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Abstract

An algorithm is provided to determine the minimal subspace which
is invariant with respect to some commutative matrices and which
includes a given subspace. Reachability criteria are obtained for 2D
continuous-discrete time-variable Attasi type systems by using a suit-
able 2D reachability Gramian. Necessary and sufficient conditions of
reachability are derived for LTI 2D systems. The presented algorithm
is used to determine the subspace of the reachable states of a 2D system.
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1 Introduction

The multidimensional (nD) systems form a distinct and important branch
of Systems and Control Theory.

In various problems such as signal and image processing, seismology and
geophysics, control of multipass processes, iterative learning control synthesis
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[8] or repetitive processes [5], the suitable mathematical model is represented
by the hybrid (continuous-discrete) multidimensional systems ([7], [10], [11]).

The concepts of controllability and observability, introduced by Kalman
for 1D systems were extended to 2D systems for Roesser [13], Fornasini and
Marchesini [4], and Attasi [1] models; in order to keep their relationship with
minimality, new concepts of modal controllability and modal observability
were introduced in [6].

The Geometric Approach is a trend in Systems and Control Theory devel-
oped to achieve a better and neater investigation of the structural properties
of the linear dynamical systems and to provide elegant solutions of problems
of controller synthesis such as decoupling and pole-assignment problems for
linear time-invariant multivariable systems. The geometric approach leads
to a very clear notion of minimality and to geometric conditions for control-
lability, reachability, observability, constructibility and minimality of linear
systems. The cornerstone of this approach is the concept of invariance of a
subspace with respect to a linear transformation.

In 1969 Basile and Marro [2] introduced and studied the basic geomet-
ric tools called controlled and conditioned invariant subspaces which were
applied to disturbance rejection or unknown-input observability. In 1970
Wonham and Morse [15] applied a maximal controlled invariant method to
decoupling and noninteracting control problems and later on Wonham’s book
[14] imposed the name of ”(A,B)-invariant” instead of ”(A,B)-controlled in-
variant”. Basile and Marro, opened the way to new applications by the
robust controlled invariant and the emphasis of the duality [3], [9]. The
LQ problem was also studied in a geometric framework by Silverman, Hau-
tus, Willems. Further contributions are due to numerous researchers among
which Anderson, Akashi, Bhattacharyya, Kucera, Malabre, Molinari, Pear-
son, Francis and Schumacher.

In this paper a class of 2D continuous-discrete time-variable linear sys-
tems is studied, which is related to Attasi’s 2D discrete model and represents
the extension to time-variable framework of the hybrid systems introduced
in [12].

In Section 2 an algorithm is proposed which determines the minimal
(A1, A2)-invariant subspace which includes a given subspace B of a space
Kn, where A1 and A2 are commutative matrices over a field K.

The state and output formulæ for these systems are established in Section
3 and the notions of complete reachability and complete controlability are
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defined. These properties are characterized by means of the full rank of a
suitable 2D reachability Gramian.

Section 4 is devoted to time-invariant 2D continuous-discrete systems and
a list of criteria of reachability is provided. The subspace of the reachable
states of a system Σ = (A1, A2;B) is characterized as the minimal (A1, A2)-
invariant subspace which includes the subspace ImB.

In Section 5 the algorithm presented in Section 2 is used to determine
the subspace of reachable states. A MATLAB Program and an example
illustrate the proposed algorithm.

2 Minimal invariant subspaces with respect to two
matrices

Let K be a field and A1, A2 ∈ Kn×n commutative matrices.

Definition 1 A subspace V of Kn is said to be (A1, A2)-invariant if

∀v ∈ V, A1v ∈ V and A2v ∈ V. (1)

Let B be a proper subspace of Kn. The intersection of the (A1, A2)-
invariant subspaces which include B is the minimal (A1, A2)-invariant sub-
space which includes B. We denote it minI(A1, A2;B).

