
ISSN 2066-6594

Ann. Acad. Rom. Sci.
Ser. Math. Appl.

Vol. 6, No. 1/2014

GENERALIZED WELL-POSEDNESS

OF HYPERBOLIC VOLTERRA

EQUATIONS OF NON-SCALAR TYPE∗

Marko Kostić†

Abstract

In the present paper, we introduce the class of (A, k)-regularized
C-pseudoresolvent families, analyze themes like generation, hyperbolic
perturbations, regularity and local properties, and furnish several il-
lustrative examples. The study of differentiability of (A, k)-regularized
C-pseudoresolvent families seems to be new even in the case k(t) ≡ 1
and C ≡ I.
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1 Introduction and preliminaries

Our intention in this paper is to enquire into the basic structural properties
of a fairly general class of (local) (A, k)-regularized C-pseudoresolvent fam-
ilies. This class of pseudoresolvent families is one of the main tools in the
analysis of ill-posed hyperbolic Volterra equations of non-scalar type. It is
worthwhile to mention here that there are by now only a few references con-
cerning non-scalar evolutionary Volterra equations (cf. [10]-[11] and [23]).
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We analyze Hille-Yosida type theorems, perturbations, differential and ana-
lytical properties of solutions of non-scalar operator equations, and remove
density assumptions from the previously known concepts.

We shall henceforth assume that X and Y are Banach spaces and that
Y is continuously embedded in X. Let L(X) 3 C be injective and let τ ∈
(0,∞]. The norm in X, resp. Y, will be denoted by || · ||X , resp. || · ||Y ;
[R(C)] denotes the Banach space R(C) equipped with the norm ||x||R(C) =
||C−1x||X , x ∈ R(C) and, for a given closed linear operator A in X, [D(A)]
denotes the Banach space D(A) equipped with the graph norm ||x||D(A) =
||x||X + ||Ax||X , x ∈ D(A). Suppose F is a subspace of X. Then the part
of A in F, denoted by A|F , is a linear operator defined by D(A|F ) := {x ∈
D(A) ∩ F : Ax ∈ F} and A|Fx := Ax, x ∈ D(A|F ). Let A(t) be a
locally integrable function from [0, τ) into L(Y,X). Unless stated otherwise,
we assume that A(t) is not of scalar type, i.e., that there does not exist
a ∈ L1

loc([0, τ)), a 6= 0, and a closed linear operator A in X such that
Y = [D(A)] and that A(t) = a(t)A for a.e. t ∈ [0, τ) (cf. also the short
discussion preceding Proposition 1 for full details). We refer the reader to
[14] and references cited there for further information concerning ill-posed
abstract Volterra equations of scalar type.

In the sequel, the meaning of symbol A is clear from the context. We
mainly use the following condition

(P1): k(t) is Laplace transformable, i.e., it is locally integrable on [0,∞) and
there exists β ∈ R so that
k̃(λ) := L(k)(λ) := limb→∞

∫ b
0 e
−λtk(t) dt :=

∫∞
0 e−λtk(t) dt exists for

all λ ∈ C with Re(λ) > β. Put abs(k) :=inf{Re(λ) : k̃(λ) exists}.

Let us recall that a function k ∈ L1
loc([0, τ)) is called a kernel, if for every

φ ∈ C([0, τ)), the preassumption
∫ t

0 k(t − s)φ(s) ds = 0, t ∈ [0, τ) implies
φ(t) = 0, t ∈ [0, τ). Thanks to the famous E. C. Titchmarsh’s theorem, the
condition 0 ∈ suppk implies that k(t) is a kernel. Set Θ(t) :=

∫ t
0 k(s) ds, t ∈

[0, τ) and recall that the C-resolvent set of A, ρC(A) in short, is defined by

ρC(A) :=
{
λ ∈ C : λ−A is injective and R(C) ⊆ R(λ−A)

}
;

the resolvent set of A is also denoted by ρ(A). The principal branch is
always used to take the powers and the abbreviation ∗ stands for the finite
convolution product. Set gα(t) := tα−1/Γ(α) (α > 0, t > 0), where Γ(·)
denotes the Gamma function.

From now on, we basically follow the notation employed in the mono-
graph of J. Prüss [23]. The notions of (a, k)-regularized C-resolvent fam-
ilies, (a,C)-regularized resolvent families as well as local (K-convoluted)
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C-semigroups and cosine functions will be understood in the sense of [14]
and [16].

2 (A, k)-regularized C-pseudoresolvent families

Definition 1 Let k ∈ C([0, τ)) and k 6= 0. Consider the linear Volterra
equation:

u(t) = f(t) +

t∫
0

A(t− s)u(s) ds, t ∈ [0, τ), (1)

where τ ∈ (0,∞], f ∈ C([0, τ) : X) and A ∈ L1
loc([0, τ) : L(Y,X)). Then a

function u ∈ C([0, τ) : X) is said to be:

(i) a strong solution of (1) iff u ∈ L∞loc([0, τ) : Y ) and (1) holds on [0, τ),

(ii) a mild solution of (1) iff there exist a sequence (fn) in C([0, τ) : X)
and a sequence (un) in C([0, τ) : X) such that un(t) is a strong solution
of (1) with f(t) replaced by fn(t) and that limn→∞ fn(t) = f(t) as well
as limn→∞ un(t) = u(t), uniformly on compact subsets of [0, τ).

The abstract Cauchy problem (1) is said to be (kC)-well posed (C-well posed,
if k(t) ≡ 1) iff for every y ∈ Y, there exists a unique strong solution of

u(t; y) = k(t)Cy +

t∫
0

A(t− s)u(s; y) ds, t ∈ [0, τ) (2)

and if u(t; yn) → 0 in X, uniformly on compact subsets of [0, τ), whenever
(yn) is a zero sequence in Y ; (1) is said to be a-regularly (kC)-well posed
(a-regularly C-well posed, if k(t) ≡ 1), where a ∈ L1

loc([0, τ)), iff (1) is
(kC)-well posed and if the equation

u(t) = (a ∗ k)(t)Cx+

t∫
0

A(t− s)u(s) ds, t ∈ [0, τ)

admits a unique strong solution for every x ∈ X.

It is clear that every strong solution of (1) is also a mild solution of (1).

Definition 2 Let τ ∈ (0,∞], k ∈ C([0, τ)), k 6= 0 and A ∈ L1
loc([0, τ) :

L(Y,X)). A family (S(t))t∈[0,τ) in L(X) is called an (A, k)-regularized C-
pseudoresolvent family iff the following holds:
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(S1) The mapping t 7→ S(t)x, t ∈ [0, τ) is continuous in X for every fixed
x ∈ X, S(0) = k(0)C and S(t)C = CS(t), t ∈ [0, τ).

(S2) Put U(t)x :=
∫ t

0 S(s)x ds, x ∈ X, t ∈ [0, τ). Then (S2) means U(t)Y ⊆
Y, U(t)|Y ∈ L(Y ), t ∈ [0, τ) and (U(t)|Y )t∈[0,τ) is locally Lipschitz
continuous in L(Y ).

(S3) The resolvent equations

S(t)y = k(t)Cy +

∫ t

0
A(t− s) dU(s)y, t ∈ [0, τ), y ∈ Y, (3)

S(t)y = k(t)Cy +

∫ t

0
S(t− s)A(s)y ds, t ∈ [0, τ), y ∈ Y, (4)

hold; (3), resp. (4), is called the first resolvent equation, resp. the
second resolvent equation.

An (A, k)-regularized C-pseudoresolvent family (S(t))t∈[0,τ) is said to be an
(A, k)-regularized C-resolvent family if additionally:

(S4) For every y ∈ Y, S(·)y ∈ L∞loc([0, τ) : Y ).

An operator family (S(t))t∈[0,τ) in L(X) is called a weak (A, k)-regularized
C-pseudoresolvent family iff (S1) and (4) hold. A weak (A, k)-regularized
C-pseudoresolvent family (S(t))t≥0 is said to be exponentially bounded iff
there exist M ≥ 1 and ω ≥ 0 such that ||S(t)||L(X) ≤ Meωt, t ≥ 0. Finally,
a weak (A, k)-regularized C-pseudoresolvent family (S(t))t∈[0,τ) is said to be

a-regular (a ∈ L1
loc([0, τ))) iff a ∗ S(·)x ∈ C([0, τ) : Y ), x ∈ Y X

.

In this paragraph, we will ascertain a few lexicographical agreements. A
(weak) (A, k)-regularized C-(pseudo)resolvent family with k(t) ≡ gα+1(t),
where α ≥ 0, is also called a (weak) α-times integrated A-regularized C-
(pseudo)resolvent family, whereas a (weak) 0-times integrated A-regularized
C-(pseudo)resolvent family is also said to be a (weak) A-regularized C-
(pseudo)resolvent family. A (weak) (A, k)-regularized C-(pseudo)resolvent
family is also called a (weak) (A, k)-regularized (pseudo)resolvent family
((weak) A-regularized (pseudo)resolvent family) if C = I (if C = I and
k(t) ≡ 1).

