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Abstract

We investigate optimal control of an elliptic partial di�erential
equation (PDE) with oblique boundary conditions. These boundary
conditions do not lead directly to a weak formulation of the PDE. Thus,
the equation is reformulated as a variational problem. Existence of
optimal controls and regularity of solutions is proven. First-order op-
timality conditions are investigated. The adjoint state is interpreted as
the solution of a boundary value problem with non-variational bound-
ary conditions. Numerical results demonstrate the approximative so-
lution of the optimal control problem by �nite element discretization.
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1 Introduction

In this article we consider an optimal control problem for an elliptic partial
di�erential equation with oblique boundary conditions. More precisely, we
study the optimal control of the equation

−∂j(aij ∂iy) + ai ∂iy + a0 y = f in Ω, (1.1a)

bi ∂iy + b0 y = g on Γ = ∂Ω. (1.1b)
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The control will act in the boundary condition. Here and throughout the
paper we follow the Einstein summation convention. All the assumptions on
the various coe�cients will be made precise below.

In this model, the term bi ∂iy is not a co-normal derivative of the elliptic
di�erential operator. Thus the equation does not admit a weak formulation
in the standard way: integration by parts of the strong formulation (1.1a)
and inserting the boundary condition (1.1b) will not yield a variational for-
mulation. This di�culty also in�uences the analysis of the optimal control
problem: typically, necessary optimality conditions are expressed in terms of
solutions of adjoint equations, which are naturally obtained in a weak form.
Here, the question arises, whether the �rst-order necessary optimality condi-
tions can be expressed by adjoint equations, and what is the corresponding
weak and strong formulation of the adjoint equations. In the sequel we will
use a well-known strategy to obtain a weak formulation of the equation by
applying a suitable transformation of the di�erential operator, see [Troian-
iello, 1987, Proof of Lem. 3.18].

Oblique derivative problems have an abundance of applications, includ-
ing geodesy, quantum gravity and portfolio optimization, see, e.g., Rozanov
and Sansò [2002], Raskop and Grothaus [2006], Dowker and Kirsten [1997,
1999], Herzog et al. [2013]. For the mathematical theory of problems with
those non-variational boundary conditions, we refer to Gilbarg and Trudinger
[1983], Grisvard [1985], Troianiello [1987]. Optimal control problems for el-
liptic equations with boundary control are studied, e.g., in Tröltzsch [2010].
Control of semilinear and quasilinear equations is well studied, see, e.g.,
Casas and Dhamo [2012], Casas et al. [2005]. However, to the best of our
knowledge, all the available results involve only PDEs with Dirichlet, Neu-
mann, or Robin boundary conditions.

The investigation of the optimal control problem with oblique boundary
conditions proceeds as follows. First, a reformulation is introduced, which
turns the problem into a variational form. This variational formulation is
equivalent to the strong formulation for H2(Ω)-functions. Then, we prove
existence and regularity of solutions of the weak formulation. Moreover, we
show that the solution is independent of the choice of parameters introduced
in the reformulation process.

Afterwards, we analyze the optimal control problem. The necessary op-
timality conditions are shown to involve an adjoint equation. Here, it is
interesting to note that the strong formulation of the adjoint equation and
the regularity of its solutions needs stronger smoothness assumptions on the
coe�cients of the di�erential operator.

Finally, we present some numerical results.
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1.1 Notation

The partial derivative w.r.t. the coordinate xi is denoted by ∂i. We use Ein-
stein's summation convention for repeated indices over 1, . . . , N . If we state
a condition involving one (or more) isolated indices, e.g., i, this condition is
meant to hold for all possible values of these indices, e.g., i = 1, . . . , N . For
example, νi ∈ C0,1(Γ) means νi ∈ C0,1(Γ) for all i = 1, . . . , N . By C0,1(Ω̄),
C0,1(Γ) we denote the Lipschitz continuous functions on Ω̄, Γ, respectively.
Note that C0,1(Ω̄) = W 1,∞(Ω).

1.2 Standing assumptions

The domain Ω ⊂ RN is assumed to have a boundary ∂Ω of class C1,1, see,
e.g., [Troianiello, 1987, p. 13]. In (1.1), the coe�cients satisfy aij ∈ C0,1(Ω̄),
ai, a0 ∈ L∞(Ω) and bi, b0 ∈ C0,1(Γ). Moreover, aij = aji and

aij(x) ξi ξj ≥ a > 0 for all x ∈ Ω and ξ ∈ RN . (1.2)

Furthermore, we require the oblique derivative condition (1.1b) to be regular,
i.e.,

bi(x) νi(x) ≥ b > 0 for all x ∈ Γ, (1.3)

where ν(x) ∈ RN is the outer unit normal vector at x ∈ Γ. Note that
νi ∈ C0,1(Γ).

We further assume

a0 ≥ 0, b0 ≥ 0, ess supΩ a0 +maxΓ b0 > 0. (1.4)

1.3 Preliminary result: Multipliers on the boundary

We recall that the trace operator is a linear mapping that maps H1(Ω) onto
H1/2(Γ), see [Grisvard, 1985, Thm. 1.5.1.3]. The following lemma shows that
the product of a function in H1/2(Γ) with a Lipschitz continuous one belongs
to H1/2(Γ). That is, the Lipschitz continuous functions are multipliers in
H1/2(Γ).

Lemma 1.1. Let u ∈ H1/2(Γ) and v ∈ C0,1(Γ) be given. Then, the pointwise
product u v belongs to H1/2(Γ) and

∥u v∥H1/2(Γ) ≤ C ∥u∥H1/2(Γ) ∥v∥C0,1(Γ),

where the constant C depends only on Ω.
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Proof. We start by extending u and v to functions on Ω denoted by ũ and ṽ,
respectively. By applying [Troianiello, 1987, Thm. 1.2] and [Grisvard, 1985,
Thm. 1.5.1.3], we obtain

∥ũ∥H1(Ω) ≤ C ∥u∥H1/2(Γ) and ∥ṽ∥C0,1(Ω̄) ≤ C ∥v∥C0,1(Γ).