We consider the subspaces Ak
1A

l
2V = {Ak

1A
l
2v|v ∈ V, k, l ∈ N}, A0

iV = V
and

∑
i∈I

Vi = {
∑
j∈J

vj |vj ∈ Vj , J ⊂ I, J finite sets}, where Vi, i ∈ I are

subspaces of Kn, and the set I is at most countable.

Proposition 1 The minimal (A1, A2)-invariant subspace which includes B
is

minI(A1, A2;B) =
∞∑
i=0

∞∑
j=0

Ai
1A

j
2B. (2)

Proof: Let us denote by W the subspace
∞∑
i=0

∞∑
j=0

Ai
1A

j
2B. Then v ∈ W if

and only if v =
∑
i∈I

∑
j∈J

Ai
1A

j
2vij with vij ∈ B and I, J ⊂ N finite sets. Then

A1v =
∑
i∈I

∑
j∈J

Ai+1
1 Aj

2vij hence A1v ∈ W and similarly A2v ∈ W. Obviously

B ⊂ W, hence W is an (A1, A2)-invariant subspace which includes B.
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Now, let V be an (A1, A2)-invariant subspace which includes B. Then

Ai
1A

j
2B ⊂ V, ∀i, j ∈ N, hence

∞∑
i=0

∞∑
j=0

Ai
1A

j
2B ⊂ V, i.e. the subspace W =

∞∑
i=0

∞∑
j=0

Ai
1A

j
2B is the minimal such subspace.

Proposition 2 The minimal (A1, A2)-invariant subspace which includes B
is

minI(A1, A2;B) =
n−1∑
i=0

n−1∑
j=0

Ai
1A

j
2B. (3)

Proof: Let us denote by V the subspace in the right-hand member of (3).
Obviously, by Proposition 1, V ⊂ minI(A1, A2;B).

Let pk(s) = det(sI −Ak) = sn + an−1,ks
n−1 + · · ·+ a1,ks+ a0,k, k = 1, 2

be the characteristic polynomial of the matrix Ak, k = 1, 2. By Hamilton-
Cayley Theorem, each matrix verifies its characteristic equation, hence

An
k = −an−1,kA

n−1
k − · · · − a1,kAk − a0,kI, k = 1, 2. (4)

Then, for any vector v ∈ B, An
kv = −an−1,kA

n−1
k v−· · ·−a1,kAkv−a0,kv, k =

1, 2. We can prove by induction and by right-multiplication of (4) by
Al

1A
q
2v, l, q ∈ N that Ai

1A
j
2v ∈ V, ∀i, j ≥ n, i.e. minI(A1, A2;B) ⊂ V,

hence minI(A1, A2;B) = V.
The following algorithm determines recurrently the subspace

minI(A1, A2;B).

Algorithm 1
Stage 1. Construct the sequence of subspaces (S0,j)0≤j≤n of the space

X = Kn:

S0,0 = B; (5)
S0,j = B +A2S0,j−1, j = 1, ..., n; (6)

Stage 2. Determine j0, the first index in {0, 1, . . . , n− 1} which verifies

S0,j0+1 = S0,j0 . (7)

If j0 = n− 1, then minI(A1, A2;B) = Kn. STOP
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If j0 < n− 1, GO TO Stage 3.
Stage 3. Construct the sequence of subspaces (Si,j0)0≤i≤n of the space

X = Kn:

Si,j0 = Si−1,j0 +A1Si−1,j0 . (8)

Stage 4. Determine i0, the first index in {0, 1, . . . , n− 1} which verifies

Si0+1,j0 = Si0,j0 . (9)

Then minI(A1, A2;B) = Si0,j0 . STOP

Proof. Let us consider the doubly-indexed sequence of subspaces

S̃i,j =

(
i∑

k=0

Ak
1

) j∑
l=0

Al
2

B, i, j ∈ {0, 1, . . . , n}, (10)

where A0
kB = B, k = 1, 2.