It is worth noting that the integral appearing in the first resolvent equa-
tion (3) is understood in the sense of discussion following [23, Definition 6.2,
p. 152] and that M. Jung considered in [10] a slightly different notion of
A-regularized (pseudo)resolvent families. Moreover, (S3) can be rewritten
in the following equivalent form:
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(S3)’

U(t)y = Θ(t)Cy +

∫ t

0
A(t− s)U(s)y ds, t ∈ [0, τ), y ∈ Y,

U(t)y = Θ(t)Cy +

∫ t

0
U(t− s)A(s)y ds, t ∈ [0, τ), y ∈ Y.

By the norm continuity we mean the continuity in L(X) and, in many
places, we do not distinguish S(·) (U(·)) and its restriction to Y. The main
reason why we assume that A(t) is not of scalar type is the following:
Let A be a subgenerator of a (local) (a, k)-regularized C-resolvent family
(S(t))t∈[0,τ) in the sense of [14, Definition 2.1], let Y = [D(A)] and let
A(t) = a(t)A for a.e. t ∈ [0, τ). Then (S(t))t∈[0,τ) is an (A, k)-regularized
C-resolvent family in the sense of Definition 2, S(t) ∈ L(Y ), t ∈ [0, τ)
and, for every y ∈ Y, S(·)y ∈ C([0, τ) : Y ) and the mapping t 7→ U(t)y,
t ∈ [0, τ) is continuously differentiable in Y with d

dtU(t)y = S(t)y, t ∈ [0, τ)
(cf. also Remark 2 as well as the proofs of Theorem 1, Theorem 2 and The-
orem 6). Assume conversely A(t) = a(t)A for a.e. t ∈ [0, τ), Y = [D(A)]
and (S(t))t∈[0,τ) is an (A, k)-regularized C-resolvent family in the sense of
Definition 2. If CA ⊆ AC and a(t) is kernel, then (S(t))t∈[0,τ) is an (a, k)-
regularized C-resolvent family in the sense of [14, Definition 2.1]. In order
to verify this, notice that the second equality in (S3)’ implies after differenti-
ation S(t)x = k(t)Cx+

∫ t
0 S(t−s)a(s)Axds = k(t)Cx+

∫ t
0 a(t−s)S(s)Axds,

t ∈ [0, τ), x ∈ D(A), so that it suffices to show that S(t)A ⊆ AS(t), t ∈ [0, τ).
Combined with the first equality in (S3)’, we get that, for every t ∈ [0, τ)
and x ∈ D(A) :

d

dt

t∫
0

a(t− s)AU(s)x ds = S(t)x− k(t)Cx =

t∫
0

a(t− s)S(s)Axds

and

t∫
0

a(t− s)AU(s)x ds =

t∫
0

s∫
0

a(s− r)S(r)Axdr ds =

t∫
0

a(t− s)U(s)Axds.

Hence, A
∫ t

0 S(s)x ds =
∫ t

0 S(s)Axds, t ∈ [0, τ), x ∈ D(A). Then the closed-
ness of A yields S(t)A ⊆ AS(t), t ∈ [0, τ), as required. In the formulations
of Proposition 4, Theorem 3, Corollary 1(i) as well as in the analyses given
in Example 1, Example 2 and the paragraph preceding it, we also allow
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that A(t) ((A + B)(t)) is of scalar type; if this is the case, then the no-
tion of a corresponding (weak) (A, k)-regularized ((A + B, k)-regularized)
C-(pseudo)resolvent family will be always understood in the sense of Defi-
nition 2.

The subsequent propositions can be proved by means of the argumenta-
tion given in [23].

Proposition 1 (i) Suppose that (Si(t))t∈[0,τ) is an (A, ki)-regularized C-
pseudoresolvent family, i = 1, 2. Then (k2 ∗ R1)(t)x = (k1 ∗ R2)(t)x,

t ∈ [0, τ), x ∈ Y X
.

(ii) Let (Si(t))t∈[0,τ) be an (A, k)-regularized C-pseudoresolvent family, i =

1, 2 and let k(t) be a kernel. Then S1(t)x = S2(t)x, t ∈ [0, τ), x ∈ Y X
.

(iii) Let (S(t))t∈[0,τ) be an (A, k)-regularized C-pseudoresolvent family. As-
sume any of the following conditions:

(a) Y has the Radon-Nikodym property.

(b) There exists a dense subset Z of Y such that A(t)z ∈ Y for a.e.
t ∈ [0, τ), A(·)z ∈ L1

loc([0, τ) : Y ), z ∈ Z and C(Y ) ⊆ Y.

(c) (S(t))t∈[0,τ) is a-regular, A(t) = (a ∗ dB)(t) for a.e. t ∈ [0, τ),
where a ∈ L1

loc([0, τ)), C(Y ) ⊆ Y and B ∈ BVloc([0, τ) : L(Y,X))
is such that B(·)y has a locally bounded Radon-Nikodym deriva-
tive w.r.t. b(t) = VarB|t0, t ∈ [0, τ), y ∈ Y.

Then (S(t))t∈[0,τ) is an (A, k)-regularized C-resolvent family. Further-
more, if Y is reflexive, then S(t)(Y ) ⊆ Y, t ∈ [0, τ) and the mapping
t 7→ S(t)y, t ∈ [0, τ) is weakly continuous in Y for all y ∈ Y. In cases
(b) and (c), the mapping t 7→ S(t)y, t ∈ [0, τ) is even continuous in
Y for all y ∈ Y.

Proposition 2 (i) Assume that (S(t))t∈[0,τ) is a weak (A, k)-regularized
C-pseudoresolvent family, f ∈ C([0, τ) : X) and u(t) is a mild solution
of (1). Then (kC ∗ u)(t) = (S ∗ f)(t), t ∈ [0, τ). In particular, mild
solutions of (1) are unique provided that k(t) is a kernel.

(ii) Assume n ∈ N, (S(t))t∈[0,τ) is an (n−1)-times integrated A-regularized

C-pseudoresolvent family, C−1f ∈ Cn−1([0, τ) : X) and f (i)(0) = 0,
0 ≤ i ≤ n− 1. Then the following assertions hold:
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(a) Let (C−1f)(n−1) ∈ ACloc([0, τ) : Y ) and (C−1f)(n) ∈ L1
loc([0, τ) :

Y ). Then the function t 7→ u(t), t ∈ [0, τ) given by

u(t) =

t∫
0

S(t− s)(C−1f)(n)(s) ds =

t∫
0

dU(s)(C−1f)(n)(t− s)

is a unique strong solution of (1). Moreover, u ∈ C([0, τ) : Y ).

(b) Let (C−1f)(n) ∈ L1
loc([0, τ) : X) and Y

X
= X. Then the function

u(t) =
∫ t

0 S(t − s)(C−1f)(n)(s) ds, t ∈ [0, τ) is a unique mild
solution of (1).

(c) Let C−1g ∈ Wn,1
loc ([0, τ) : Y

X
), a ∈ L1

loc([0, τ)), f(t) = (gn ∗ a ∗
g(n))(t), t ∈ [0, τ) and let (S(t))t∈[0,τ) be a-regular. Then the

function u(t) =
∫ t

0 S(t − s)(a ∗ (C−1g)(n))(s) ds, t ∈ [0, τ) is a
unique strong solution of (1).

Proposition 3 (i) Let (S(t))t∈[0,τ) be an (A, k)-regularized C-resolvent
family. Put u(t; y) := S(t)y, t ∈ [0, τ), y ∈ Y. Then u(t; y) is a strong
solution of (2), and (2) is (kC)-well posed if k(t) is a kernel.

(ii) Assume Y
X

= X, (2) is (kC)-well posed, all suppositions quoted in
the formulation of Proposition 1(iii)(b) hold and A(t)Cz = CA(t)z
for all z ∈ Z and a.e. t ∈ [0, τ). Then (1) admits an (A, k)-regularized
C-resolvent family.

(iii) Assume Y
X

= X, L1
loc([0, τ)) 3 a is a kernel and A(t)Cy = CA(t)y for

all y ∈ Y and a.e. t ∈ [0, τ). Then (2) is a-regularly (kC)-well posed
iff (1) admits an a-regular (A, k)-regularized C-resolvent family.

Before proceeding further, we would like to mention that Proposition
2(ii) enables one to simply reveal the formula [26, (2.5)] for a solution of the
problem (ACPn); for more details in this direction, we refer the reader to
[26, Theorem 2.4, Theorem 3.1]. It would take too long to consider some
other applications of (A, k)-regularized C-pseudoresolvent families to higher
order abstract differential equations ([25]).

Proposition 4 Assume A ∈ L1
loc([0, τ) : L([D(A)], X)) is of the form

A(t) = a(t)A+

t∫
0

a(t− s) dB(s) for a.e. t ∈ [0, τ), (5)
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where a ∈ L1
loc([0, τ)), B ∈ BVloc([0, τ) : L([D(A)], X)) is left continuous,

B(0) = B(0+) = 0 and A is a closed linear operator such that ρ(A) 6= ∅.
Let (S(t))t∈[0,τ) be an (A, k)-regularized C-pseudoresolvent family. Then
(S(t))t∈[0,τ) is a-regular.

Proof. Let µ ∈ ρ(A) and K(t) := −B(t)(µ−A)−1, t ∈ [0, τ). Then it is clear
thatK ∈ BVloc([0, τ) : L(X)).We define recursivelyK0(t) := K(t), t ∈ [0, τ)
and Kn+1(t) :=

∫ t
0 dK(τ)Kn(t − τ), t ∈ [0, τ), n ∈ N. By the proof of [23,

Theorem 0.5, p. 13], the series L(t) :=
∑∞

n=0(−1)nKn(t), t ∈ [0, τ) converges
absolutely in the norm of BV 0([0, τ) : L(X)), L ∈ BV 0([0, τ) : L(X)) and
L = K − dK ∗ L = K − L ∗ dK. Repeating literally the proof of [23,
Proposition 6.4, p. 137], we obtain that, for every y ∈ Y :

A(a ∗ S(·)y) = S(·)y − k(·)Cy − dL ∗ (S(·)y − k(·)Cy − µ(a ∗ S(·))y).

Then the closedness of A immediately implies that, for every x ∈ Y X
, one

has A(a ∗ S(·))x ∈ C([0, τ) : X) and a ∗ S(·)x ∈ C([0, τ) : [D(A)]).

The Hille-Yosida theorem for (A, k)-regularized C-pseudoresolvent fam-
ilies reads as follows.