Now, it is easy to check, that

∥ũ ṽ∥H1(Ω) ≤ C ∥ũ∥H1(Ω) ∥ṽ∥C0,1(Ω̄).

Applying [Grisvard, 1985, Thm. 1.5.1.3] again yields that the trace of ũ ṽ
belongs to H1/2(Ω) and

∥ũ ṽ∥H1/2(Γ) ≤ C ∥ũ∥H1(Ω) ∥ṽ∥C0,1(Ω̄) ≤ C ∥u∥H1/2(Γ) ∥v∥C0,1(Γ).

Finally, it remains to prove that the trace of ũ ṽ coincides with u v. Since
the product of the traces is the trace of the product for continuous functions,
this can be established by approximating ũ with a continuous function.

2 The state equation

Albeit (1.1a) is in divergence form (and can be understood in the sense of
distributions on Ω for y ∈ H1(Ω)), it is not straightforward to de�ne the weak
solution of (1.1) for y ∈ H1(Ω), since (1.1b) is not a co-normal derivative.
Therefore, we consider the case of regular solutions y ∈ H2(Ω) �rst. Then,
(1.1b) can be understood in the sense of traces since ∂iy ∈ H1(Ω). We call
this a strong solution y ∈ H2(Ω) of (1.1). We have the following result
concerning existence and uniqueness.

Theorem 2.1 ([Troianiello, 1987, Thm. 3.29]). For every f ∈ L2(Ω) and
g ∈ H1/2(Γ), there exists a unique strong solution y = y(f, g) ∈ H2(Ω) of
(1.1) and this solution satis�es

∥y(f, g)∥H2(Ω) ≤ C
(
∥f∥L2(Ω) + ∥g∥H1/2(Γ)

)
,

where C > 0 does not depend on f and g.

The same result, but with slightly stronger assumptions on the boundary
data, can be found in [Grisvard, 1985, Thm. 2.4.2.6].

Following the approach of [Troianiello, 1987, Proof of Lem. 3.18], we are
going to de�ne weak solutions y ∈ H1(Ω) of (1.1). Therefore, we derive a
weak formulation of (1.1) such that the weak solutions coincide with the
strong solutions of (1.1) in the regular case f ∈ L2(Ω) and g ∈ H1/2(Γ).
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To this end, let y ∈ H2(Ω) and αij , µi ∈ C0,1(Ω̄) be arbitrary. The
symmetry of the Hessian matrix for smooth functions implies the symmetry
of the weak Hessian matrix of y, i.e., ∂i∂jy = ∂j∂iy. Consequently, we obtain
(αij − αji) ∂i∂jy = 0. Together with the product rule we �nd that (1.1a) is
equivalent to

−∂j
[
(aij+αij−αji) ∂iy+µj y

]
+
(
ai+∂j(αij−αji)+µi

)
∂iy+(a0+∂jµj) y = f.

The co-normal derivative associated with this di�erential operator in diver-
gence form is

νj
[
(aij + αij − αji) ∂iy + µj y

]
.

Hence, we will to construct αij and µj such that

νj (aij + αij − αji) = θ bi and νj µj = θ b0 (2.1)

hold on Γ, where θ ∈ C0,1(Γ), θ ≥ θ > 0 is an appropriate scaling function.
Let us assume we have constructed αij , µi, θ, such that (2.1) holds. Then,

the above reasoning shows that if y ∈ H2(Ω) is a solution of (1.1), we obtain
by using integration by parts

a(y, v) =

∫
Ω
f v dx+

∫
Γ
θ g v ds for all v ∈ H1(Ω), (2.2)

where the bounded bilinear form a : H1(Ω)×H1(Ω) → R is given by

a(y, v) =

∫
Ω

[
(aij + αij − αji) ∂iy + µj y

]
∂jv

+
(
ai + ∂j(αij − αji) + µi

)
∂iy v + (a0 + ∂jµj) y v dx. (2.3)

Conversely, if y ∈ H2(Ω) solves (2.2), y is also a strong solution of (1.1), see
[Troianiello, 1987, Lem. 2.6]. Moreover, this shows that for all f ∈ L2(Ω)
and g ∈ H1/2(Ω) the solution of (2.2) is independent of αij and µi (as long
as (2.1) is satis�ed), since the solution of (2.2) coincides with the strong
solution of (1.1) and the strong solution is unique by Theorem 2.1.

It remains to construct αij , µi ∈ C0,1(Ω̄) and θ ∈ C0,1(Γ) such that (2.1)
is satis�ed. Multiplying the �rst equation of (2.1) by νi (and consequently
summing over i) yields

θ =
aij νi νj
bi νi

on Γ. (2.4)

Due to (1.2) and (1.3), θ ∈ C0,1(Γ) is well de�ned and uniformly positive.
Owing to the second equation of (2.1), we could choose µj such that µj =
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θ b0 νj on Γ. By extension, we �nd a function µj ∈ C0,1(Ω̄) such that µj =
θ b0 νj on Γ, see [Troianiello, 1987, Thm. 1.2].

It remains to choose the parameter αij . Note that the �rst equation of
(2.1) is equivalent to

νj (αij − αji) = θ bi − νj aij .

Now, we de�ne τi = θ bi − νj aij and �nd τi νi = 0 by de�nition of θ, see
(2.4). It remains to choose αij such that νj (αij − αji) = τi. This can be
accomplished by choosing αij ∈ C0,1(Ω̄) such that αij = νj τi on Γ. This
implies

νj (αij − αji) = τi = θ bi − νj aij on Γ. (2.5)

Hence, (2.1) is satis�ed by this choice of αij , µi ∈ C0,1(Ω̄) and θ ∈ C0,1(Γ).