By Proposition 1, S̃i,j ⊆ minI(A1, A2;B) ∀i, j and by Proposition 2,
S̃n−1,n−1 = minI(A1, A2;B). Moreover

S̃i,j ⊆ S̃k,l, ∀k ≥ i, l ≥ j. (11)

Obviously S̃0,0 = A0
1A

0
2B = B = S0,0 and, for any j ∈ {0, 1, . . . , n − 1},

S̃0,j =
j∑

l=0

Al
2B = B +A2

j−1∑
l=0

Al
2B = B +A2S̃0,j−1.

Then, if we assume that S̃0,j−1 = S0,j−1, we get by (6) the following
equality:

S̃0,j = S0,j , ∀j ∈ {0, 1, . . . , n− 1}, (12)

hence

S0,j ⊆ S0,j+1, ∀j ∈ {0, 1, . . . , n− 1}, (13)

Using Hamilton-Cayley Theorem (see (4)) and (13) one obtains S0,n =
S̃0,n = S̃0,n−1 = S0,n−1, hence j0 ≤ n− 1.

In the chain of subspaces

{0} ⊂ S0,0 ⊆ S0,1 ⊆ ... ⊆ S0,k−1 ⊆ S0,k ⊆ ... ⊆ S0,n−1 = S0,n,
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dim S0,0 = dimB ≥ 1 since B is a proper subspace of X = Kn. If
j0 = n− 1 is the first index which verifies (7), we have

1 ≤ dimS0,0 < dimS0,1 < . . . < dimS0,n−1 ≤ n
hence dimS0,n−1 = n. Therefore Kn = S0,n−1 ⊆ minI(A1, A2;B) ⊆ Kn,
hence minI(A1, A2;B) = Kn.

If j0 < n − 1 and S0,j0+1 = S0,j0 one obtains by (6) S0,j0+2 = B +
A2S0,j0+1 = B +A2S0,j0 = S0,j0+1 = S0,j0 .

Let us assume that S0,j = S0,j0 for some j ∈ {j0 + 1, j0 + 2, . . . , n − 1}.
Then S0,j+1 = B +A2S0,j = B +A2S0,j0 = S0,j0+1 = S0,j0 hence

S0,j = S0,j0 , ∀j ∈ {j0 + 1, j0 + 2, . . . , n}. (14)

Now, if we assume that S̃i−1,j0 = Si−1,j0 , for some i ∈ {1, 2, . . . , n − 1},
we get by (10),(8) and by the equality V1 + V2 + V3 = (V1 + V2) + (V2 + V3)
for any subspaces Vk, k = 1, 2, 3 the following equalities:

S̃i,j0 =
i∑

k=0

j0∑
l=0

Ak
1A

l
2B =

i−1∑
k=0

j0∑
l=0

Ak
1A

l
2B +

i∑
k=1

j0∑
l=0

Ak
1A

l
2B =

i−1∑
k=0

j0∑
l=0

Ak
1A

l
2B +

A1

i−1∑
k=0

j0∑
l=0

Ak
1A

l
2B = S̃i−1,j0 +A1S̃i−1,j0 = Si−1,j0 +A1Si−1,j0 = Si,j0 ,

hence S̃i,j0 = Si,j0 , ∀i ∈ {0, 1, . . . , n}. It follows by (11) that Si,j0 ⊆ Si+1,j0

and by Hamilton-Cayley Theorem that Sn−1,j0 = Sn,j0 .
Now, let us consider the chain of subspaces

{0} ⊂ S0,j0 ⊆ S1,j0 ⊆ ... ⊆ Sn−1,j0 = Sn,j0 ⊂ Rn.

Since dimS0,j0 ≥ dimS0,0 ≥ 1, if i0 = n − 1 we obtain as above that
dimSn−1,j0 = n, hence Sn−1,j0 = minI(A1, A2;B) = Kn.