Theorem 1 Assume A ∈ L1
loc([0, τ) : L(Y,X)), a ∈ L1

loc([0, τ)), a 6= 0, a(t)
and k(t) satisfy (P1), ε0 ≥ 0 and

∞∫
0

e−εt
∥∥A(t)

∥∥
L(Y,X)

dt <∞, ε > ε0. (6)

(i) Let (S(t))t≥0 be an (A, k)-regularized C-pseudoresolvent family such
that there exists ω ≥ 0 with

sup
t>0

e−ωt
(∥∥S(t)

∥∥
L(X)

+ sup
0<s<t

(t− s)−1
∥∥U(t)− U(s)

∥∥
L(Y )

)
<∞. (7)

Put ω0 := max(ω, abs(k), ε0) and H(λ)x :=
∫∞

0 e−λtS(t)x dt, x ∈ X,
Re(λ) > ω0. Then the following holds:

(N1) C(Y ) ⊆ Y, (Ã(λ))Re(λ)>ε0 is analytic in L(Y,X), R(C|Y ) ⊆ R(I−
Ã(λ)), Re(λ) > ω0, k̃(λ) 6= 0, and I − Ã(λ) is injective, Re(λ) >
ω0, k̃(λ) 6= 0.

(N2) H(λ)y = λŨ(λ)y, y ∈ Y, Re(λ) > ω0, (I − Ã(λ))−1C|Y ∈ L(Y ),

Re(λ) > ω0, k̃(λ) 6= 0, (H(λ))Re(λ)>ω0
is analytic in both spaces,
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L(X) and L(Y ), H(λ)C = CH(λ), Re(λ) > ω0, and for every
y ∈ Y and λ ∈ C with Re(λ) > ω0 and k̃(λ) 6= 0 :

H(λ)(I − Ã(λ))y = (I − Ã(λ))H(λ)y = k̃(λ)Cy. (8)

(N3)

sup
n∈N0

sup
λ>ω0, k̃(λ)6=0

(λ− ω)n+1

n!

(∥∥∥ dn
dλn

H(λ)
∥∥∥
L(X)

+
∥∥∥ dn
dλn

H(λ)
∥∥∥
L(Y )

)
<∞.

(ii) Assume that (N1)-(N3) hold. Then there exists an exponentially
bounded (A,Θ)-regularized C-resolvent family (S1(t))t≥0.

(iii) Assume that (N1)-(N3) hold and Y
X

= X. Then there exists an expo-
nentially bounded (A, k)-regularized C-pseudoresolvent family (S(t))t≥0

such that (7) holds.

(iv) Assume (S(t))t≥0 is an (A, k)-regularized C-pseudoresolvent family,
there exists ω ≥ 0 such that (7) holds and ω′ ≥ ω. Then (S(t))t≥0

is a-regular and supt≥0 e
−ω′t||a ∗ S(t)||

L(Y
X
,Y )

< ∞ iff there exists a

number ω1 ≥ max(ω, ω′, abs(a), abs(k), ε0) such that

sup
n∈N0

sup
λ>ω1, k̃(λ)6=0

(λ− ω′)n+1

n!

∥∥∥ dn
dλn

(
ã(λ)H(λ)

)∥∥∥
L(Y

X
,Y )

<∞. (9)

Proof. In order to prove (i), notice that Ũ(λ) = H(λ)/λ, Re(λ) > ω0.
Furthermore, (Ã(λ))Re(λ)>ω0

is analytic in L(Y,X) and (7) in combination
with (S1) yields that (H(λ))Re(λ)>ω0

⊆ L(X) ∩ L(Y ) is analytic in both
spaces, L(X) and L(Y ), and that H(λ)C = CH(λ), Re(λ) > ω0. Fix, for the
time being, λ ∈ C with Re(λ) > ω0 and k̃(λ) 6= 0. Using (S3)’, one gets (8),
C(Y ) ⊆ Y, R(C|Y ) ⊆ R(I−Ã(λ)), (I−Ã(λ))−1C|Y = (λŨ(λ)/k̃(λ)) ∈ L(Y )

and the injectiveness of the operator I − Ã(λ). Therefore, we have proved
(N1)-(N2). The assertion (N3) is an immediate consequence of [25, Theorem
2.1, p. 7], which completes the proof of (i). Assume now (N1)-(N3). By [25,
Theorem 2.1], we obtain that there exist M ≥ 1 and continuous functions
S1 : [0,∞)→ L(X) and SY1 : [0,∞)→ L(Y ) such that S1(0) = SY1 (0) = 0,

sup
t>0

e−ωt
(

sup
0<s<t

(t− s)−1
∥∥S1(t)− S1(s)

∥∥
L(X)

+ sup
0<s<t

(t− s)−1
∥∥SY1 (t)− SY1 (s)

∥∥
L(Y )

)
<∞, (10)
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H(λ)x = λ

∞∫
0

e−λtS1(t)x dt, x ∈ X, Re(λ) > ω0 (11)

and

H(λ)y = λ

∞∫
0

e−λtSY1 (t)y dt, y ∈ Y, Re(λ) > ω0. (12)

Making use of the inverse Laplace transform, (N2) and (11)-(12), we infer
that (S1(t))t≥0 commutes with C and S1(t)y = SY1 (t)y, t ≥ 0, y ∈ Y. It is
evident that the mapping t 7→ S1(t)y, t ≥ 0 is continuous in Y for every
fixed y ∈ Y and that (U1(t) ≡

∫ t
0 S1(s) ds)t≥0 is continuously differentiable

in L(Y ) with U ′1(t) = SY1 (t), t ≥ 0. The above assures that (S1), (S2) and
(S4) hold for (S1(t))t≥0. Combining the inverse Laplace transform and (8),
one gets that (S1(t))t≥0 satisfies (S3)’, which completes the proof of (ii).

If Y
X

= X, then the proof of [25, Theorem 3.4, p. 14] implies that there
exists a strongly continuous operator family (S(t))t≥0 in L(X) such that
S1(t)x =

∫ t
0 S(s)x ds, t ≥ 0, x ∈ X. The estimate (7) is a consequence of

(10) and the remaining part of the proof of (iii) essentially follows from the
corresponding part of the proof of [23, Theorem 6.2, p. 164]. Assuming
M ′ ≥ 1, ω′ ≥ 0, a-regularity of (S(t))t≥0 and ||a ∗ S(t)x||Y ≤ M ′eω

′t||x||X ,
t ≥ 0, x ∈ Y X

, the estimate (9) follows from a straightforward computation.
The converse implication in (iv) follows from [25, Theorem 2.1], the uniform
boundedness principle and the final part of the proof of [23, Theorem 6.2,
p. 165].

Remark 1 Assume A(t) is of the form (5) and a(t) as well as B(t), in
addition to the assumptions prescribed in Proposition 4, are of exponential
growth. Owing to the proof of [23, Corollary 6.4, p. 166], the condition (N3)
can be replaced by a slightly weaker condition:

(N3)’

sup
n∈N0

sup
λ>ω0, k̃(λ)6=0

(λ− ω)n+1

n!

∥∥∥ dn
dλn

H(λ)
∥∥∥
L(X)

<∞.

Now we state the complex characterization theorem for (A, k)-regularized
C-pseudoresolvent families.

Theorem 2 (i) Assume A(t) satisfies (6) with some ε0 ≥ 0, k(t) satisfies
(P1), ω1 ≥ max(abs(k), ε0) and there exists an analytic mapping f :
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{λ ∈ C : Re(λ) > ω1} → L(X) such that f(λ)C = Cf(λ), Re(λ) > ω1,

f(λ)(I − Ã(λ))y = k̃(λ)Cy, Re(λ) > ω1, k̃(λ) 6= 0, y ∈ Y

and∥∥f(λ)
∥∥
L(X)

≤M |λ|r, Re(λ) > ω1 for some M ≥ 1 and r > 1.

Then, for every α > 1, there exists a norm continuous, exponen-
tially bounded weak (A, k ∗ gr+α)-regularized C-pseudoresolvent family
(Sα(t))t≥0.

(ii) Let (Sα(t))t≥0 be as in (i) and let a(t) satisfy (P1). Then (Sα(t))t≥0

is a-regular provided that there exist M1 ≥ 1, r1 > 1, a set P ⊆ C,
which has a limit point in {λ ∈ C : Re(λ) > max(ω1, abs(a))}, and an

analytic mapping h : {λ ∈ C : Re(λ) > max(ω1, abs(a))} → L(Y
X
, Y )

such that

h(λ)(I − Ã(λ))y = ã(λ)
k̃(λ)

λr+α
Cy, y ∈ Y, Re(λ) > max(ω1, abs(a)),∥∥h(λ)

∥∥
L(Y

X
,Y )
≤M1|λ|−r1 , Re(λ) > max(ω1, abs(a)),

and that (I − Ã(λ))−1 : Y
X → Y exists for all λ ∈ P.

(iii) Let, in addition to the assumptions given in (i), the mapping λ 7→
f(λ) ∈ L(Y ), Re(λ) > ω1 be analytic in L(Y ). Suppose

(I − Ã(λ))f(λ)y = k̃(λ)Cy, Re(λ) > ω1, k̃(λ) 6= 0, y ∈ Y (13)

and ∥∥f(λ)
∥∥
L(Y )

≤M |λ|r, Re(λ) > ω1. (14)

Then, for every α > 1, (Sα(t))t≥0 is a norm continuous, exponentially
bounded (A, k ∗ gr+α)-regularized C-resolvent family, and (Uα(t) ≡∫ t

0 Sα(s) ds)t≥0 is continuously differentiable in L(Y ).

Proof. To prove (i), fix an α > 1 and notice that (f(λ)− Ã(λ)f(λ))/λr+α

= k̃(λ)/λr+αCy, y ∈ Y, Re(λ) > ω1, k̃(λ) 6= 0. By [1, Theorem 2.5.1],
one gets that there exists an exponentially bounded, continuous function
Sα : [0,∞) → L(X) such that Sα(0) = 0 and S̃α(λ) = f(λ)/λr+α, Re(λ) >
ω1. Using the inverse Laplace transform, one immediately obtains that
(Sα(t))t≥0 commutes with C and that the second resolvent equation holds,
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which completes the proof of (i). To prove (ii), one can use again [1, Theo-
rem 2.5.1] in order to see that there exists an exponentially bounded function

Saα : [0,∞)→ L(Y
X
, Y ) such that Saα(0) = 0 and S̃aα(λ) = h(λ), Re(λ) > ω1.