Now, we de�ne the notion of weak solutions of (1.1). The solution of
the variational formulation (2.2) can be analogously de�ned for less regular
functions. Let f ∈ (H1(Ω))′ and g ∈ (H1/2(Γ))′ be given. We call y ∈ H1(Ω)
a weak solution of (1.1) if and only if

a(y, v) = ⟨f, v⟩(H1(Ω))′,H1(Ω) + ⟨g, θ v⟩(H1/2(Γ))′,H1/2(Γ) for all v ∈ H1(Ω)
(2.6)

holds. Note that multiplication with θ ∈ C0,1(Γ) is a bounded, linear op-
erator in H1/2(Γ), see Lemma 1.1. The above reasoning shows that every
strong solution y ∈ H2(Ω) is also a weak solution.

Theorem 2.2. For every f ∈ (H1(Ω))′ and g ∈ (H1/2(Γ))′, there exists a
unique weak solution y = y(f, g) of (1.1). Moreover, there exists C > 0
independent of f and g such that

∥y(f, g)∥H1(Ω) ≤ C
(
∥f∥(H1(Ω))′ + ∥g∥(H1/2(Γ))′

)
.

Proof. We have

a(1, v) =

∫
Ω
a0 v dx+

∫
Γ
θ b0 v ds.

Hence, a(1, v) ≥ 0 for all v ∈ H1(Ω), v ≥ 0 and there exists v ∈ H1(Ω),
v ≥ 0 such that a(1, v) > 0, see (1.4). By classical arguments based on the
weak maximum principle and the Fredholm alternative one �nds, see e.g.
[Troianiello, 1987, Cor. on p. 99] [Trudinger, 1973, Thm. 3.2],

a(y, v) = ⟨F, v⟩(H1(Ω))′,H1(Ω) for all v ∈ H1(Ω)
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possesses a unique solution y = y(F ) ∈ H1(Ω) for all F ∈ (H1(Ω))′. More-
over, the open mapping theorem implies the existence of C > 0 such that

∥y(F )∥H1(Ω) ≤ C ∥F∥(H1(Ω))′ .

Choosing

⟨F, v⟩(H1(Ω))′,H1(Ω) = ⟨f, v⟩(H1(Ω))′,H1(Ω) + ⟨g, θ v⟩(H1/2(Γ))′,H1/2(Ω)

yields the claim.

It remains to discuss the dependency of the weak solution of (1.1) on the
(more or less arbitrarily chosen) functions αij and µi.

Lemma 2.3. The bilinear form a : H1(Ω) × H1(Ω) → R does not depend
on αij , µi. In particular, the weak solution of (1.1) is independent of those
functions.

We give two di�erent proofs of this lemma. In the �rst one, we show
directly that a(u, v) for u ∈ H2(Ω) is independent of αij , µi, whereas in the
second one, we use the independence of the weak solutions in the regular
case.

First proof of Lemma 2.3. We will show that a(y, v) is independent of αij

and µi for y ∈ H2(Ω) and v ∈ H1(Ω). The density of H2(Ω) in H1(Ω) yields
the claim. We consider the terms involving αij and µi separately. We have∫

Ω
(αij − αji) ∂iy ∂jv + ∂j(αij − αji) ∂iy v dx

=

∫
Ω
∂j
[
(αij − αji) v

]
∂iy dx

= −
∫
Ω

[
(αij − αji) v

]
∂j∂iy dx+

∫
Γ
(αij − αji) v ∂iy νj ds

= 0 +

∫
Γ
τi v ∂iy ds

In the last line, we used symmetry of the Hessian and (2.5). The last ex-
pression is independent of αij .

Now, we consider the terms in a(y, v) depending on µi. We have∫
Ω
µj y ∂jv + µi ∂iy v + ∂jµj y v dx =

∫
Ω
∂j

(
µj y v

)
dx

=

∫
Γ
µj νj y v ds =

∫
Γ
θ b0 y v ds.
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This expression is independent of µi.
This shows that a(u, v) is independent of αij and µi.

Second proof of Lemma 2.3. We already know that if f ∈ L2(Ω) and g ∈
H1/2(Γ), the weak solution y ∈ H1(Ω) belongs even toH2(Ω) and is therefore
independent of αij , µi by Theorem 2.1. Since the mapping (f, g) 7→ y(f, g)
is continuous by Theorem 2.2 and since L2(Ω) and H1/2(Γ) are dense in
(H1(Ω))′ and (H1/2(Γ))′, the weak solution of (1.1) is independent of the
chosen functions αij , µi. Hence, also the bilinear form a is independent of
αij and µi.

Remark 2.4. We remark the that the requirement aij = aji can be dropped.
The bilinear form would then take the form

a(y, v) =

∫
Ω

[(
1

2
(aij + aji) + αij − αji

)
∂iy + µj y

]
∂jv

+

(
ai + ∂j

(
1

2
(aij − aji) + αij − αji

)
+ µi

)
∂iy v

+ (a0 + ∂jµj) y v dx.

The proof of the existence theorem 2.2 in Troianiello [1987] does not rely
on the symmetry of the bilinear form. The H2-regularity of solutions, Theo-
rem 2.1, as proven in Troianiello [1987] needs to be modi�ed to accomodate
for unsymmetric coe�cients.

3 Coercivity of the bilinear form

In this section, we study the coercivity of the bilinear form a, which was
introduced in (2.3).

It is known from Gårding's inequality, see also [Troianiello, 1987, Sec-
tion 2.2.1], that

a(v, v) ≥ C1 ∥v∥2H1(Ω) − C2 ∥v∥2L2(Ω) for all v ∈ H1(Ω),

with C1 > 0 and C2 ∈ R is satis�ed.
In this section, we will estimate the constant C2. In particular, we will

study which terms in the bilinear form a contribute to C2. As a by-product,
we give conditions which allow the choice C2 = 0, i.e., under which a is
coercive in H1(Ω).

