
STABILITY ANALYSIS IN A MODEL

FOR STEM-LIKE HEMATOPOIETIC

CELLS DYNAMICS IN LEUKEMIA

UNDER TREATMENT ∗

Doina Cândea† Andrei Halanay† Rodica Rădulescu†

Abstract

A one dimensional delay differential equation modeling leukemia
under treatment is investigated to decide over the stability of equilib-
ria and existence of Hopf bifurcations. All three types of stem cell
division (asymmetric division, symmetric renewal and symmetric dif-
ferentiation) are considered. The effect of drug resistance is considered
through the Goldie-Coldman law.
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1 Introduction

The population of cells whose evolution is modeled in the paper consists of
stem cells and progenitors that preserve the capacity of self-renewal. The
model is adapted from the Mackey-Glass model where, besides differentiation
and self-renewal, asymmetric division is included. Thus, a percentage η1

of population is supposed to undergo asymmetric division: one daughter
cell proceeds to differentiation and maturation while the other one re-enters
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the stem cell compartment. A percentage η2 of the population differentiate
symmetrically with both daughter cells going to a phase of maturation. The
percentage (1 − η1 − η2) of the population is supposed to self-renew: both
cells that come out of mitosis are stem cells (see [26]).

The same duration τ of the cell cycle is supposed for all types of division.
Let Q denote the density of the stem-like cell population. The equation

that describes its evolution is

Q̇ = −γQQ− η2k0Q− η1k0Q− (1− η1 − η2)β(Q)Q+

+ 2(1− η1 − η2)e−γQτβ(Qτ )Qτ + η1k0e
−γQτQτ

(1.1)

where Qτ (t) = Q(t− τ),

β(Q) = β0
θn

θn +Qn
(1.2)

is the rate of self-renewal (see [20], [21]), γQ is the instant mortality rate and
k0 is the rate of differentiation and of asymmetric division. Actually, k0 de-
pends on different exogen factors: the number of mature cells in circulation,
growth factors, etc (see [10], [2], [4], [5]) but in this model will be considered
constant. When a scaling is done through Q = θx equation (1.1) becomes

ẋ = −γQx− η2k0x− η1k0x− (1− η1 − η2)
β0

1 + xn
x+

+ e−γQτ

[
2(1− η1 − η2)

β0

1 + xnτ
+ k0η1

]
xτ

It is convenient to introduce

γ = γQ + η1k0 + η2k0 (1.3)

so the equation to be studied becomes

ẋ = −γx− (1− η1 − η2)
β0

1 + xn
x+

+ e−γQτ

[
2(1− η1 − η2)

β0

1 + xnτ
+ k0η1

]
xτ .

(1.4)

One can easily see that if x(θ) > 0 for all θ in [−τ, 0] then x(t) > 0 for
all t > 0. Indeed, if x(T ) = 0 for some T > 0 then

ẋ(T ) = e−γQτ
[
2(1− η1 − η2)

β0

1 + xn(T − τ)
+ k0η1

]
x(T − τ) > 0
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and this is a contradiction to the fact that x must decrease in order to
become zero.

In what follows the stability of equilibria of (1.4) will be investigated,
through the use of the linear approximation. The main references for the
stability in the first approximation are [15] and [17]. It will be also proved
that if the delay depasses a certain threshold, a Hopf bifurcation appears.
The stability of the limit cycles will be studied by computing the first Lya-
punov coefficient (see [18]). In section 4, the treatment with Imatinib will
be incorporated in the model. Effects of drug resistance are taken into con-
sideration through the Goldie-Coldman law ([16]). Numerical results and
simulations in Section 5 illustrate the theory in previous sections. Some
Concluding remarks will end the paper.

2 Stability of equilibria

An equilibrium point x∗ of (1.4) verifies

γx∗ + (1− η1 − η2)
β0

1 + x∗n
x∗ = e−γQτ

[
2(1− η1 − η2)β0

1 + x∗n
+ k0η1

]
x∗.

The first equilibrium point is x∗1 = 0. It corresponds to the extinction of
the cell population. Another equilibrium point is given by

x∗n =
(1− η1 − η2)β0(2e−γQτ − 1)

γ − η1k0e−γQτ
− 1

so, if the later expressions is greater then zero, a second equilibrium point
will be given by

x∗2 =

[
(1− η1 − η2)β0(2e−γQτ − 1)

γ − η1k0e−γQτ
− 1

]1/n

. (2.1)

For convenience, introduce

h(x) =
x

1 + xn
.