It is checked at once that(
S̃aα(λ)− ã(λ)S̃α(λ)

)
(I − Ã(λ))y = 0, y ∈ Y, Re(λ) > ω1. (15)

Since the mapping (I − Ã(λ))−1 : Y
X → Y exists for all λ ∈ P, (15) implies

(S̃aα(λ)−ã(λ)S̃α(λ))x = 0, x ∈ Y X
, λ ∈ P. Hence, (S̃aα(λ)−ã(λ)S̃α(λ))x = 0,

x ∈ Y X
, Re(λ) > ω1 and Saα(t)x = (a∗Sα)(t)x, t ≥ 0, x ∈ Y X

, which shows
that (Sα(t))t≥0 is a-regular. To prove (iii), it suffices to notice that (14)
implies Sα ∈ C([0,∞) : L(Y )), U ′α(t) = Sα(t), t ≥ 0 in L(Y ) and that the
first resolvent equation is a consequence of (13).

Remark 2 Assume a ∈ L1
loc([0, τ)), (S(t))t∈[0,τ) is a (weak, weak a-regular)

(A, k)-regularized C-(pseudo)resolvent family and L1
loc([0, τ)) 3 b satisfies

b ∗ k 6= 0. Set Sb(t)x := (b ∗ S)(t)x, t ∈ [0, τ), x ∈ X. Then it readily
follows that (Sb(t))t∈[0,τ) is a (weak, weak a-regular) (A, b ∗ k)-regularized
C-(pseudo)resolvent family. Furthermore, (Ub(t)|Y )t∈[0,τ) is continuously
differentiable in L(Y ) (cf. the proofs of [1, Proposition 1.3.6, Proposi-
tion 1.3.7]), provided that (S2) holds for (S(t))t∈[0,τ), and a ∗ Sb(·)x ∈
ACloc([0, τ) : Y ), x ∈ Y X

, provided that (S(t))t∈[0,τ) is a-regular.

Now we will transfer the assertion of [21, Proposition 2.5] to non-scalar
Volterra equations.

Proposition 5 Let k ∈ ACloc([0, τ)), k(0) 6= 0 and let (S(t))t∈[0,τ) be a
(weak, weak a-regular) (A, k)-regularized C-(pseudo)resolvent family. Then
there exists b ∈ L1

loc([0, τ)) such that (R(t) ≡ k(0)−1S(t) + (b ∗ S)(t))t∈[0,τ)

is a (weak, weak a-regular) A-regularized C-(pseudo)resolvent family.

Proof. Let b ∈ L1
loc([0, τ)) be such that (b∗k′)(t) = −k(0)−1k′(t)−k(0)b(t),

t ∈ [0, τ) and

(b ∗ k)(t) + k(0)−1k′(t) = 1, t ∈ [0, τ). (16)

If k(t) = k(0), t ∈ [0, τ) then (16) implies (b∗k)(t) = 0, t ∈ [0, τ) and b(t) = 0
for a.e. t ∈ [0, τ); in this case, the statement of proposition is trivial. Assume
now b ∗ k 6= 0. By Remark 2, it suffices to show that (R(t))t∈[0,τ) satisfies
(S3)’ if (S(t))t∈[0,τ) satisfies it. Towards this end, fix t ∈ [0, τ), y ∈ Y and
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put UR(s)x :=
∫ s

0 R(r)x dr, s ∈ [0, τ), x ∈ X. Integrating (16) and using
(S3)’ for (S(t))t∈[0,τ), we obtain:

UR(t)y =
1

k(0)

(
Θ(t)Cx+A ∗ U

)
(t)y + b ∗

(
ΘC +A ∗ U

)
(t)y

= tCy +
1

k(0)

(
A ∗ U

)
(t)y +

(
b ∗A ∗ U

)
(t)y = tCy +

(
A ∗ UR

)
(t)y.

Similarly one can prove that UR(t)y = tCy + (UR ∗A)(t)y.

Concerning hyperbolic perturbation results, we have the following.

Theorem 3 Assume L1
loc([0, τ)) 3 a is a kernel, C(Y ) ⊆ Y, Y

X
= X,

B ∈ L1
loc([0, τ) : L(Y, [R(C)])) is of the form

B(t)y = B0(t)y +
(
a ∗B1

)
(t)y, t ∈ [0, τ), y ∈ Y,

where (B0(t))t∈[0,τ) ⊆ L(Y ) ∩ L(X, [R(C)]), (B1(t))t∈[0,τ) ⊆ L(Y, [R(C)]),

(i) C−1B0(·)y ∈ BVloc([0, τ) : Y ) for all y ∈ Y, C−1B0(·)x ∈ BVloc([0, τ) :
X) for all x ∈ X,

(ii) C−1B1(·)y ∈ BVloc([0, τ) : X) for all y ∈ Y, and

(iii) CB(t)y = B(t)Cy, y ∈ Y, t ∈ [0, τ).

Then the existence of an a-regular A-regularized C-(pseudo)resolvent family
(S(t))t∈[0,τ) is equivalent with the existence of an a-regular (A+B)-regularized
C-(pseudo)resolvent family (R(t))t∈[0,τ).

Proof. Theorem 3 can be shown following the lines of the proof of [23,
Theorem 6.1, p. 159] with K0 = S ∗ C−1B0 and K1 = S ∗ C−1B1. As-
suming (S(t))t∈[0,τ) is an a-regular A-regularized C-(pseudo)resolvent fam-
ily, we will only prove that the resulting a-regular (A + B)-regularized C-
(pseudo)resolvent family (R(t))t∈[0,τ) commutes with C. In order to do that,
define a family (W (t))t∈[0,τ) in L(X,Y ) as a unique solution of the equation

W (t)x = (a ∗ S)(t)x+ d
[
K0 + a ∗K1

]
∗W (t)x, t ∈ [0, τ), x ∈ X.

Using the condition (iii), we obtain that (K0 + a ∗K1)(t)Cy = C(K0 + a ∗
K1)(t)y, t ∈ [0, τ), y ∈ Y. Keeping in mind [23, Corollary 0.3, p. 15; (0.36),
(0.38), p. 14] and the proof of [23, Theorem 0.5, p. 13], it follows that
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W (t)Cx = CW (t)x, t ∈ [0, τ), x ∈ X. On the other hand, (R(t))t∈[0,τ) is
defined by

R(t)x = S(t)x+ dK1 ∗W (t)x+ dK0 ∗R(t)x, t ∈ [0, τ), x ∈ X,

and the following equality holds W (t)x = (a ∗ R)(t)x, t ∈ [0, τ), x ∈ X (cf.
[23, p. 160, l. -2]). Since a(t) is a kernel and W (t)Cx = CW (t)x, t ∈ [0, τ),
x ∈ X, the above implies that (R(t))t∈[0,τ) commutes with C.

It is worthwhile to mention here that it is not clear how one can prove an
analogue of Theorem 3 in the case of a general a-regular (A, k)-regularized
C-(pseudo)resolvent family (S(t))t∈[0,τ). From a practical point of view, the
following corollary is crucially important; notice only that one can remove
density assumptions in the cases set out below since the mapping t 7→ (a ∗
S)(t)x, t ∈ [0, τ) is continuous in Y for every fixed x ∈ X (cf. [23, p. 160, l.
-9] and [14]):

Corollary 1 (i) Assume L1
loc([0, τ)) 3 a is a kernel, A is a subgenerator

of an a-regularized C-resolvent family (S(t))t∈[0,τ), Y = [D(A)] and

A(t) = a(t)A+
(
a ∗B1

)
(t) +B0(t), t ∈ [0, τ),

where B0(·) and B1(·) satisfy the assumptions of Theorem 3. Assume
that the following condition holds:

A

t∫
0

a(t− s)S(s)x ds = S(t)x− Cx, t ∈ [0, τ), x ∈ E.

Then there is an a-regular A-regularized C-resolvent family (R(t))t∈[0,τ).

(ii) Let A be a subgenerator of a (local) C-regularized semigroup (S(t))t∈[0,τ).
If B0(·) and B1(·) satisfy the assumptions of Theorem 3 with Y =
[D(A)], then for every x ∈ D(A) there exists a unique solution of the
problem

u ∈ C1([0, τ) : X) ∩ C([0, τ) : [D(A)]),
u′(t) = Au(t) +

(
dB0 ∗ u

)
(t)x+

(
B1 ∗ u

)
(t) + Cx, t ∈ [0, τ),

u(0) = 0.

Furthermore, the mapping t 7→ u(t), t ∈ [0, τ) is locally Lipschitz
continuous in [D(A)].
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(iii) Let A be a subgenerator of a (local) C-regularized cosine function
(C(t))t∈[0,τ). If B0(·) and B1(·) satisfy the assumptions of Theorem
3 with Y = [D(A)], then for every x ∈ D(A) there exists a unique
solution of the problem

u ∈ C2([0, τ) : X) ∩ C([0, τ) : [D(A)]),
u′′(t) = Au(t) +

(
dB0 ∗ u′

)
(t)x+

(
B1 ∗ u

)
(t) + Cx, t ∈ [0, τ),

u(0) = u′(0) = 0.

Furthermore, the mapping t 7→ u(t), t ∈ [0, τ) is continuously dif-
ferentiable in [D(A)] and the mapping t 7→ u′(t), t ∈ [0, τ) is locally
Lipschitz continuous in [D(A)].