In order to use an integration by parts formula on the boundary, we
assume that Ω possesses a C2 boundary.
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By de�nition of a, see (2.3), we have

a(v, v) =

∫
Ω
aij ∂iy ∂jy + a0 y

2 dx

+

∫
Ω
(αij − αji) ∂iy ∂jy + ∂j(αij − αji) ∂iy y dx

+

∫
Ω
µj y ∂jy + µi ∂iy y + ∂jµj y

2 dx

+

∫
Ω
ai ∂iy y dx.

(3.1)

Let us rewrite the second and third line of the right-hand side of (3.1). By
symmetry, the �rst term on the second line is zero. Let us assume y ∈ C∞(Ω̄)
in order to rewrite∫

Ω
∂j(αij − αji) ∂iy y dx

= −
∫
Ω
(αij − αji) ∂j(∂iy y) dx+

∫
Γ
(αij − αji) νj ∂iy y ds

= 0 +
1

2

∫
Γ
τi ∂i(y

2) ds =
1

2

∫
Γ
τ ∇Γ(y

2) ds

= −1

2

∫
Γ
divΓ(τ) y

2 ds,

where ∇Γ, divΓ(τ) are the surface gradient and divergence of τ , see [Delfour
and Zolésio, 2001, Def. 9.5.1, (9.5.6)]. Here, we used the integration-by-parts
formula [Delfour and Zolésio, 2001, (9.5.27)] (and, therein, τi νi = 0). Note
that this formula actually requires τ ∈ C1(Γ), but this can be relaxed by a
density argument. Using the density of C∞(Ω̄) in H1(Ω), see [Delfour and
Zolésio, 2001, Thm. 2.6.3] or [Attouch et al., 2006, Prop. 5.4.1], and using
divΓ(τ) ∈ L∞(Γ), we �nd that∫

Ω
∂j(αij − αji) ∂iy y dx = −1

2

∫
Γ
divΓ(τ) y

2 ds

holds for all y ∈ H1(Ω).
It remains to study the third line in (3.1). We have∫

Ω
µj y ∂jy + µi ∂iy y + ∂jµj y

2 dx =

∫
Ω
∂j(µj y

2) dx

=

∫
Γ
νj µj y

2 ds =

∫
Γ
θ b0 y

2 ds.
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Altogether, we obtain

a(v, v) =

∫
Ω
(aij ∂iy ∂jy + a0 y

2) dx

+

∫
Γ

(
θ b0 −

1

2
divΓ(τ)

)
y2 ds+

∫
Ω
ai ∂iy y dx.

(3.2)

Note that the last term comes from the convection term ai ∂iy in the PDE
(1.1). If we neglect this term then the bilinear form a can only be not coercive
if θ b0− 1

2 divΓ τ < 0 holds. This is only possible if τ is not constant, i.e., the
angle between the normal vector νi and the oblique vector bi is not constant!

Note that the condition

θ b0 −
1

2
divΓ(τ) ≥ κ > 0 on Γ

is used sometimes in the literature to prove existence of weak solutions, see,
e.g., [Raskop and Grothaus, 2006, Thm. 3.7]. However, this condition is not
necessary for existence and uniqueness, see Theorem 2.1, Theorem 2.2 and
the example in Section 5.3.

4 The optimal control problem

Let us now turn to analyzing the optimal control problem. It is given as:
minimize the functional

J(y, u) := j(y) +
α

2
∥u∥2L2(Γ) (4.1)

over all pairs (y, u) ∈ H1(Ω)× L2(Γ) satisfying the weak formulation

a(y, v) =

∫
Γ
u θ v ds for all v ∈ H1(Ω) (4.2)

of the PDE (1.1) and the control constraint

u ∈ Uad := {v ∈ L2(Γ) : ua(x) ≤ v(x) ≤ ub(x) f.a.a. x ∈ Γ}. (4.3)

Here, j : H1(Ω) → R is a given Fréchet di�erentiable function, α > 0, and
ua, ub ∈ L2(Γ) satisfy ua(x) ≤ ub(x) for almost all x ∈ Γ.

Theorem 4.1. The optimal control problem (4.1)�(4.3) admits solutions.
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Proof. Let us denote the feasible set for the problem (4.1)�(4.3) by F , i.e.

F := {(y, u) ∈ H1(Ω)× L2(Γ) : u ∈ Uad, (y, u) satisfy (4.2)}.

By assumption, the set Uad is non-empty. Moreover, for each control u ∈
L2(Γ) the weak formulation (2.6) is uniquely solvable for y ∈ H1(Ω). Hence,
the set of feasible points F of the optimal control problem is not empty.

In addition, the set Uad is compact with respect to the weak topology
of L2(Γ). Let us argue that the set of associated states y is compact in the
norm topology of H1(Ω). The linear mapping u 7→ y, where y solves (4.2), is
linear and continuous from H−1/2(Γ) to H1(Ω), hence compact from L2(Γ)
to H1(Ω), cf. [Troianiello, 1987, Lemma 1.51]. This proves that the set of
states solving (4.2) with u ∈ Uad is compact in H1(Ω). Thus, the feasible set
F is compact in H1(Ω)×L2(Γ) with the norm topology and weak topology,
respectively.

The function J is continuous with respect to the �rst argument, lower
semicontinuous with respect to the second argument in the mentioned topolo-
gies. Now the existence of optimal controls and states follows from the
Weierstraÿ theorem.

Let us now turn to necessary optimality conditions.

Theorem 4.2. Let (ȳ, ū) be a local solution of (4.1)�(4.3). Then there exists
p̄ ∈ H1(Ω) such that

a(v, p̄) = j′(ȳ) v ∀v ∈ H1(Ω) (4.4)

and
(α ū+ θ p̄, u− ū)L2(Γ) ≥ 0 ∀u ∈ Uad,

where θ is given by (2.4).