Since h′(0) = 1 the linearization of (1.4) around x = 0 is

ẋ = −γx− (1− η1 − η2)β0x+ e−γQτ [k0η1 + 2(1− η1 − η2)β0]xτ .
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Denote, as in [15], [11],

a = −γ − β0(1− η1 − η2), b = e−γQτ [2(1− η1 − η2)β0 + k0η1].

Obviously a < 0 and b > 0 so, if a+ b > 0 the zero solution is unstable and
if a+ b < 0 the zero solution is asymptotically stable. Remark that

a+ b = (1− η1 − η2)β0(2e−γQτ − 1) + eγQτk0η1 − γ.

If there exists the solution (2.1) then a + b must have the same sign as

γ − e−γQτη1k0 so a+ b > 0 if and only if γ > e−γQτη1k0. Since
η1k0

γ
< 1 it

follows that eγQτ >
η1k0

γ
for every τ ≥ 0 so a+b > 0 and the zero solution of

the linear system is unstable. By [17] Ch.9, Corollary 2.3, the zero solution
is unstable for (1.4) too. We have thus proved the following

Proposition 2.1. If equation (1.4) has a nonzero equilibrium point the
zero solution is unstable.

Consider now that a second equilibrium point x∗2, given by (2.1), exists.
Denote

β1 = h′(x∗2). (2.2)

The linearization of (1.4) around x∗2 is

ẋ(t) = −[γ + (1− η1 − η2)β0β1]x(t)+

+ e−γQτ [2(1− η1 − η2)β0β1 + k0η1]x(t− τ)
(2.3)

Introduce
a(τ) = −γ − (1− η1 − η2)β0β1

b(τ) = e−γQτ [2(1− η1 − η2)β0β1 + k0η1]
(2.4)

The characteristic equation of (2.3) is

∆(λ, τ) := λ− a(τ)− b(τ)e−λτ = 0 (2.5)

The study of stability for (2.3) will follow the approach in [8], [12].
Define P (z, τ) = z − a(τ) and Q(z, τ) = −b(τ).
Then obviously P (iy, τ) 6= Q(iy, τ), P (−iy, τ) = P (iy, τ), Q(−iy, τ) =

Q(iy, τ).
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Suppose that a(τ) + b(τ) 6= 0. Then P (0, τ) + Q(0, τ) 6= 0. Also

lim
|λ|→∞

∣∣∣∣Q(λ, τ)
P (λ, τ)

∣∣∣∣ = 0, the equation

F (y, τ) := |P (iy, τ)|2 − |Q(iy, τ)|2 = 0

has a finite number of roots and if y(τ) is such a root it is a C1-function
due to the implicit function theorem. The stability of the zero solution of
(2.3) (thus of x∗2) relies on the relation between |a(τ)| and |b(τ)|. Namely,
if |a(τ)| > |b(τ)|, ∀τ ∈ [0, T ], T > 0, then F (y, τ) = 0 has no real zeros so,
if x∗2 is asymptotically stable for τ = 0, it remains so for τ ∈ [0, T ) (see [8],
[12]).

Suppose now that |a(0)| < |b(0)|. Then |a(τ)| < |b(τ)| for τ ∈ [0, T1),
T1 > 0.

If b(τ) > 0, since −a(τ) ≤ |a(τ)| < b(τ) it follows that a(τ) + b(τ) > 0
and x∗2 is unstable (see [11], [15]).

Suppose b(τ) < 0, ∀τ ∈ [0, T1). The equation F (y, τ) = 0 has a positive
root ω.

Then ∆(iω, τ) = 0 if and only if

sin τω = − ω

b(τ)

cos τω = −a(τ)
b(τ)

.

(2.6)

Since |a(τ)| < |b(τ)| the system (2.6) has the solution

τω(τ) = arccos
(
−a(τ)
b(τ)

)
def
= α(τ) ∈ (0, π).

Let τ0 be a solution of (2.6) corresponding to ω0 > 0 (so λ = iω0 is a
root of (2.5) for τ = τ0) such that x∗2(τ) is locally asymptotically stable for
τ ∈ [0, τ0).

Then the following theorem holds true
Theorem 2.2. Suppose that β1 < 0 and that b(τ) < 0, ∀τ ∈ [0, T1).

Then there exists τ0 > 0 such that the equilibrium x∗2 is locally asymptotically
stable for τ ∈ [0, τ0) and becomes unstable when τ = τ0. The Hopf bifurcation
theorem ensures that periodic solutions of equation (1.4) exist for τ = τ0.

Proof. By [12], Re λ′(τ0) > 0 so one can apply [17] Ch. 11, Theorem
1.1.



