that both solutions
are slightly different in the discrete setting. In the continuous setting, both
approaches are equivalent and their solutions coincide, see Lemma 2.3. How-
ever, the proof of Lemma 2.3 requires integration by parts and that (2.1) is
satisfied on I' = 9€). In the discrete setting, a similar proof would require
that (2.1) is satisfied on 9€2,. This does not hold for the choices (5.2) and
(5.3). Moreover, it is, in general, not possible to construct Lipschitz con-
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Figure 2: Solution of the problem for ¢; € {0,1,2,5} and ¢z = 0 for the
choice (5.3).

tinuous ayj, 5, 0 such that (2.1) holds on 02, since 0€2;, is only Lipschitz
continuous and its normal vector is discontinuous.

We remark that the convergence of the discretization can be proved by
standard arguments, see Schatz [1974].

5.3 Coercivity of the bilinear form

In this section, we will study the coercivity of the bilinear form associated
to the PDE (5.1). By (3.2) we have

1 .
aly,y) = / ]Vy\2 +y?de — = / divp(7) y* ds.
Q 2 Jr
By using [Delfour and Zolésio, 2001, (9.5.6)], we find

divp(r) = div(r) — v 7' v = —cy 23
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where 7/ is the Jacobian of 7. We have

/x2y2ds:/V(y2) . <(1)> dx:2/yVy.(?> dx§/|Vy]2+y2dx.
r Q Q Q

Note that this estimate is sharp since equality holds for the choice y =
exp(z2). Analogously, we have

/x2y2d32—/ IVy)* + % da.
r Q

Again, this estimate is sharp (set y = exp(—z2)). Altogether, we have

Cc2 C2
ol) 2 ol + 2 [ aav?as 2 (1= 12 ol

This estimate is sharp (set y = exp(+z2)). Hence, we find that bilinear form
is coercive if and only if |ca] < 2. In the case |ca] > 2, the bilinear form is
no longer coercive. However, the unique solvability of the weak formulation
(2.6) follows from Theorem 2.2.

Let us denote by A the stiffness matrix associated to the bilinear form a
and by K the matrix associated with the inner product of H!(Q2). Then, the
bilinear form a is coercive on the discrete subspace Vj, C H(f2) if and only
if the smallest eigenvalue of the symmetric part (A + AT)/2 of A is positive
w.r.t. K. Numerically, this smallest eigenvalue behaves like 1—|ca| /2. Hence,
the above analysis is confirmed by the numerical experiments.

5.4 Discrete optimal control problem

In this section, we consider the discretized optimal control problem. The
state y and the adjoint state p are discretized by piecewise linear finite el-
ements on 2, whereas the boundary control u is discretized by piecewise
linear finite elements on 9€2;,. The associated spaces are denoted by V}, and
Uy, respectively. We denote discrete functions and their coefficient vectors
by the same symbol.

We denote by A the stiffness matrix associated with the bilinear form
a and by M, Mr the mass matrices associated with the inner products of
L2(Qy,), L*(0%,), respectively. Moreover, Mqr is the (rectangular) matrix
associated with the bilinear form

/Hvuds v € Vy, u € Uy
r
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The discrete optimal control problem is given by

1
Minimize = (y—ya)" M (y = ya) + 5 u” Mru,
such that Ay = Mqoru

and  u, < u < uyp.

Here, uq,u, € Uy, are discrete variants of ug,uy € L2(I'), e.g., their projec-
tions. By standard calculations, the optimality system is given by

0
>0 for all uy < u < up,
0

The variational inequality can be rewritten as

_ . _ _ 1 _.
U — Projjy, uy) [u — Mru+ o M&Fp] =0.

Here, the projection is to be understood coefficient-wise. Let us introduce

the nonlinear function

ATp+ M (§ — ya)
F(y,u,p) = | u— proj[uﬂ%] [a — Mpru+ é Ms{r 13]
Ay — MQITZ

The optimality system can be written as F(y,4,p) = 0. The mapping F
is Newton differentiable. Here, a mapping f : X — Y is called Newton
differentiable if there exists a mapping f’ : X — L£(X,Y) such that

. 1 / _
i m!\f(x +h) = f(z) = fz+ h)hly =0.