Proof. Let us denote by S : (H1(Ω))′ → H1(Ω) the linear mapping F 7→
S(F ), where S(F ) solves a(S(f), v) = ⟨f, v⟩(H1(Ω))′,H1(Ω). According to The-
orem 2.2, S is continuous. Let us denote by S∗ : (H1(Ω))′ → H1(Ω) its ad-
joint operator. Let now ϕ, F ∈ (H1(Ω))′ be given, and set p := S∗ϕ ∈ H1(Ω).
Then it holds

a(SF, p) = ⟨F, p⟩(H1(Ω))′,H1(Ω) = ⟨F, S∗ϕ⟩(H1(Ω))′,H1(Ω)

= ⟨SF, ϕ⟩(H1(Ω))′,H1(Ω).

Since F ∈ (H1(Ω))′ is arbitrary, and S is surjective, it follows that

a(v, p) = ⟨v, ϕ⟩(H1(Ω))′,H1(Ω) for all v ∈ H1(Ω).
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De�ning p̄ := S∗j′(ȳ), the proof follows from standard arguments, see, e.g.,
[Tröltzsch, 2010, Sect. 2.8].

Let us now investigate the adjoint equation (4.4). As the bilinear form a
is not symmetric, the strong formulation of (4.4) will di�er in general from
(1.1), which is the strong formulation of the state equation (4.2).

In order to establish the strong formulation, we �rst prove H2(Ω)-regu-
larity of the adjoint state p̄. We cannot conclude this regularity of p̄ without
further assumptions on the coe�cients of the di�erential operator, which is
due to the fact that the role of test function and solution is switched when
compared to the state equation.

Theorem 4.3. Let us assume that Ω has C2,1-boundary, and the coe�cient
functions satisfy aij ∈ C1,1(Ω̄), ai ∈ C0,1(Ω) and bi ∈ C1,1(Γ).

Let j′(ȳ) ∈ L2(Ω) and p̄ ∈ H1(Ω) solve (4.4). Then p̄ ∈ H2(Ω).

Proof. The weak formulation of the adjoint equation (4.4) reads

a(v, p) =

∫
Ω

[
(aij+αij−αji) ∂iv+µj v

]
∂jp+

(
ai+∂j(αij−αji)+µi

)
∂iv p

+ (a0 + ∂jµj) v p dx = j′(ȳ) v ∀v ∈ H1(Ω). (4.5)

Due to the increased smoothness of the coe�cients, the coe�cients in the
weak formulation can be constructed to satisfy αij ∈ C1,1(Ω̄): The function θ
de�ned in (2.4) satis�es θ ∈ C1,1(Γ), which implies τi ∈ C1,1(Γ). Then αij ∈
C1,1(Ω̄) can be chosen as an extension of νjτi ∈ C1,1(Γ), see [Troianiello,
1987, Thm. 1.3].

Hence, the coe�cients in the weak formulation (4.5) satisfy the assump-
tions of [Troianiello, 1987, Theorem 3.17 (ii)], in particular ai + ∂j(αij −
αji) + µi ∈ C0,1(Ω̄), which gives the regularity p̄ ∈ H2(Ω).

With the help of this regularity result, we can prove that the adjoint state
p̄ is the strong solution of a boundary value problem with non-variational
boundary conditions. Here again, the regularity of coe�cients of the di�er-
ential operator is essential.

Theorem 4.4. Let the assumptions of Theorem 4.3 be satis�ed. Then p̄ ∈
H2(Ω) satis�es

−∂i(aij ∂jp)− ∂i(ai p) + a0 p = j′(ȳ) in Ω,
(4.6a)

(2 νi aij − θ bj) ∂jp+
(
ai νi + θ b0 + divΓ(θ b− a ν)

)
p = 0 on Γ.

(4.6b)
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Here, θ b− a ν refers to the vector �eld with components θbj − aijνj.

Proof. By assumption, it holds a(v, p̄) = j′(ȳ)v for all v ∈ H1(Ω). Using
integrating by parts in (4.5) in the terms involving derivatives of the test
function v, we obtain

a(v, p) =∫
Ω
−∂i

[
(aij + αij − αji) ∂jp

]
v − ∂i

[(
ai + ∂j(αij − αji)

)
p
]
v + a0 p v dx

+

∫
Γ
(aij + αij − αji) νi ∂jp v +

(
ai + ∂j(αij − αji) + µi

)
νi p v ds, (4.7)

where we used µj ∂jp − ∂i(µi p) + ∂jµj p = 0. Di�erentiating the terms
involving αij we �nd

∂i
[
(αij−αji) ∂jp

]
=

[
∂i(αij−αji) ∂jp

]
+(αij−αji) ∂i∂jp =

[
∂i(αij−αji) ∂jp

]
and

∂i
[(
∂j(αij − αji)

)
p
]
=

(
∂i∂j(αij − αji)

)
p+

(
∂j(αij − αji)

)
∂ip

= −
[
∂i(αij − αji) ∂jp

]
.

Hence, the domain integral in (4.7) becomes∫
Ω
−∂i

[
(aij + αij − αji) ∂jp

]
v − ∂i

[(
ai + ∂j(αij − αji)

)
p
]
v + a0 p v dx

=

∫
Ω
−∂i

[
aij ∂jp

]
v − ∂i

[
ai p

]
v + a0 p v dx.

Since v ∈ H1(Ω) was arbitrary, this shows (4.6a).

Employing the relations (2.1) we �nd

νi (αij − αji) = νi aji − θbj = νi aij − θbj

and we can transform the boundary integral in (4.7) to∫
Γ
(aij + αij − αji) νi ∂jp v +

(
ai + ∂j(αij − αji) + µi

)
νi p v ds

=

∫
Γ
(2νiaij − θbj) ∂jp v +

(
[ai + ∂j(αij − αji)] νi + θb0

)
p v ds.
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Here, only the term ∂j(αij − αji) νi depends on the parameterization. Re-
verting to vector notation, we obtain

νi ∂j(αij − αji) = ν⊤ div(α− α⊤)

= ν⊤ divΓ(α− α⊤) + νi ∂l(αij − αji) νl νj

= ν⊤ divΓ(α− α⊤).