It is clear that Corollary 1 can be applied to a wide class of integro-
differential equations in Banach spaces and that all aspects of application
cannot be easily perceived.

Example 1 Assume 1 ≤ p ≤ ∞, 0 < τ ≤ ∞, n ∈ N, X = Lp(Rn)
or X = Cb(Rn), P (·) is an elliptic polynomial of degree m ∈ N, ω =
supx∈Rn Re(P (x)) < ∞ and A = P (D). (Possible applications can be also
made to non-elliptic abstract differential operators; cf. [25] and [31].) Then,
for every ω′ > ω and r > n|1/2−1/p|, A generates an exponentially bounded
(ω′ − A)−r-regularized semigroup in X (cf. for example [19, Theorem 3.7]
and [16, Theorem 2.3.26]), where the complex power (ω′ − A)−r is defined
in the sense of [16, Subsection 1.4.2]. Let a completely positive kernel a(t)
satisfy (P1) and let B0(·) and B1(·) satisfy the assumptions of Corollary
2.13(i). Then [7, Theorem 2.8(ii)] (cf. also [20, Lemma 4.2]) implies
that A is the integral generator of an exponentially bounded (a, (ω′−A)−r)-
regularized resolvent family provided X = Lp(Rn) (1 ≤ p < ∞); clearly,
the above assertion holds if a(t) ≡ 1 and X = L∞(Rn) (Cb(Rn)). An
application of Corollary 1 gives that, in any of these cases, there exists
an a-regular A-regularized (ω′ − A)−r-resolvent family (R(t))t∈[0,τ), where
A(t) = a(t)P (D) + (a ∗ B1)(t) +B0(t), t ∈ [0, τ). By means of [7, Theorem
2.8(iii)], the preceding example can be set, with some obvious modifications,
in the framework of the theory of C-regularized cosine functions. We refer
the reader to [5], [7], [9]-[12], [16] and [30] for various examples of differ-
ential operators generating C-regularized cosine functions.

The application of (A, k)-regularized C-pseudoresolvent families to prob-
lems in linear (thermo-)viscoelasticity and electrodynamics with memory
(cf. [23, Chapter 9]) is almost completely confined to the case in which the
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underlying space X is Hilbert. In this context, we would like to propose
the following problem (cf. also [23, p. 240] for the analysis of viscoelastic
Timoshenko beam in case of non-synchronous materials).

Problem. Suppose µ0 > 0, ε0 > 0, Ω1 ⊆ R3 is an open set with smooth
boundary Γ, Ω2 = R3\Ω1 and n(x) denotes the outer normal at x ∈ Γ of Ω1.
Let X := Lp(Ω1 : R3)×Lp(Ω2 : R3)×Lp(Ω1 : R3)×Lp(Ω2 : R3), p ∈ [1,∞]\
{2}, and ||(u1, u2, u3, u4)|| := (µ0||u1||2 + ε0||u2||2 + µ0||u3||2 + ε0||u4||2)1/2,
u1, u3 ∈ Lp(Ω1 : R3), u2, u4 ∈ Lp(Ω2 : R3). Define the operator A0 in X by
setting

D(A0) :=
{
u ∈ X : u1, u2 ∈ H1,p(Ω1 : R3), u3, u4 ∈ H1,p(Ω2 : R3),

n× (u1 − u3) = n× (u2 − u4) = 0
}

and

A0u :=
(
−µ−1

0 curl u2, ε
−1
0 curl u1,−µ−1

0 curl u4, ε
−1
0 curl u3

)
, u ∈ D(A0).

Then one can simply prove that A0 is closable. Does there exist an injective
operator C ∈ L(X) such that A0 generates a (local, global exponentially
bounded) C-regularized semigroup in X?

Assuming the answer to the previous problem is in the affirmative and
the functions εi(·), µi(·), σi(·), νi(·) and ηi(·) satisfy certain conditions (cf.
[23, Subsection 9.6, pp. 251–253]), one can apply Corollary 1(ii) in the study
of C-wellposedness of transmission problem for media with memory.

3 Smoothing properties of (A, k)-regularized
C-pseudoresolvent families

Let (Lp) be a sequence of positive real numbers such that L0 = 1,

(M.1) L2p
p ≤ Lp+1

p+1L
p−1
p−1, p ∈ N,

(M.2) Lnn ≤ AHn minp,q∈N, p+q=n L
p
pL

q
q, n ∈ N for some A > 1 and H > 1,

and

(M.3)’
∑∞

p=1

Lp−1
p−1

Lpp
<∞.

The Gevrey sequences (p!s/p), (ps) and (Γ(1 + ps)1/p) satisfy the above con-
ditions with s > 1. The associated function of (Lp) is defined by M(λ) :=
supp∈N0

ln(|λ|p/Lpp), λ ∈ C \ {0}, M(0) := 0. Recall, the mapping t 7→
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M(t), t ≥ 0 is increasing, absolutely continuous, limt→∞M(t) = +∞ and
limt→∞(M(t)/t) = 0. Define ωL(t) :=

∑∞
p=0(tp/Lpp), t ≥ 0, Mp := Lpp and,

for every α ∈ (0, π], Σα := {λ ∈ C : λ 6= 0, | arg(λ)| < α}.

Definition 3 Let 0 < τ ≤ ∞, k ∈ C([0, τ)), k 6= 0, A ∈ L1
loc([0, τ) :

L(Y,X)) and α ∈ (0, π].

(i) Assume (S(t))t≥0 is a (weak) (A, k)-regularized C-(pseudo)resolvent
family. Then it is said that (S(t))t≥0 is an analytic (weak) (A, k)-
regularized C-(pseudo)resolvent family of angle α, if there exists an
analytic function S : Σα → L(X) satisfying S(t) = S(t), t > 0
and limz→0, z∈Σγ S(z)x = k(0)Cx for all γ ∈ (0, α) and x ∈ X. It is
said that (S(t))t≥0 is an exponentially bounded, analytic (weak) (A, k)-
regularized C-(pseudo)resolvent family, resp. bounded analytic (weak)
(A, k)-regularized C-(pseudo)resolvent family of angle α, if for every
γ ∈ (0, α), there exist Mγ > 0 and ωγ ≥ 0, resp. ωγ = 0, such that
||S(z)||L(X) ≤Mγe

ωγ |z|, z ∈ Σγ .

Since no confusion seems likely, we shall also write S(·) for S(·).

(ii) Assume (S(t))t∈[0,τ) is a (weak) (A, k)-regularized C-(pseudo)resolvent
family and the mapping t 7→ S(t), t ∈ (0, τ) is infinitely differentiable
(in the strong topology of L(X)). Then it is said that (S(t))t∈[0,τ) is of

class CL, resp. of class CL, iff for every compact set K ⊆ (0, τ) there
exists hK > 0, resp. for every compact set K ⊆ (0, τ) and for every
h > 0 :

sup
t∈K, p∈N0

∥∥∥hpK dp

dtpS(t)

Lpp

∥∥∥
L(X)

<∞, resp. sup
t∈K, p∈N0

∥∥∥hp dpdtpS(t)

Lpp

∥∥∥
L(X)

<∞;

(S(t))t∈[0,τ) is said to be ρ-hypoanalytic, 1 ≤ ρ < ∞, if (S(t))t∈[0,τ) is

of class CL with Lp = p!ρ/p.

The careful inspection of the proofs of structural characterizations of an-
alytic K-convoluted C-semigroups (cf. [16, Section 2.4]) implies the validity
of the following theorem.

Theorem 4 (i) Assume ε0 ≥ 0, k(t) satisfies (P1), ω ≥ max(abs(k), ε0),
(6) holds, (S(t))t≥0 is a weak analytic (A, k)-regularized
C-pseudoresolvent family of angle α ∈ (0, π/2] and

sup
z∈Σγ

∥∥e−ωzS(z)
∥∥
L(X)

<∞ for all γ ∈ (0, α). (17)
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Then there exists an analytic mapping H : ω + Σπ
2

+α → L(X) such
that

(a) H(λ)(I − Ã(λ))y = k̃(λ)Cy, y ∈ Y, Re(λ) > ω, k̃(λ) 6= 0;
H(λ)C = CH(λ), Re(λ) > ω,

(b) supλ∈ω+Σπ
2 +γ

∥∥(λ− ω)H(λ)
∥∥
L(X)

<∞, γ ∈ (0, α) and

(c) limλ→+∞, k̃(λ) 6=0 λH(λ)x = k(0)Cx, x ∈ X.

(ii) Assume ε0 ≥ 0, k(t) satisfies (P1), (6) holds, ω ≥ max(abs(k), ε0),
α ∈ (0, π/2], there exists an analytic mapping H : ω + Σπ

2
+α → L(X)

such that (a) and (b) of the item (i) hold and that, in the case Y
X 6= X,

(c) also holds. Then there exists a weak analytic (A, k)-regularized C-
pseudoresolvent family (S(t))t≥0 of angle α such that (17) holds.

Theorem 5 (i) Assume ε0 ≥ 0, k(t) satisfies (P1), ω0 ≥ max(abs(k), ε0),
(6) holds, α ∈ (0, π/2], (S(t))t≥0 is an analytic (A, k)-regularized C-
resolvent family of angle α, the mapping t 7→ U(t) ∈ L(Y ), t > 0 can
be analytically extended to the sector Σα (we shall denote the analytical
extensions of U(·) and S(·) by the same symbols), and

sup
z∈Σγ

∥∥e−ω0zS(z)
∥∥
L(X)

+ sup
z∈Σγ

∥∥e−ω0zS(z)
∥∥
L(Y )

<∞ for all γ ∈ (0, α).