If i0 < n − 1, we have by S̃i0+1,j0 = Si0+1,j0 = Si0,j0 = S̃i0,j0 and by (9)
S̃i0+2,j0 = S̃i0+1,j0 + A1S̃i0+1,j0 = S̃i0,j0 + A1S̃i0,j0 = S̃i0+1,j0 = S̃i0,j0 . Let
us assume that S̃i,j0 = S̃i0,j0 for some i ∈ {i0 + 1, i0 + 2, . . . , n − 1}. Then,
again by (9) S̃i+1,j0 = S̃i,j0 + A1S̃i,j0 = S̃i0,j0 + A1S̃i0,j0 = S̃i0+1,j0 = S̃i0,j0 ,
therefore

S̃i,j0 = Si0,j0 , ∀i ∈ {i0 + 1, i0 + 2, . . . , n− 1}. (15)

From (9), (14) and (15) we get
j∑

l=0

Al
2B =

j0∑
l=0

Al
2B, ∀j ∈ {j0 + 1, j0 +

2, . . . , n} and
i∑

k=0

j∑
l=0

Ak
1A

l
2B =

i∑
k=0

j0∑
l=0

Ak
1A

l
2B ∀i ∈ {i0 + 1, i0 + 2, . . . , n}.
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Then, ∀i ∈ {i0 + 1, i0 + 2, . . . , n} and ∀j ∈ {j0 + 1, j0 + 2, . . . , n}, one

obtains S̃i,j =
i∑

k=0

j∑
l=0

Ak
1A

l
2B =

i∑
k=0

Ak
1

 j∑
l=0

Al
2B

 =
i∑

k=0

Ak
1

 j0∑
l=0

Al
2B

 =

i0∑
k=0

j0∑
l=0

Ak
1A

l
2B = Si0,j0 , hence

S̃i,j = Si0,j0 , ∀i ∈ {i0 + 1, i0 + 2, . . . , n}, ∀j ∈ {j0 + 1, j0 + 2, . . . , n}.

By Proposition 2, we obtain

minI(A1, A2;B) = S̃n−1,n−1 = Si0,j0 , q.e.d.

The equality above proves the following result:

Proposition 3 The minimal (A1, A2)-invariant subspace which includes B
is

minI(A1, A2;B) = Si0,j0 =
i0∑

i=0

j0∑
j=0

Ai
1A

j
2B. (16)

3 The state space representation of the
2D continuous-discrete systems

In this section we consider the linear spaces X = Rn, U = Rm and Y =
Rp, called respectively the state, input and output spaces. The time set is
T = R × Z. By (s, l) < (t, k) for (s, l), (t, k) ∈ T we mean s ≤ t, l ≤ k and
(s, l) 6= (t, k) and (s, l) ≤ (t, k) means s ≤ t, l ≤ k.

Definition 2 A two-dimensional continuous-discrete linear system (2Dcd)
is a quintuplet Σ = (A1(t, k), A2(t, k), B(t, k), C(t, k), D(t, k)) ∈ Rn×n ×
Rn×n×Rn×m×Rp×n×Rp×m with A1(t, k)A2(t, k) = A2(t, k)A1(t, k) ∀(t, k) ∈
T , where all matrices are continuous with respect to t ∈ R for any k ∈ Z;
the state space representation of Σ is given by the following state and output
equations (where ẋ(t, k) = ∂x

∂t (t, k)).

ẋ(t,k+1)=A1(t,k+1)x(t,k+1)+A2(t+ 1,k)ẋ(t,k)
−A1(t, k)A2(t, k)x(t, k) +B(t, k)u(t, k) (17)
y(t, k) = C(t, k)x(t, k) +D(t, k)u(t, k). (18)
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We denote by Φ(t, t0; k) or ΦA1(t, t0; k) the (continuous) fundamental
matrix of A1(t, k) with respect to t ∈ R, for any fixed k ∈ Z. Φ(t, t0; k) has
the following properties, for any t, t0, t1 ∈ R:

i) d
dt

Φ(t, t0; k) = A1(t, k)Φ(t, t0; k),

ii) Φ(t0, t0; k) = In,

iii) Φ(t, t1; k)Φ(t1, t0; k) = Φ(t, t0; k),
iv) Φ(t, t0; k)−1 = Φ(t0, t; k),

.

v)Φ(t, t0; k)=I+
∞∑
l=1

∫ t

t0
A1(s1, k)

∫ s1

t0
A1(s2, k)· · ·

∫ sl−1

t0
A1(sl, k)dsldsl−1· · ·ds2ds1.