We continue with

ν⊤ divΓ(α− α⊤) = divΓ(ν
⊤(α− α⊤))−∇Γν : (α− α⊤)

= divΓ τ = divΓ(θb− aν)

where we have used ∇Γν = (∇Γν)
⊤, see [Delfour and Zolésio, 2001, eq.

(5.10)], and relation (2.1). Collecting these results we have the following
transformation of the boundary integrals∫

Γ
(aij + αij − αji) νi ∂jp v +

(
ai + ∂j(αij − αji) + µi

)
νi p v ds

=

∫
Γ
(2 νi aij − θbj) ∂jp v +

(
(ai + ∂j(αij − αji)) νi + θb0

)
p v ds

=

∫
Γ
(2 νi aij − θbj) ∂jp v +

(
aiνi + θb0 + divΓ(θb− aν)

)
p v ds.

Since v ∈ H1(Ω) was arbitrary, the claim follows.

Example 4.5. Let us discuss the strong formulation of the adjoint equation
for the following simple optimal control problem: minimize

J(y, u) =
1

2
∥y − yd∥2L2(Ω) +

α

2
∥u∥2L2(Γ)

subject to

−∆y + y = 0 in Ω,

∇y⊤ · (ν + τ) = u on Γ,

where τ is a tangential vector �eld, τ⊤ν = 0. In the notation as above, we
have

b = ν + τ, b0 = 0, θ = 1, θb− aν = τ.

Hence the adjoint equation is given by

−∆p+ p = y − yd in Ω,

∇p⊤ · (ν − τ) + divΓ(τ) · p = 0 on Γ.
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5 Numerics

In this section, we will discuss the numerical solution of the PDE (1.1) and
the associated optimal control problem, see Section 4.

5.1 A speci�c setting

Throughout this section we will study numerical aspects for one particular
instance of (1.1) and the associated control problem. Let Ω = B1(0) ⊂ R2 be
the unit circle. The outer unit normal vector ν and the (left) unit tangential
vector t are given by

ν(x) = (x1, x2)
⊤, t(x) = (−x2, x1)

⊤,

respectively. Note that both vectors can be extended to smooth functions
on R2. We consider the PDE

−∆y + y = f in Ω, (5.1a)

∇y⊤ · [ν + (c1 + c2 x1) t] = g on Γ, (5.1b)

where c1, c2 ∈ R are constant parameters. In the notation of (1.1), we have

aij = δij , ai = 0, a0 = 1,

bi(x1, x2) = νi(x1, x2) + (c1 + c2 x1) ti, b0 = 0.

5.2 The discrete forward problem

The choice

θ = 1, µi = 0,

τi(x1, x2) = (c1 + c2 x1) ti(x1, x2), αij = τi νj ,

satis�es (2.1). In vector and matrix notation, we have

τ(x) = (−(c1 + c2 x1)x2, (c1 + c2 x1)x1)
⊤

α(x) = τ(x) ν(x)⊤ = (c1 + c2 x1)

(
−x2 x1 −x22
x21 x1 x2

)  (5.2)

The weak formulation (2.6) is solved by linear �nite elements on a triangular
mesh. Note that the discrete domain Ωh is strictly included in Ω.

The discrete solution y for the right-hand side

f(x) = exp
(
− (x1 − 1/2)2 − x22

)
, g(x) = 0
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Figure 1: Solution of the problem for c1 ∈ {0, 1, 2, 5} and c2 = 0 for the
choice (5.2).

with parameterization (5.2) is plotted in Figure 1.

Alternatively, one may choose

θ = 1, µ = 0,

τ(x1, x2) = (c1 + c2 x1) t(x1, x2), α(x1, x2) =

(
0 −(c1 + c2 x1)
0 0

)
,


(5.3)

which also satis�es (2.1). The solution with right-hand side f as above
and parameterization (5.3) is plotted in Figure 2. Note that both solutions
are slightly di�erent in the discrete setting. In the continuous setting, both
approaches are equivalent and their solutions coincide, see Lemma 2.3. How-
ever, the proof of Lemma 2.3 requires integration by parts and that (2.1) is
satis�ed on Γ = ∂Ω. In the discrete setting, a similar proof would require
that (2.1) is satis�ed on ∂Ωh. This does not hold for the choices (5.2) and
(5.3). Moreover, it is, in general, not possible to construct Lipschitz con-
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Figure 2: Solution of the problem for c1 ∈ {0, 1, 2, 5} and c2 = 0 for the
choice (5.3).

tinuous αij , µj , θ such that (2.1) holds on ∂Ωh, since ∂Ωh is only Lipschitz
continuous and its normal vector is discontinuous.

We remark that the convergence of the discretization can be proved by
standard arguments, see Schatz [1974].

5.3 Coercivity of the bilinear form

In this section, we will study the coercivity of the bilinear form associated
to the PDE (5.1). By (3.2) we have

a(y, y) =

∫
Ω
|∇y|2 + y2 dx− 1

2

∫
Γ
divΓ(τ) y

2 ds.

By using [Delfour and Zolésio, 2001, (9.5.6)], we �nd

divΓ(τ) = div(τ)− ν⊤τ ′ ν = −c2 x2
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where τ ′ is the Jacobian of τ . We have∫
Γ
x2 y

2 ds =

∫
Ω
∇(y2) ·

(
0
1

)
dx = 2

∫
Ω
y∇y ·

(
0
1

)
dx ≤

∫
Ω
|∇y|2 + y2 dx.

Note that this estimate is sharp since equality holds for the choice y =
exp(x2). Analogously, we have∫

Γ
x2 y

2 ds ≥ −
∫
Ω
|∇y|2 + y2 dx.

Again, this estimate is sharp (set y = exp(−x2)). Altogether, we have

a(y, y) ≥ ∥y∥2H1 +
c2
2

∫
Γ
x2 y

2 ds ≥
(
1− |c2|

2

)
∥y∥2H1 .