Stability analysis in a model for stem-like hematopoietic cells dynamics 153

Remark. A more detailed analysis, on the lines in [27] may prove that
other bifurcating points τj can exist. Namely if

Sj(τ) = τ − λ(τ) + 2jπ
ω(τ)

satisfies
S′j(τj) 6= 0 (2.7)

for
S(τj) = 0 (2.8)

then a Hopf bifurcation appears for τj ∈ [0, T1). See [27], Th. 2.7 and also
[8].

The periodic solutions given by Hopf Theorem are limit cycles. Their
stability will be investigated in the next paragraph.

3 Stability of the limit cycles

Denote by τ0 the solution that verifies

ω0τ0 = α(τ0) = arccos
(
−a(τ)
b(τ)

)
(3.1)

If condition (2.7) is satisfied all the reasonings can be transfered to τc that
is a solution of (2.8).

Define for t ≥ 0, y(t) = x(t) − x∗2 and define µ = τ − τ0. Then (1.4)
translates into

ẏ(t) = Gµ(yt) (3.2)

where yt(θ) = y(t + θ) and for ϕ ∈ Cµ := C([−µ − τ0, 0],C), Gµ is defined
by

Gµ(ϕ) = −γ[ϕ(0) + x∗2]− (1− η1 − η2)β0
ϕ(0) + x∗2

1 + [ϕ0 + x∗2]n
+

+e−γQ(τ0+µ)

[
2(1− η1 − η2)β0

1 + [ϕ(−µ− τ0) + x∗2]n
+ k0η1

]
[ϕ(−µ− τ0) + x∗2].

(3.3)

The linearized equation, for y = 0, corresponding to (3.3) is

ẏ(t) = Lµyt (3.4)
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where Lµ = (DϕGµ)(0), the Frechét derivative of Gµ in ϕ = 0. Explicitly

Lµϕ = a(µ)ϕ(0) + b(µ)ϕ(−µ− τ0) (3.5)

with a(µ) and b(µ) defined in (2.4) for τ = µ+ τ0. If

Fµ = Gµ − Lµ (3.6)

then Fµ(0) = F ′µ(0) = 0 and (3.2) becomes

ẏ(t) = Lµyt + Fµ(yt) (3.7)

Following [18], [3],[25], introduce X0 : [−µ− τ0, 0]→ R through

X0(θ) =

{
0 −µ− τ0 ≤ θ < 0

1 θ = 0

For c ∈ R define (X0c)(θ) = X0(θ)c, θ ∈ [−µ − τ0, 0] and then define the
space

〈X0〉 = {X0c|c ∈ C}

By [17], the linear equation (3.4) gives a C0-semigroup with generator Aµ
defined by

D(Aµ) = {ϕ ∈ C1([−µ− τ0, 0],C), ϕ′(0) = Lµϕ}, Aµϕ = ϕ′, ϕ ∈ D(Aµ).

Define C̃µ = Cµ ⊕ 〈X0〉. The extension Ãµ of Aµ to C̃µ given by

D(Ãµ) = C1([−µ− τ0, 0],C)

Ãµ(ϕ) = ϕ′ +X0(Lµϕ− ϕ′(0)), ϕ ∈ D(Ãµ)

is a Hille-Yosida operator on C̃µ (see [1]).
If y is a solution of (3.7) on [0, T ) with an initial condition ϕ ∈ Cµ then

the function u : [0, T ]→ Cµ, t 7→ yt verifies

d

dt
yt = Ãµyt +X0Fµ(yt)

u(0)(θ) = y0(θ) = ϕ(θ), θ ∈ [−µ− τ0, 0]
(3.8)

and conversely if u : [0, T ]→ Cµ is such that

du

dt
= Ãµu(t) +X0Fµ[u(t)]
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u(0) = ϕ

then u(t) = yt, ∀t ∈ [0, T ] with

y(t) =

{
u(t)(0), t ∈ [0, T ]

ϕ(t), t ∈ [−µ− τ0, 0].

By [7] and [14] the Banach space Cauchy Problem for the ODE (3.8) is well
posed for ϕ ∈ D(Ãµ) = Cµ. Consider now the space C0

µ = C([0, µ + τ0],C)
and define, according to [17], the bilinear form

〈ψ,ϕ〉 = ψ(0)ϕ(0)−
∫ 0

−µ−τ0

(∫ s

0
ψ(θ − s)ϕ(θ)dθ

)
dη(s) =

= ψ(0)ϕ(0) + b(µ)
∫ 0

−τ0−µ
ψ(θ + µ+ τ0)ϕ(θ)dθ.

(3.9)

Here dη(·) corresponds to the distribution

a(µ)δ0 + b(µ)δ−µ−τ0 .