(18)
Denote H(λ)x =

∫∞
0 e−λtS(t)x dt, x ∈ X, Re(λ) > ω0. Then (N1)-

(N2) hold,

(a) supλ∈ω0+Σπ
2 +γ

(‖(λ − ω0)H(λ)‖L(X) + ‖(λ − ω0)H(λ)‖L(Y )) < ∞
for all γ ∈ (0, α), H(λ)C = CH(λ), Re(λ) > ω0, and

(b) limλ→+∞, k̃(λ) 6=0 λH(λ)x = k(0)Cx, x ∈ X.

(ii) Assume α ∈ (0, π/2], ε0 ≥ 0, k(t) satisfies (P1), (6) and (N1)-(N2)
hold. Let ω0 ≥ max(abs(k), ε0). Assume that (a) of the item (i) of this

theorem holds and that, in the case Y
X 6= X, (b) also holds. Then

there exists an analytic (A, k)-regularized C-resolvent family (S(t))t≥0

of angle α such that (18) holds and that the mapping t 7→ U(t) ∈ L(Y ),
t > 0 can be analytically extended to the sector Σα.

Proof. Let γ ∈ (0, α) and x ∈ X. The validity of conditions (N1)-(N2)
follows from the argumentation given in the proof of Theorem 1(i). The
estimate supλ∈ω0+Σπ

2 +γ
||(λ − ω0)H(λ)||L(X) < ∞ and the equality stated
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in (b) are consequences of [1, Theorem 2.6.1, Theorem 2.6.4(a)]. Since
the mapping t 7→ U(t) ∈ L(Y ), t > 0 can be analytically extended to
the sector Σα, we easily obtain U ′(z) = S(z), z ∈ Σα in L(Y ). By [1,
Theorem 2.6.1], supλ∈ω0+Σπ

2 +γ
||(λ−ω0)H(λ)||L(Y ) <∞. Clearly, H(λ)C =

CH(λ), Re(λ) > ω0 and this completes the proof of (i). Let us prove
(ii). By (N2), (H(λ))Re(λ)>ω0

is analytic in both spaces, L(X) and L(Y ).
Using the condition (a) and [1, Theorem 2.6.1], we obtain the existence of
analytic functions S : Σα → L(X) and SY : Σα → L(Y ) such that H(λ) =∫∞

0 e−λtS(t) dt, Re(λ) > ω0, H(λ) =
∫∞

0 e−λtSY (t) dt, Re(λ) > ω0 and that,

for every γ ∈ (0, α), supz∈Σγ e
−ω0Re(z)(||S(z)||L(X) + ||SY (z)||L(Y )) <∞. Set

S(0) := k(0)C. Then, by the uniqueness theorem for Laplace transform,
S(t)C = CS(t), t ≥ 0 and S(t)y = SY (t)y, t > 0, y ∈ Y, which simply
implies that the mapping t 7→ U(t) ∈ L(Y ), t > 0 can be analytically
extended to the sector Σα as well as that (S2) and (S4) hold for (S(t))t≥0.
The strong continuity of (S(t))t≥0 on any closed subsector of Σα∪{0} follows
from the condition (b) and [1, Proposition 2.6.3, Theorem 2.6.4(a)]. In
particular, (S(t))t≥0 satisfies (S1). By (8) and the inverse Laplace transform,
one gets that (S3)’ holds for (S(t))t≥0. Hence, (S(t))t≥0 is an analytic (A, k)-

regularized C-resolvent family (S(t))t≥0 of angle α. Assume now Y
X

= X.
By the previous consideration, S(t)y − k(t)Cy =

∫ t
0 S(t − s)A(s)y ds, t ≥

0, y ∈ Y, which clearly implies limt↓0 S(t)y = k(0)Cy, y ∈ Y. Using the
exponential boundedness of (S(t))t≥0 and the standard limit procedure, we
obtain limt↓0 S(t)x = k(0)Cx, x ∈ X. The above equality implies (b) by [1,
Theorem 2.6.4(a)].

The main objective in the subsequent theorems is to clarify the basic
differential properties of (A, k)-regularized C-pseudoresolvent families.

Theorem 6 Assume k(t) satisfies (P1), r ≥ −1 and (6) holds with some
ε0 ≥ 0. Assume that there exists ω ≥ max(abs(k), ε0) such that, for every
σ > 0, there exist Cσ > 0, Mσ > 0, an open neighborhood Ωσ,ω of the region

Λσ,ω =
{
λ ∈ C :Re(λ) ≤ ω, Re(λ) ≥ −σ ln |Im(λ)|+ Cσ

}⋃ {
λ ∈ C : Re(λ) ≥ ω

}
,

and an analytic mapping hσ : Ωσ,ω → L(X) such that hσ(λ)C = Chσ(λ),
Re(λ) > ω,

hσ(λ)(I − Ã(λ))y = k̃(λ)Cy, y ∈ Y, Re(λ) > ω, k̃(λ) 6= 0, (19)
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and ||hσ(λ)||L(X) ≤ Mσ|λ|r, λ ∈ Λσ,ω. Then, for every ζ > 1, there exists
a norm continuous, exponentially bounded weak (A, k ∗ gr+ζ)-regularized C-
pseudoresolvent family (Sζ(t))t≥0 satisfying that the mapping t 7→ Sζ(t), t >
0 is infinitely differentiable in L(X). If, additionally, hσ(λ) ∈ L(Y ) for all
σ > 0, and if the mapping λ 7→ hσ(λ), λ ∈ Ωσ,ω is analytic in L(Y ) as well
as

(I − Ã(λ))hσ(λ)y = k̃(λ)Cy, y ∈ Y, Re(λ) > ω, k̃(λ) 6= 0, (20)

and ||hσ(λ)||L(Y ) ≤Mσ|λ|r, λ ∈ Λσ,ω, then (Sζ(t))t≥0 is a norm continuous,
exponentially bounded (A, k ∗ gr+ζ)-regularized C-resolvent family satisfying
that the mapping t 7→ Sζ(t), t ≥ 0 is continuous in L(Y ) and that the
mapping t 7→ Sζ(t), t > 0 is infinitely differentiable in L(Y ).

Proof. Assume ζ > 1, σ > 0, ς > 0, ω0 > ω and set Γ1 := {λ ∈ C :

Re(λ) = 2Cσ − σ ln(−Im(λ)), −∞ < Im(λ) ≤ −e
2Cσ
σ }, Γ2 := {λ ∈ C :

Re(λ) = ω0, −e
2Cσ
σ ≤ Im(λ) ≤ e

2Cσ
σ }, Γ3 := {λ ∈ C : Re(λ) = 2Cσ −

σ ln(Im(λ)), e
2Cσ
σ ≤ Im(λ) < +∞}, Γ := Γ1 ∪ Γ2 ∪ Γ3 and Γk := {λ ∈ Γ :

|λ| ≤ k}, k ∈ N. Let k0 ∈ N be sufficiently large. Then we assume that the
curves Γ and Γk are oriented so that Im(λ) increases along Γ and Γk, k ∈ N,
k ≥ k0. Set Skζ (t) := 1

2πi

∫
Γk
eλtλ−r−ζhσ(λ) dλ, t ≥ 0, k ∈ N, k ≥ k0. Then

it is straightforward to verify that dj

dtj
Skζ (t) = 1

2πi

∫
Γk
eλtλj−r−ζhσ(λ) dλ,

t ≥ 0, k, j ∈ N, k ≥ k0. Furthermore, the proof of [15, Theorem 2.5]

implies that, for every j ∈ N0, the sequence ( d
j

dtj
Skζ (t))k≥k0 is convergent in

L(X) for t > max(0, j+1−ζ
σ ) =: aj,σ,ζ and that the convergence is uniform

on every compact subset of [aj,σ,ζ + ς,∞). Put Sj,ζ(t) := limk→∞
dj

dtj
Skζ (t),

j ∈ N0, t > aj,σ,ζ . Then the mapping t 7→ S0,ζ(t), t > aj+1,σ,ζ + ς is j-times

differentiable in L(X), dj

dtj
S0,ζ(t) = Sj,ζ(t), t > aj+1,σ,ζ + ς,

S0,ζ(t) = Sζ(t) :=
1

2πi

ω0+i∞∫
ω0−i∞

eλt
hσ(λ)

λr+ζ
dλ, t ≥ 1

σ
, (21)

Sζ(t)C = CSζ(t), t ≥ 0 and Sζ(0) = 0. The arbitrariness of σ > 0 combined
with the proof of [1, Theorem 2.5.1] yields that the mapping t 7→ Sζ(t), t ≥ 0
is continuous in L(X) and that the mapping t 7→ Sζ(t), t > 0 is infinitely dif-
ferentiable in L(X). Using the inverse Laplace transform, we easily get from
(19) that (Sζ(t))t≥0 is a weak (A, k ∗ gr+ζ)-regularized C-pseudoresolvent
family (Sζ(t))t≥0, finishing the proof of the first part of theorem. Assume
now hσ(λ) ∈ L(Y ), σ > 0, the mapping λ 7→ hσ(λ), λ ∈ Ωσ,ω is analytic in
L(Y ), (20) holds and ||hσ(λ)||L(Y ) ≤ Mσ|λ|r, λ ∈ Λσ,ω. Then the improper
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integral appearing in (21) converges in L(Y ) and the above arguments im-
ply that the mapping t 7→ Sζ(t), t ≥ 0 is continuous in L(Y ). Furthermore,
the mapping t 7→ Sζ(t), t > 0 is infinitely differentiable in L(Y ). Denote

Uζ(t)y =
∫ t

0 Sζ(s)y ds, t ≥ 0, y ∈ Y. Certainly, U ′ζ(t) = Sζ(t), t ≥ 0 in
L(Y ). The conditions (S2) and (S4) for (Sζ(t))t≥0 follows easily from the
previous equality whereas the condition (S3)’ follows from the equality (20)
by performing the inverse Laplace transform.

Notice that it is not clear in which way one can transfer the assertions
of [15, Theorem 2.8(iii)-(iv)] to non-scalar Volterra equations.