If A1 is a constant matrix, then Φ(t, t0; k) =
∑∞

l=0
Al

1(t−t0)l

l! = eA1(t−t0).
The discrete fundamental matrix F (t; k, k0) of the matrix A2(t, k) is de-

fined by

F (t; k, k0) =

{
A2(t,k−1)A2(t,k−2) · · ·A2(t,k0) for k > k0

In for k = k0

for any fixed t ∈ R.
If A2 is a constant matrix, then F (t; k, k0) = Ak−k0

2 .
Φ(t, t0; k) and F (s; l, l0) are commutative matrices for any t, t0, s ∈ R

and k, l, l0 ∈ Z since A1(t, k) and A2(t, k) are commutative matrices.

Definition 3 A vector x0 ∈ X is called the initial state of Σ at the moment
(t0, k0) ∈ T if, for any (t, k) ∈ T with (t, k) ≥ (t0, k0) the following conditions
hold:

x(t,k0)=Φ(t, t0;k0)x0, x(t0,k)=F (t0; k,k0)x0. (19)

For (t0, k0) ≤ (t, k) we denote by [t0, t; k0, k] the set [t0, t; k0, k] = [t0, t]×
{k0, k0 + 1, . . . , k}.

From [11], Proposition 2.3 we obtain:
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Proposition 4 The state of the system Σ at the moment (t, k) ∈ T deter-
mined by the control u(·, ·) : [t0, t; k0, k]→ U and by the initial state x0 ∈ X
is

x(t,k)=Φ(t,t0;k)F (t0;k,k0)x0+∫ t

t0

k−1∑
l=k0

Φ(t, s; k)F (s; k, l + 1)B(s, l)u(s, l)ds. (20)

By replacing the state x(t, k) given by (5) in the output equation (2) we
get

Proposition 5 The input-output map of the system Σ is given by the for-
mula

y(t, k) = C(t, k)Φ(t, t0; k)F (t0; k, k0)x0 +

+
∫ t

t0

k−1∑
l=k0

C(t, k)Φ(t, s; k)F (s; k, l + 1)B(s, l)u(s,l)ds+D(t,k)u(t,k). (21)

4 Reachability of time-variable
2D continuous-discrete systems

For the concept of reachability we need only the state equation (17),
hence a 2Dcd system can be reduced to the triplet Σ = (A1(t, k), A2(t, k), B(t, k)).

A triplet (t, k, x) ∈ R×Z×X is said to be a phase of Σ if x is the state
of Σ at the moment (t, k) (i.e. x = x(t, k), where x(t, k) is given by (20)).

Definition 4 A phase (t, k, x) of Σ is said to be reachable on [t0, t; k0, k] if
there exists a control u(·, ·) which transfers the phase (t0, k0, 0) to (t, k, x).

A phase (t0, k0, x) is said to be controllable on [t0, t; k0, k] if there exists
a control u(·, ·) which transfers the phase (t0, k0, x) to (t, k, 0).

If every phase is reachable (controllable) on [t0, t; k0, k], the system Σ is
said to be completely reachable (completely controllable) on [t0, t; k0, k].

Definition 5 For (t0, k0) ≤ (t, k) the matrix

RΣ(t0, t; k0, k)=

=
∫ t

t0

k−1∑
l=k0

Φ(t, s; k)F (s; k, l+1)B(s, l)B(s, l)TF (s; k, l + 1)T Φ(t, s; k)T ds, (22)

is called the reachability Gramian of Σ.
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We have proved in [11]:

Proposition 6 The set of the states of the system Σ which are reachable
on [t0, t; k0, k] is the subspace Xr = ImRΣ(t0, t; k0, k).