A generalized Jacobian (in the sense of Newton differentiability) of F' is

M 0 AT
F/(yauvp) = 0 I- IA (I - MF) _IA M(—;[‘/a
A ~Mqr 0

Here, the components of the diagonal matrix I4 are 1 if the components of

u— Mru—+ éMS{Fﬁ are between u, and up, and 0 otherwise.
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Now, we use a generalized Newton method to solve F(g,u,p) = 0. The
Newton system formulated in the next iterates (yxi1, Ug+1, Pr+1) reads

M 0 AT Ykt 1 M yq
0 I—Is(I—Mp) —IaMgp/o| [uesr | = | Boup+ Taua
A —Mqr 0 Dk+1 0

Here, the components of the diagonal matrix I, (I,) are 1 if the components

of u—Mpu+L M&Fﬁ are bigger than wu; (smaller than u,) and 0 otherwise.
Unfortunately, the Newton system is not symmetric. However, it is pos-
sible to modify this system, such that it becomes symmetric.
For convenience, let us denote u = I up + I, u,- By the second equation,
we immediately find (I — I4) ux+1; = @. This can be employed in the second
and third row of our system, and we obtain

M 0 AT Ykt1 M yq
0 I—Ia+IaMrla —IaMgp/a| (uepr | = [@—IaMra
A —MaqrlIa 0 Pk41 Maoru

Now, we rescale the components of I — I 4 in the second row by the diagonal

matrix MFL , which is the lumped version of Mt and obtain

M 0 AT Yk+1
0 MET—TIa)+IaMrls —IaMgp/o| | wps
A —MqorIa 0 Pk+1
Myq
= | Mta—TI4Mra
Mo

Finally, we scale the second row by «,

M 0 AT Yk+1
0 aM{f(I—Ia)+alaMprla —IaMgp | | wess
A —Mqr s 0 Dk+1
M yq
= | a[MEa— T4 Mral
Mqr i

Note that this matrix is symmetric. This system is solved by a precondi-
tioned MINRES. We solve each linear system up to an absolute tolerance
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\ (01762) = (070) (170) (270) (370)

n

0 2155 4/21  2/235  2/27
1 3173 3/843 3/923  3/101
2 3 /13867 4 /1795 4 /211 4 /230
3 4 /17875 4 /2175 4/286.75 4/ 358
4 4 /17575 4/228 5/3078 5/ 393.6
5
6
7
8

4/1825 5/2254 5 /3188 5 /4244
5/1794 5/2242 5 /3244 5 /4312
5/172 5/2236 5 /3224 5 /4284
4/183.75 5 /2248 6 /30483 5 /4298

Table 1: Number of newton iterations and the average MINRES iterations
for different values of ¢; and mesh refinement levels n.

of 107'2. The block-diagonal preconditioner is an approximation of the
HY(Qp) x L2(0,) x HY(Qp)-inner product. The inner products of H'(£2,)
are approximated by a geometric multigrid V-cycle. The inner product of
L%(0Qy,) is approximated by solving with the lumped mass matrix ME. We
use the same tolerance of 107'2 for the outer Newton loop.

The matrices are assembled by the FE library FEniCS, Logg et al. [2012].
As a geometric multigrid implementation we use FMG, Ospald [2012]. We
use the MINRES implementation from PETSc, Balay et al. [2013b,a, 1997],
but with a modified convergence criterion, which uses the preconditioned
norm of the residual (this should not be confused with the 2-norm of the
preconditioned residual).

Let us report some iteration numbers for the choice

ya(z1, r2) = exp(z1) sin(x2), a=10"%

We give the number of newton iterations and the average MINRES iterations
for different values of (c1,c2) and mesh refinement levels n in Table 1 and
Table 2. As it can be seen from those tables, the iteration numbers depend
only slightly on the mesh refinement level n, whereas they depend heavily on
the parameters cq, co. This is due to the fact that the preconditioner, which
is the inner product of H'(€y), coincides with the bilinear form A only in
the case ¢ = co = 0.

The solution of the optimal control problem for the mesh refinement
parameter n = 6 and ¢y = ¢y = 1 is shown in Figure 3.
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\ (cl’ 02) = (07 0) (0’ 1) (07 2) (07 3)

n

0 2/155 2/ 34 2 /39 3/ 36

1 3/73 3/80.67 3,105 4 /107

2 3/138.67 3/183.67 4/226 4 /263.25
3 4 /17875 4 /21775 4 /286.75 4/ 365.75
4 4 /17575 5/2194 5/306.6 4/ 416.75
5
6
7
8

4/1825 5/2266 5/3234 5 /432

5/179.4 4/236  5/3336 5 /4414
5/172 5/225 6 /325.67 5 /470.8
4/18375 5/221.6 5/3434 5 /4764

Table 2: Number of newton iterations and the average MINRES iterations
for different values of ¢y and mesh refinement levels n.
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