Theorem 7 Suppose k(t) is a kernel and satisfies (P1), (6) holds with some
ε0 ≥ 0, (M.1)-(M.3)’ hold for (Lp), (S(t))t∈[0,τ) is a (local) weak (A, k)-
regularized C-pseudoresolvent family, ω ≥ max(abs(k), ε0), m ∈ N and

Y
X

= X. Set, for every ε ∈ (0, 1) and a corresponding Kε > 0,

Fε,ω :=
{
λ ∈ C : Re(λ) ≥ − lnωL(Kε|Im(λ)|) + ω

}
.

Assume that, for every ε ∈ (0, 1), there exist Cε > 0, Mε > 0, an open
neighborhood Oε,ω of the region Gε,ω = {λ ∈ C : Re(λ) ≥ ω, k̃(λ) 6=
0} ∪ {λ ∈ Fε,ω : Re(λ) ≤ ω}, and analytic mappings fε : Oε,ω → C,
gε : Oε,ω → L(Y,X) and hε : Oε,ω → L(X) such that:

(i) fε(λ) = k̃(λ), Re(λ) > ω, gε(λ) = Ã(λ), Re(λ) > ω, hε(λ)C =
Chε(λ), Re(λ) > ω,

(ii) hε(λ)(I − gε(λ))y = fε(λ)Cy, y ∈ Y, λ ∈ Fε,ω,

(iii) ||hε(λ)||L(X) ≤ Mε(1 + |λ|)meε|Re(λ)|, λ ∈ Fε,ω, Re(λ) ≤ ω and
||hε(λ)||L(X) ≤Mε(1 + |λ|)m, Re(λ) ≥ ω.

Then (S(t))t∈[0,τ) is of class CL. Assume (S(t))t∈[0,τ) is an (A, k)-regularized
C-resolvent family and, in addition to the above assumptions, hε(λ) ∈ L(Y )
for all ε ∈ (0, 1) and λ ∈ Oε,ω. Let the mapping λ 7→ hε(λ), λ ∈ Oε,ω be
analytic in L(Y ) and let:

(ii)’ (I − gε(λ))hε(λ)y = fε(λ)Cy, y ∈ Y, λ ∈ Fε,ω,

(iii)’ ||hε(λ)||L(Y ) ≤Mε(1 + |λ|)meε|Re(λ)|, λ ∈ Fε,ω, Re(λ) ≤ ω and
||hε(λ)||L(Y ) ≤Mε(1 + |λ|)m, Re(λ) ≥ ω for all ε ∈ (0, 1).

Then, for every compact set K ⊆ (0, τ), there exists hK > 0 such that

sup
t∈K, p∈N0

∥∥∥hpK dp

dtpS(t)

Lpp

∥∥∥
L(Y )

<∞.
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Proof. Combining Theorem 2(i), Cauchy formula, the proof of [1, Theo-
rem 2.5.1] and (iii), it follows that there exists an exponentially bounded,
weak (A, k ∗ gm+2)-regularized C-pseudoresolvent family (Sm+2(t))t≥0 such
that, for every ε ∈ (0, 1), x ∈ X and t ∈ [0, τ), one has Sm+2(t)x =

1
2πi

∫ ω+i∞
ω−i∞ eλtλ−m−2hε(λ)x dλ. Making use of Proposition 1(ii), we get that

Sm+2(t)x =
∫ t

0 gm+2(t−s)S(s)x ds, x ∈ Y X
= X. On the other hand, (M.3)’

holds for (Ln), which implies by [13, (4.5), (4.7), p. 56] that
limλ→+∞(M(λ)/λ) = 0 and limn→∞(n/mn) = 0. Hence, there exists c > 0
such that M(λ) ≤ cλ, λ ≥ 0 and

ω′L(t)

ωL(t)
=

∞∑
n=1

ntn−1

Mn

∞∑
n=0

tn

Mn

≤ c

∞∑
n=1

tn−1

Mn−1

∞∑
n=0

tn

Mn

= c, t ≥ 0. (22)

It is evident that, for every ε ∈ (0, 1), there exists a unique number aε > 0
such that ωL(Kεaε) = 1. Define now Γε := Γ1,ε ∪ Γ2,ε ∪ Γ3,ε, where Γ1,ε :=
{− ln(Kεs) + ω + is : s ∈ (−∞,−aε]}, Γ2,ε := {ω + is : s ∈ [−aε, aε]} and
Γ3,ε := {− ln(Kεs) + ω + is : s ∈ [aε,∞)}. Set, for every ε ∈ (0, 1) and
x ∈ X,

Sm+2,ε(t)x :=
1

2πi

∫
Γε

eλt
hε(λ)x

λm+2
dλ, t > ε. (23)

By the proof of [13, Proposition 4.5, p. 58], we have ωL(s) ≤ 2eM(2s), t ≥ 0
and lnωL(Kεs) ≤ ln 2 + M(2Kεs), s ≥ 0. Using (22) and (iii), we obtain
that there exists cε > 0 such that, for every x ∈ X and t > ε :∥∥Sm+2,ε(t)

∥∥
L(X)

≤ 1

2π

(
cε + 2e(ω+ε)t

×
∫ ∞
aε

ωL(Kεs)
ε−t(1 + ω + s+ ln 2 + 2Kεcs)

−2ds
)
,

which implies that the improper integral appearing in (23) is convergent
and Sm+2,ε(t) ∈ L(X), t > ε. An elementary contour argument shows that
Sm+2(t) = Sm+2,ε(t), t > ε. Making use of the dominated convergence the-
orem, we obtain similarly that the mapping t 7→ Sm+2(t), t > 0 is infinitely
differentiable in L(X) with

dn

dλn
Sm+2(t)x =

1

2πi

∫
Γε

eλtλn−m−2hε(λ)x dλ, t > ε, x ∈ X, n ∈ N0. (24)
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Suppose K ⊆ (0, τ) is compact. Let k ∈ N, ε ∈ (0, 1) and let inf K−ε > k−1.
Then there exists c′ε > 1 such that | − lnωL(Kεs) + ω + is| ≤ c′εs, s ≥ aε.
Let hK ∈ (0,Kε/c

′
ε). By (M.2), it follows inductively that

Mkn ≤ Ak−1Hk(k+1)/2Mk
n , n ∈ N0. (25)

Now one can apply (24)-(25) in order to see that there exists cK > 0 such
that, for every n ∈ N0 and t ∈ K :∥∥∥hnK dn

dλnSm+2(t)

Mn

∥∥∥
L(X)

≤ cK
2π

(
ωL
(
hK(ω + aε)

)
+ 2e(ω+ε)t

∞∫
aε

ωL
(
Kεs

)−1/k

(
c′εhKs

)n
Mn

s−2 ds
)

≤ cK
2π

(
ωL
(
hK(ω + aε)

)
+ 2e(ω+ε)t

∞∫
aε

M
1/k
kn

Mn

(
c′εhKs

)n
s−2(

Kεs
)n ds

)
≤ cK

2π

(
ωL
(
hK(ω + aε)

)
+

2

aε
e(ω+ε)tA(k−1)/kH(k+1)/2

(c′εhK
Kε

)n)
≤ cK

2π

(
ωL
(
hK(ω + aε)

)
+

2

aε
e(ω+ε)tA(k−1)/kH(k+1)/2

)
.

This implies that the set {(hnK
dn

dtnSm+2(t)/Mn) : t ∈ K, n ∈ N0} is bounded

in L(X). As a consequence of the condition (M.2), the set {(hnK
dn

dtnS(t)/Mn) :
t ∈ K, n ∈ N0} is also bounded in L(X), which shows that (S(t))t∈[0,τ) is

of class CL. The remaining part of proof follows exactly in the same way as
in the proof of Theorem 6.

Note that (M.3)’ does not hold if Lp = p!1/p and that the preceding
theorem remains true in this case; then, in fact, we obtain the sufficient
conditions for the generation of real analytic C-(pseudo)resolvents. Furthe-
more, [7, Theorem 2.24] can be reformulated in non-scalar case and the set
Fε,ω appearing in the formulation of Theorem 7 can be interchanged by the
set Fε,ω,ρ = {λ ∈ C : Re(λ) ≥ −Kε|Im(λ)|1/ρ +ω}, provided Lp = p!ρ/p and
1 ≤ ρ <∞.

Several examples of (differentiable) (a,C)-regularized resolvent families
of class CL (CL) can be found in [3], [15], [24] and [28]. Combining with
Corollary 1(i) and the following observation, one can simply construct ex-
amples of (differentiable, in general, non-analytic) A-regularized C-resolvent
families of class CL (CL). Let (S(t))t∈[0,τ) be an (a,C)-regularized resolvent

family of class CL (CL) and let the assumptions of Theorem 3 hold with
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Y = [D(A)] and B1 = 0. Assume, in addition, C−1B0 ∈ C∞([0, τ) : L(X)) is
of class CL (CL), with the notion understood in the sense of Definition 3(ii),
and (C−1B0)(i)(0) = 0, i ∈ N0. Denote by L the solution of the equation
L = K0 + dK0 ∗ L in BVloc([0, τ) : L(X)), where K0(t) = (S ∗ C−1B0)(t),
t ∈ [0, τ). Let A(t) = a(t)A + B0(t), t ∈ [0, τ) and let (R(t))t∈[0,τ) be an
A-regularized C-resolvent family given by Corollary 2.13(i). Then one can
straightforwardly check that L ∈ C∞([0, τ) : L(X)) is of class CL (CL) and
that L(i)(0) = 0, i ∈ N0. Taking into account the proof of [23, Theorem 6.1]
(cf. also [23, (6.20), p. 160] and [23, Corollary 0.3, p. 15]), it follows that
R(n)(t) = S(n)(t) +

∫ t
0 L

(n+1)(t − s)S(s) ds, t ∈ [0, τ), n ∈ N0. This implies
that (R(t))t∈[0,τ) is of class CL (CL). Using the same method, we are in a
position to construct examples of analytic A-regularized C-resolvent families
(in general, the angle of analyticity of such resolvent families may be strictly
greater than π/2, cf. [2, Theorem 3.3] and [16, Theorem 2.4.19]):

Example 2 The isothermal motion of a one-dimensional body with small
viscosity and capillarity ([4], [8], [29]) is described, in the simplest situation,
by the system: 

ut = 2auxx + bvx − cvxxx,
vt = ux,
u(0) = u0, v(0) = v0,

where a, b and c are positive constants. The associated matrix of polynomials

(cf. [17] and [28]-[29] for more details) P (x) ≡
[
−2ax2 ibx+ icx3

ix 0

]
is

Shilov 2-parabolic. Let X = Lp(R)×Lp(R) (1 ≤ p <∞) be equipped with the
norm ||(f, g)|| := ||f ||Lp(R) + ||g||Lp(R), f, g ∈ Lp(R). Then it is well known
that the operator P (D), considered with its maximal distributional domain,
is closed and densely defined in X.