It follows that Σ is completely reachable on [t0, t; k0, k] iff ImRΣ(t0, t; k0, k) =
Xr = X = Rn, i.e. iff rankRΣ(t0, t; k0, k) = dim ImRΣ(t0, t; k0, k) = n. One
obtains

Theorem 1 The system Σ is completely reachable on [t0, t; k0, k] if and only
if

rankRΣ(t0, t; k0, k) = n.

5 Reachability of LTI 2D continuous-discrete sys-
tems

Let us consider an LTI system Σ = (A1, A2, B) ∈ Rn×n×Rn×n×Rn×m,
i.e. a system with A1, A2 and B constant matrices. In this case we can
consider the initial moment (t0, k0) = (0, 0) and the time set T = R+ ×Z+.
Then the state formula (20) and the input-output map (21) become

x(t, k) = eA1tAk
2x0 +

∫ t

0

k−1∑
l=0

eA1(t−s)Ak−l−1
2 Bu(s, l)ds, (23)

y(t, k) = CeA1tAk
2x0 +

∫ t

0

k−1∑
l=0

CeA1(t−s)Ak−l−1
2 Bu(s, l)ds+Du(t, k). (24)

Definition 6 The system Σ is called completely reachable if for any state
x ∈ X there exists (t, k) ∈ T such that the phase (t, k, x) is reachable on
[0, t; 0, k] .

We associate to Σ the reachability matrix CΣ =
[B A1B ... An−1

1 B A2B A1A2B... A
n−1
1 A2B... A

n−1
2 B A1A

n−1
2 B...An−1

1 An−1
2 B.]

Theorem 1 gives (see [11],Theorem 4.2)

Theorem 2 Σ = (A1, A2, B) is completely reachable if and only if

rankCΣ = n. (25)
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We can prove by Proposition 6:

Proposition 7 The set of all reachable states of Σ is Xr = ImCΣ.

It follows from Proposition 7 that a state x ∈ X is reachable iff there
exists v ∈ Rnm such that x = CΣv. Taking into account the defini-
tion of the controllability matrix CΣ, this is equivalent to the equality

x =
n−1∑
i=0

n−1∑
j=0

m∑
k=1

αijkA
i
1A

j
2bk, where αijk ∈ R are the corresponding compo-

nents of the vector v and bk, k ∈ {1, 2, . . . ,m} are the columns of the matrix
B. We denote by B the subspace B = ImB. Then Ai

1A
j
2bk ∈ Ai

1A
j
2B, ∀i, j ≥

0, k ∈ {1, 2, . . . ,m} and we get

Proposition 8 The set of all reachable states of Σ is the subspace

Xr =
n−1∑
i=0

n−1∑
j=0

m∑
k=1

Ai
1A

j
2B.

By Proposition 1 one obtains:

Proposition 9 The set of all reachable states of Σ is the minimal subspace
of X which is (A1, A2)-invariant and includes B.

An immediate consequence of Proposition 9 is the following

Theorem 3 Σ = (A1, A2, B) is completely reachable if and only if X is the
minimal subspace which is (A1, A2)-invariant and includes B.

Definition 7 Two systems Σ = (A1, A2, B,C) and Σ̃ = (Ã1, Ã2, B̃, C̃) are
said to be isomorphic if there exists a nonsingular matrix T ∈ Rn×n such
that

Ãi = T−1AiT, i = 1, 2; B̃ = T−1B, C̃ = CT. (26)

Theorem 4 A system Σ = (A1, A2, B) is not completely reachable if and
only if Σ is isomorphic to a system Σ̃ = (Ã1, Ã2, B̃) of the form

Ã1 =
[
A111 A121

0 A221

]
, Ã2 =

[
A112 A122

0 A222

]
,

B̃ =
[
B1

0

]
, (27)

with A111, A112 ∈ Rq×q, B1 ∈ Rq×m, q < n. The triplet Σ1 = (A111, A112, B1)
is completely reachable.
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Proof: We consider the direct sum decomposition of the state space X = Rn

as X = X1 ⊕X2 where Xr = X1. The partitions of the matrices in (27) are
obtained with respect to this decomposition, since by Proposition 8 Xr is
(A1, A2)-invariant and contains the columns of B; q is the dimension of the
subspace Xr.