This estimate is sharp (set y = exp(±x2)). Hence, we �nd that bilinear form
is coercive if and only if |c2| < 2. In the case |c2| ≥ 2, the bilinear form is
no longer coercive. However, the unique solvability of the weak formulation
(2.6) follows from Theorem 2.2.

Let us denote by A the sti�ness matrix associated to the bilinear form a
and by K the matrix associated with the inner product of H1(Ω). Then, the
bilinear form a is coercive on the discrete subspace Vh ⊂ H1(Ω) if and only
if the smallest eigenvalue of the symmetric part (A+A⊤)/2 of A is positive
w.r.t.K. Numerically, this smallest eigenvalue behaves like 1−|c2| /2. Hence,
the above analysis is con�rmed by the numerical experiments.

5.4 Discrete optimal control problem

In this section, we consider the discretized optimal control problem. The
state y and the adjoint state p are discretized by piecewise linear �nite el-
ements on Ωh, whereas the boundary control u is discretized by piecewise
linear �nite elements on ∂Ωh. The associated spaces are denoted by Vh and
Uh, respectively. We denote discrete functions and their coe�cient vectors
by the same symbol.

We denote by A the sti�ness matrix associated with the bilinear form
a and by M , MΓ the mass matrices associated with the inner products of
L2(Ωh), L

2(∂Ωh), respectively. Moreover, MΩ,Γ is the (rectangular) matrix
associated with the bilinear form∫

Γ
θ v uds v ∈ Vh, u ∈ Uh.
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The discrete optimal control problem is given by

Minimize
1

2
(y − yd)

⊤M (y − yd) +
α

2
u⊤MΓ u,

such that Ay = MΩ,Γ u

and ua ≤ u ≤ ub.

Here, ua, ub ∈ Uh are discrete variants of ua, ub ∈ L2(Γ), e.g., their projec-
tions. By standard calculations, the optimality system is given by

A⊤p̄+M (ȳ − yd) = 0,[
αMΓ ū−M⊤

Ω,Γ p̄
]⊤

(u− ū) ≥ 0 for all ua ≤ u ≤ ub,

A ȳ −MΩ,Γ ū = 0.

The variational inequality can be rewritten as

ū− proj[ua,ub]

[
ū−MΓ ū+

1

α
M⊤

Ω,Γ p̄
]
= 0.

Here, the projection is to be understood coe�cient-wise. Let us introduce

the nonlinear function

F (y, u, p) =

 A⊤p̄+M (ȳ − yd)
ū− proj[ua,ub]

[
ū−MΓ ū+ 1

α M⊤
Ω,Γ p̄

]
A ȳ −MΩ,Γ ū

 .

The optimality system can be written as F (ȳ, ū, p̄) = 0. The mapping F

is Newton di�erentiable. Here, a mapping f : X → Y is called Newton
di�erentiable if there exists a mapping f ′ : X → L(X,Y ) such that

lim
∥h∥X→0

1

∥h∥X
∥f(x+ h)− f(x)− f ′(x+ h)h∥Y = 0.

A generalized Jacobian (in the sense of Newton di�erentiability) of F is

F ′(y, u, p) =

M 0 A⊤

0 I − IA (I −MΓ) −IAM⊤
Ω,Γ/α

A −MΩ,Γ 0

 .

Here, the components of the diagonal matrix IA are 1 if the components of

ū−MΓ ū+ 1
α M⊤

Ω,Γ p̄ are between ua and ub, and 0 otherwise.
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Now, we use a generalized Newton method to solve F (ȳ, ū, p̄) = 0. The
Newton system formulated in the next iterates (yk+1, uk+1, pk+1) readsM 0 A⊤

0 I − IA (I −MΓ) −IAM⊤
Ω,Γ/α

A −MΩ,Γ 0

yk+1

uk+1

pk+1

 =

 M yd
Ib ub + Ia ua

0

 .

Here, the components of the diagonal matrix Ib (Ia) are 1 if the components

of ū−MΓ ū+
1
α M⊤

Ω,Γ p̄ are bigger than ub (smaller than ua) and 0 otherwise.

Unfortunately, the Newton system is not symmetric. However, it is pos-
sible to modify this system, such that it becomes symmetric.

For convenience, let us denote ũ = Ib ub+ Ia ua. By the second equation,
we immediately �nd (I − IA)uk+1 = ũ. This can be employed in the second
and third row of our system, and we obtainM 0 A⊤

0 I − IA + IAMΓ IA −IAM⊤
Ω,Γ/α

A −MΩ,Γ IA 0

yk+1

uk+1

pk+1

 =

 M yd
ũ− IAMΓ ũ

MΩ,Γ ũ

 .

Now, we rescale the components of I−IA in the second row by the diagonal

matrix ML
Γ , which is the lumped version of MΓ and obtainM 0 A⊤

0 ML
Γ (I − IA) + IAMΓ IA −IAM⊤

Ω,Γ/α

A −MΩ,Γ IA 0

yk+1

uk+1

pk+1


=

 M yd
ML

Γ ũ− IAMΓ ũ
MΩ,Γ ũ

.

Finally, we scale the second row by α,M 0 A⊤

0 αML
Γ (I − IA) + α IAMΓ IA −IAM⊤

Ω,Γ

A −MΩ,Γ IA 0

yk+1

uk+1

pk+1


=

 M yd
α
[
ML

Γ ũ− IAMΓ ũ
]

MΩ,Γ ũ

.