(i) ([17]) Let a2−c < 0 and r′ ≥ 1/2. Then P (D) is the integral generator
of an exponentially bounded, analytic (1−∆)−r

′
-regularized semigroup

(Sr′(t))t≥0 of angle arctan(a/
√
c− a2).

(ii) ([29]) Let a2−c = 0 and r′ > 3/4. Then P (D) is the integral generator
of a bounded analytic (1 − ∆)−r

′
-regularized semigroup (Sr′(t))t≥0 of

angle π/2.

(iii) ([17]) Let a2−c > 0 and r′ ≥ 1/2. Then P (D) is the integral generator
of an exponentially bounded, analytic (1−∆)−r

′
-regularized semigroup

(Sr′(t))t≥0 of angle π/2.
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Assume, in any of these cases, ψ1, ψ2 ∈ S2r′,1(R), where the fractional
Sobolev space S2r′,1(R) is defined in the sense of [22, Definition 12.3.1, p.
297], B1 = 0, B0(z)

(
f
g

)
= z
(
ψ1∗f
ψ2∗g

)
and K(z)

(
f
g

)
= (Sr′ ∗ (1−∆)r

′
B0)(z)

(
f
g

)
,

z ∈ Σα, f, g ∈ Lp(R), where α = arctan(a/
√
c− a2), provided that (i) holds,

resp. α = π/2, provided that (ii) or (iii) holds. Let K ⊆ Σα be compact and
let γ ∈ (0, α) satisfy K ⊆ Σγ . Then there exist

δ ∈
(

0,
1

(1 + supK)
(
1 +

∥∥(1−∆)r′ψ1

∥∥
L1(R)

+
∥∥(1−∆)r′ψ2

∥∥
L1(R)

)),
Mγ ≥ 1, ωγ ≥ 0 and ω′γ > ωγ such that∥∥∥S(−1)(z) ≡

∫ z

0
S(s) ds

∥∥∥
L(X)

≤Mγ |z|eωγRe(z) ≤ δeω
′
γRe(z), z ∈ Σγ .

Hence, ‖
∫ z

0 S
(−1)(z − s)S(−1)(s) ds‖L(X) ≤ δ2|z|eω′γRe(z), z ∈ Σγ . Define

(Kn(z)) by K0(z) := K(z), z ∈ Σα and Kn+1(z) :=
∫ z

0 dK(s)Kn(z −
s), z ∈ Σα, n ∈ N0. Then, for every z ∈ Σα and n ∈ N, Kn(z) =
(K ′ ∗ · · · ∗K ′︸ ︷︷ ︸

n

∗K)(z). By Young’s inequality,

∥∥K ′1(z)
∥∥
L(X)

≤ δ2|z|
(∥∥(1−∆)r

′
ψ1

∥∥
L1(R)

+
∥∥(1−∆)r

′
ψ2

∥∥
L1(R)

)2
eω
′
γRe(z),

for any z ∈ Σγ . Going on inductively, we obtain∥∥K ′n+1(z)
∥∥
L(X)

≤ δn+1|z|n
(∥∥(1−∆)r

′
ψ1

∥∥
L1(R)

+
∥∥(1−∆)r

′
ψ2

∥∥
L1(R)

)n+1
eω
′
γRe(z),

for any z ∈ Σγ and n ∈ N0. Taken together, the preceding estimate and the
Weierstrass theorem imply that the function z 7→

∫ z
0

∑∞
n=0K

′
n(z−s)S(s) ds,

z ∈ Σα is analytic and that there exist M ′γ ≥ 1 and ω′′γ > ω′γ such that

||
∫ z

0

∑∞
n=0K

′
n(z − s)S(s) ds||L(X) ≤ M ′γe

ω′′γRe(z), z ∈ Σγ . Let (Rr′(t))t≥0 be
an A-regularized C-resolvent family given by Corollary 1(i). Since R(t) =
S(t) +

∫ t
0

∑∞
n=0K

′
n(t − s)S(s) ds, t ≥ 0, we have that (Rr′(t))t≥0 is an ex-

ponentially bounded, analytic 1-regular A-regularized C-resolvent family of
angle α. On the other hand, P (D) does not generate a strongly continuous
semigroup in L1(R)× L1(R) ([8]) and ρ(P (D)) 6= ∅ ([17]). Combining this
with Theorem 3 and Proposition 4, we get that there does not exist a local
A-regularized pseudoresolvent family provided p = 1.
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Example 3 Let X = Lp(R), 1 ≤ p ≤ ∞. Consider the next multiplication
operators with maximal domain in X :

Af(x) =: 2xf(x), Bf(x) :=
(
−x4 + x2 − 1

)
f(x), x ∈ R.

Notice that D(B) ⊆ D(A). Let Y := [D(B)] and let A ∈ L1
loc([0,∞) :

L(Y,X)) be given by A(t)f := Af + tBf, t ≥ 0, f ∈ D(B). Assume, further,
s ∈ (1, 2), δ = 1/s, Lp = p!s/p and Kδ(t) = L−1(exp(−λδ))(t), t ≥ 0, where
L−1 denotes the inverse Laplace transform. Then there exists a global (not
exponentially bounded) (A,Kδ)-regularized resolvent family. Towards this
end, it suffices to show that, for every τ > 0, there exists a local (A,Kδ)-
regularized resolvent family on [0, τ). Denote by M(t) the associated function
of the sequence (Lp) and denote Λα,β,γ = {λ ∈ C : Re(λ) ≥ γ−1M(αλ) +
β}, α, β, γ > 0. It is obvious that there exists Cs > 0 such that M(λ) ≤
Cs|λ|1/s, λ ∈ C. Given τ > 0 and d > 0 in advance, one can find α > 0 and
β > 0 such that τ ≤ cos(δπ/2)/(Csα

1/s) and that |λ2−2xλ+(x4−x2 +1)| ≥
d, λ ∈ Λα,β,1, x ∈ R. Denote by Γ the upwards oriented frontier of the
ultra-logarithmic region Λα,β,1, and define, for every f ∈ X, x ∈ R and
t ∈ [0, cos(δπ/2)/(Csα

1/s)),

(
Sδ(t)f

)
(x) :=

1

2πi

∫
Γ

λ2eλt−λ
δ
f(x)

λ2 − 2xλ+ (x4 − x2 + 1)
dλ.

Then one can simply prove that (Sδ(t))t∈[0,τ) is a local (A,Kδ)-regularized
resolvent family and that the mapping t 7→ Sδ(t), t ≥ 0 is infinitely differen-
tiable in the strong topologies of L(X) and L(Y ). Moreover, in both spaces,
L(X) and L(Y ),

( dp
dtp

Sδ(t)f
)

(x) =
1

2πi

∫
Γ

λp+2eλt−λ
δ
f(x)

λ2 − 2xλ+ (x4 − x2 + 1)
dλ,

for any p ∈ N0, x ∈ R and f ∈ X. This implies that, for every compact set
K ⊆ [0,∞), there exists hK > 0 such that

sup
t∈K, p∈N0

(∥∥∥hpK dp

dtpSδ(t)

Lpp

∥∥∥
L(X)

+
∥∥∥hpK dp

dtpSδ(t)

Lpp

∥∥∥
L(Y )

)
<∞.

In particular, (Sδ(t))t≥0 is s-hypoanalytic. Define now the function K1/2(t)

by K1/2(t) := L−1(exp(−λ1/2))(t), t ≥ 0. Then we obtain similarly that
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there exists τ0 > 0 such that there exists a local 2-hypoanalytic (A,K1/2)-
regularized resolvent family on [0, τ0). Note also that the use of Fourier mul-
tipliers enables one to reveal that the preceding conclusions remain true in
the case of the corresponding differential operators ±A(t), where

A(t)f = −tf ′′′′ − tf ′′ − 2if ′ − tf, t ≥ 0, 1 < p <∞, f ∈ Y = S4,p(R).

Finally, the non-scalar equations on the line

u(t) =

∫ ∞
0

A(s)u(t− s) ds+

∫ t

−∞
k(t− s)g′(s) ds,

where g : R → X, A ∈ L1
loc([0,∞) : L(Y,X)), A 6= 0, k ∈ C([0,∞)), k 6= 0,

and

u(t) = f(t) +

∫ t

0
A(t− s)u(s) ds, t ∈ (−τ, τ),

where τ ∈ (0,∞], f ∈ C((−τ, τ) : X) and A ∈ L1
loc((−τ, τ) : L(Y,X)),

A 6= 0 can be treated without any substantial changes ([18]).
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[14] M. Kostić. (a, k)-regularized C-resolvent families: regularity and local
properties. Abstr. Appl. Anal. 2009, Article ID 858242, 27 pages, 2009.
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