We can derive other criteria of reachability.

Theorem 5 Σ = (A1, A2, B) is completely reachable if and only if there
is no common left eigenvector of matrices A1 and A2, orthogonal on the
columns of B.

Proof: Let us assume that there exists v ∈ Cn \ {0} such that ∃λ, µ ∈ C
with vTA1 = λvT , vTA2 = µvT and vTB = 0. Then vTAi

1A
j
2B = λiµjvTB =

0 ∀i, j ≥ 0, hence vTCΣ = 0, i.e. Σ = (A1, A2, B) is not completely
reachable.

Conversely, if Σ is not completely reachable, then there exists v ∈ Cn\{0}
such that vTCΣ = 0, hence the subspace S1 = {x ∈ Cn|xTCΣ = 0} contains
a vector v 6= 0. If x ∈ S1, then xTAi

1A
j
2B = 0 for any i, j = 0, n− 1 and by

Hamilton-Cayley Theorem this equality is true for any i, j ≥ 0. Then, for
any x ∈ S1, (AT

1 x)TAi
1A

j
2B = xTAi+1

1 Aj
2B = 0, ∀i, j ≥ 0, hence AT

1 x ∈ S1,
i.e. S1 is AT

1 -invariant; analogously, S1 is AT
2 -invariant. It follows that

S1 contains an eigenvector x of AT
1 ; let λ be the corresponding eigenvalue.

Let us consider the subspace S2 = {x ∈ X|AT
1 x = λx}. If x ∈ S2 then

AT
1 (AT

2 x) = AT
2 A

T
1 x = λAT

2 x, hence AT
2 x ∈ S2, that is S2 is AT

2 -invariant
and so is S3 = S1 ∩ S2. Then S3 contains an eigenvector w of AT

2 and since
S3 ⊂ S2, w is an eigenvector of AT

1 too. Moreover, since S3 ⊂ S1, we have
wTCΣ = 0 and particularly wTB = 0, hence w is a common left eigenvector
of A1 and A2 orthogonal on the columns of B.

The following theorem is an extension to 2Dcd systems of the Popov-
Hautus-Belevitch criterion of reachability.

Theorem 6 Σ = (A1, A2, B) is completely reachable if and only if for any
λ1, λ2 ∈ C

rank[ B λ1I −A1 λ2I −A2 ] = n. (28)

Proof: Obviously, the existence of λ1, λ2 ∈ C such that
rank[ B λ1I −A1 λ2I −A2 ] < n is equivalent to the existence of v ∈
Rn \ {0} such that vT [ B λ1I −A1 λ2I −A2 ] = 0 which means vTB =
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0, vTA1 = λ1v
T , vTA2 = λ2v

T that is, by Theorem 5, to the fact that Σ is
not completely reachable.

Since rank[λI − A] = n ∀λ ∈ C \ σ(A) for any n × n matrix A (where
σ(A) is the spectrum of A), one obtains by Theorem 6

Corollary 1 Σ = (A1, A2, B) is completely reachable if and only if (28)
holds ∀λ1 ∈ σ(A1) and λ2 ∈ σ(A2).

6 The determination of reachable states subspace

Let us consider an LTI system Σ = (A1, A2, B) ∈ Rn×n×Rn×n×Rn×m

with A1, A2 commutative matrices. We will adapt Algorithm 1 to determine
the reachable states subspace Xr of the system Σ.