Note that this matrix is symmetric. This system is solved by a precondi-
tioned MINRES. We solve each linear system up to an absolute tolerance
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n \ (c1, c2) = (0, 0) (1, 0) (2, 0) (3, 0)

0 2 / 15.5 4 / 21 2 / 23.5 2 / 27
1 3 / 73 3 / 84.3 3 / 92.3 3 / 101
2 3 / 138.67 4 / 179.5 4 / 211 4 / 230
3 4 / 178.75 4 / 217.5 4 / 286.75 4 / 358
4 4 / 175.75 4 / 228 5 / 307.8 5 / 393.6
5 4 / 182.5 5 / 225.4 5 / 318.8 5 / 424.4
6 5 / 179.4 5 / 224.2 5 / 324.4 5 / 431.2
7 5 / 172 5 / 223.6 5 / 322.4 5 / 428.4
8 4 / 183.75 5 / 224.8 6 / 304.83 5 / 429.8

Table 1: Number of newton iterations and the average MINRES iterations
for di�erent values of c1 and mesh re�nement levels n.

of 10−12. The block-diagonal preconditioner is an approximation of the
H1(Ωh)× L2(∂Ωh)×H1(Ωh)-inner product. The inner products of H

1(Ωh)
are approximated by a geometric multigrid V-cycle. The inner product of
L2(∂Ωh) is approximated by solving with the lumped mass matrix ML

Γ . We
use the same tolerance of 10−12 for the outer Newton loop.

The matrices are assembled by the FE library FEniCS, Logg et al. [2012].
As a geometric multigrid implementation we use FMG, Ospald [2012]. We
use the MINRES implementation from PETSc, Balay et al. [2013b,a, 1997],
but with a modi�ed convergence criterion, which uses the preconditioned
norm of the residual (this should not be confused with the 2-norm of the
preconditioned residual).

Let us report some iteration numbers for the choice

yd(x1, x2) = exp(x1) sin(x2), α = 10−2,

ua = −1.5, ub = 1.5.

We give the number of newton iterations and the average MINRES iterations
for di�erent values of (c1, c2) and mesh re�nement levels n in Table 1 and
Table 2. As it can be seen from those tables, the iteration numbers depend
only slightly on the mesh re�nement level n, whereas they depend heavily on
the parameters c1, c2. This is due to the fact that the preconditioner, which
is the inner product of H1(Ωh), coincides with the bilinear form A only in
the case c1 = c2 = 0.

The solution of the optimal control problem for the mesh re�nement
parameter n = 6 and c1 = c2 = 1 is shown in Figure 3.
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n \ (c1, c2) = (0, 0) (0, 1) (0, 2) (0, 3)

0 2 / 15.5 2 / 34 2 / 39 3 / 36
1 3 / 73 3 / 80.67 3 / 105 4 / 107
2 3 / 138.67 3 / 183.67 4 / 226 4 / 263.25
3 4 / 178.75 4 / 217.75 4 / 286.75 4 / 365.75
4 4 / 175.75 5 / 219.4 5 / 306.6 4 / 416.75
5 4 / 182.5 5 / 226.6 5 / 323.4 5 / 432
6 5 / 179.4 4 / 236 5 / 333.6 5 / 441.4
7 5 / 172 5 / 225 6 / 325.67 5 / 470.8
8 4 / 183.75 5 / 221.6 5 / 343.4 5 / 476.4

Table 2: Number of newton iterations and the average MINRES iterations
for di�erent values of c2 and mesh re�nement levels n.
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control ū. The lower �gures show the optimal adjoint state p̄ and the desired
state yd.

approximation of boundary semilinear elliptic control problems. Comput.
Optim. Appl., 31(2):193�219, 2005. doi: 10.1007/s10589-005-2180-2.

M. Delfour and J.-P. Zolésio. Shapes and Geometries. Analysis, Di�erential
Calculus, and Optimization. SIAM, Philadelphia, 2001.

J. S. Dowker and K. Kirsten. Heat-kernel coe�cients for oblique boundary
conditions. Classical and Quantum Gravity, 14(9):L169�L175, 1997. ISSN
0264-9381. doi: 10.1088/0264-9381/14/9/004.

J. S. Dowker and K. Kirsten. The a3/2 heat kernel coe�cient for oblique
boundary conditions. Classical and Quantum Gravity, 16(6):1917�1936,
1999. ISSN 0264-9381. doi: 10.1088/0264-9381/16/6/322.



Optimal control of an oblique derivative problem 73

D. Gilbarg and N. S. Trudinger. Elliptic partial di�erential equations
of second order, volume 224 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, second edition, 1983.

P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, Boston,
1985.

R. Herzog, K. Kunisch, and J. Sass. Primal-dual methods for the com-
putation of trading regions under proportional transaction costs. Math-
ematical Methods of Operations Research, 77(1):101�130, 2013. doi:
10.1007/s00186-012-0416-3.

A. Logg, K.-A. Mardal, G. N. Wells, et al. Automated Solution of Di�erential
Equations by the Finite Element Method. Springer, 2012. doi: 10.1007/978-
3-642-23099-8.

F. Ospald. Implementation of a geometric multigrid method for FEniCS
and its application. Diploma thesis, Technische Universität Chemnitz,
Germany, 2012.

T. Raskop and M. Grothaus. On the oblique boundary problem with a
stochastic inhomogeneity. Stochastics. An International Journal of Proba-
bility and Stochastic Processes, 78(4):233�257, 2006. ISSN 1744-2508. doi:
10.1080/17442500600715782.

Y. Rozanov and F. Sansò. On the stochastic versions of Neumann and oblique
derivative problems. Stochastics and Stochastics Reports, 74(1-2):371�391,
2002. ISSN 1045-1129. doi: 10.1080/10451120290028104.

A. H. Schatz. An observation concerning Ritz-Galerkin methods with indef-
inite bilinear forms. Mathematics of Computation, 28:959�962, 1974.

G. M. Troianiello. Elliptic di�erential equations and obstacle problems. The
University Series in Mathematics. Plenum Press, New York, 1987.

F. Tröltzsch. Optimal Control of Partial Di�erential Equations, volume 112
of Graduate Studies in Mathematics. American Mathematical Society,
Providence, 2010. Theory, methods and applications, Translated from the
2005 German original by Jürgen Sprekels.

N. S. Trudinger. Linear elliptic operators with measurable coe�cients. Ann.
Scuola Norm. Sup. Pisa (3), 27:265�308, 1973.