Algorithm 2
Stage 1. Determine the controllability matrix CΣ.
Stage 2. Compute rankCΣ. If rankCΣ = n, then Xr = Rn. STOP
Stage 3. Construct the sequence of subspaces (S0,j)0≤j≤n−1 of the space

X = Rn:

S0,0 = ImB; (29)
S0,j = ImB +A2S0,j−1, j = 1, ..., n. (30)

Stage 4. Determine j0, the first index in {0, 1, . . . , n− 1} which verifies

S0,j0+1 = S0,j0 . (31)

If j0 = n− 1, then Xr = minI(A1, A2; ImB) = Rn. STOP
If j0 < n− 1, GO TO Stage 5.
Stage 5. Construct the sequence of subspaces (Si,j0)0≤i≤n of the space

X = Rn:

Si,j0 = Si−1,j0 +A1Si−1,j0 . (32)

Stage 6. Determine i0, the first index in {0, 1, . . . , n− 1} which verifies

Si0+1,j0 = Si0,j0 . (33)
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Then Xr = Si0,j0 . STOP
Proof. By Proposition 9, Xr = minI(A1, A2;B) where B = ImB.
If rankCΣ = n, then Σ is completely reachable (by Theorem 2), hence

Xr = Rn. Otherwise, minI(A1, A2;B) = Si0,j0 , hence Xr = Si0,j0 .

The Matlab program presented below and based upon the algorithm
above calculates the dimension and an orthonormal basis of the reachable
states subspace for the bi-dimensional case.

The instructions make use of the m-functions ima and sums included in
the Geometric Approach toolbox published by G. Marro and G. Basile at
http://www3.deis.unibo.it/Staff/FullProf/GiovanniMarro/geometric.htm;
this GA toolbox works with with Matlab 5, Matlab 6 and Matlab 7 and the
Control System Toolbox.

More precisely, given the matrices A1, A2 that commute and the matrix
B, the next commands will compute and display the dimension of a basis
and an orthonormal one in the space S = I(A1, A2;B).

% begin m-file
S = ima(B, 0); [n, dimInv] = size(S);
for j= 0:n-2 % first loop

S = sums(S, A2*S); [n, m1] = size(S);
if m1 == dimInv break; else dimInv = m1; end

end
for i= 0:n-2 % second loop

S = sums(S, A1*S);[n, m1] = size(S);
if dimInv == m1 break; else dimInv = m1; end

end
disp([’The reachable states subspace has the dimension ’, ...
num2str(dimInv)])
disp(’An orthonormal basis for the reachable states subspace
is:’)
disp(S)
% end m-file

For example, given the matrices

A1 =


1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

 , A2 =


0 0 0 0
0 0 0 0
0 0 3 0
0 0 0 4

 , B =


1 1
0 2
1 0
0 0

 ,
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the above Matlab program gives the answers:

The reachable states subspace has the dimension 3
An orthonormal basis for the reachable states subspace is:

0.7071 0.2357 - 0.6667
0 0.9428 0.3333

0.7071 -0.2357 0.6667
0 0 0 .

7 Conclusion

The minimal subspace which is invariant with respect to some commuta-
tive matrices and which includes a given subspace is determined by a suitable
algorithm. This algorithm is applied to determine the subspace of the reach-
able states of a hybrid 2D system. The state space representation of these
systems is studied and reachability criteria are obtained. Necessary and suf-
ficient conditions of reachability are derived for LTI 2D systems as well as
the characterization of the reachable states subspace.

These results and the proposed algorithms can be extended to nD sys-
tems with n > 2.

References

[1] S. Attasi, Introduction d’une classe de systèmes linéaires reccurents à
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[6] S.–Y. Kung, B.C. Lévy, M. Morf and T. Kailath, New Results in 2-D
Systems Theory, Part II: 2-D State-Space Models-Realizations and the
Notions of Controllability, Observability and Minimality, Proc. of the
IEEE 6, 1977, pp. 945–961.

[7] T. Kaczorek, Controllability and minimum energy control of 2D
continuous-discrete linear systems, Appl. Math. and Comp. Sci., 5, 1,
1995, pp. 5-21.

[8] J. Kurek and M.B. Zaremba, Iterative learning control synthesis on 2D
system theory, IEEE Trans. Aut. Control 1, 1993, pp. 121–125.

[9] G. Marro, Teoria dei sistemi e del controlo, Zanichelli, Bologna, 1989
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