Define C̃0
µ = C0

µ ⊕ 〈X0
0 〉 where

X0
0 (θ) =

{
0, 0 < θ ≤ µ+ τ0

1, θ = 0,
(X0

0c)(θ) = X0
0 (θ)c, c ∈ C

and 〈X0
0 〉 = {X0

0c|c ∈ C}
(3.9) extends to C̃0

µ through

〈ψ +X0
0a, ϕ+X0

0b〉 = 〈ψ,ϕ〉+ ab, a, b ∈ C.

The adjoint operator Ã∗µ defined with respect to this bilinear form verifies



156 Doina Cândea, Andrei Halanay, Rodica Rădulescu

〈ψ, Ãµ0ϕ〉 = ψ(0)Lµϕ+

+b(µ)
∫ 0

−τ0−µ
ψ(s+ µ+ τ0)ϕ′(s)ds = ψ(0)[a(µ)ϕ(0)+

+b(µ)ϕ(−τ0 − µ)] + b(µ)[ψ(s+ µ+ τ0)ϕ(s)|0s=−τ0−µ−

−
∫ 0

−µ−τ0
ψ
′(s+ µ+ τ0)ϕ(s)ds] =

= ψ(0)[a(µ)ϕ(0) + b(µ)ϕ(−τ0 − µ)] + b(µ)ψ(µ+ τ0)ϕ(0)−

−b(µ)ψ(0)ϕ(−µ− τ0)− b(µ)
∫ 0

−µ−τ0
ψ
′(s+ µ+ τ0)ϕ(s)ds =

= ϕ(0)[a(µ)ψ(0) + b(µ)ψ(µ+ τ0)]−

−b(µ)
∫ 0

−µ−τ0
ψ
′(s+ µ+ τ0)ϕ(s)ds = 〈Ã∗µψ,ϕ〉.

So D(Ã∗µ) = C1([0, µ+ τ0],C) and

Ã∗µψ = −ψ′ +X0
0 [a(µ)ψ(0) + b(µ)ψ(µ+ τ0) + ψ′(0)]

Take q(s) = eiω0s. Then (Ã0q)(s) = iω0q(s) for s > 0,

(Ã0q)(0) = a(0)q(0) + b(0)q(−τ0) = iω0

and this is equation (2.5) and is verified since τ0ω0 is a solution of (2.6). It
follows that q∗(s) = deiω0s is an eigenvector of Ã∗0 associated to the eigenvalue
(−iω0). d ∈ C is choosed such that the norming condition 〈q∗, q〉 = 1 is
satisfied. It is not difficult to see that this gives

d̄ =
1

1 + τ0b(0)e−iω0τ0
(3.10)

and that for this d, 〈q∗, q〉 = 0.
Let y be a solution of (3.7).
To compute the coordinates of the section C0 of the center manifold

corresponding to µ = 0, define, following [18],[25] for t ≥ 0

z(t) = 〈q∗, yt〉 = dy(t) + b(µ)
∫ 0

−τ0
e−iω0(s+τ0)y(t+ s)ds
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z and z will be used as local coordinates in the directions q∗ and q∗.
Define next, for t ≥ 0 and s ∈ [−τ0, 0],

w(t, s) = yt(s)− z(t)q(s)− z(t)q(s) =

= yt(s)− 2Re [z(t)q(s)] = W [z(t), z(t), s]
(3.11)

where

W (z, z, s) = w20(s)
z2

2
+ w11(s)zz + w02(s)

z2

2
+ . . .

not= w(s). (3.12)

Since for real y, w is also real, one must have w02 = w20. Remark also
that

〈q∗, w〉 = 〈q∗, yt〉 − 〈q∗, zq〉 − 〈q∗, zq〉 =

= z(t)− z(t)〈q∗, q〉 − z(t)〈q∗, q〉 = 0

(recall 〈q∗, q〉 = 1, 〈q∗, q〉 = 0). Since C0 is locally invariant under (3.8) (see
[18], [9]), for yt ∈ C0 one has

ż(t) = 〈q∗, ẏt〉 = 〈q∗, Ã0yt +X0F0(yt)〉 =

= 〈Ã∗0q∗, yt〉+ 〈q∗, X0F0(yt)〉 = iω0〈q∗, yt〉+

+ dF0[W (z(t), z(t), ·) + 2Re [z(t)q(·)]|s=0 =

= iω0z(t) + g[z(t), z(t)]

(3.13)

where g is defined by

g(z, z) = dF0[W (z, z, ·) + 2Re [zq(·)]|s=0. (3.14)

From (3.3), (3.5) and (3.6) it follows that

F0(ϕ) = −(1−η1−η2)β0
h′′(x∗2)

2
ϕ2(0)+e−γQτ02(1−η1−η2)β0

h′′(x∗2)
2
·ϕ2(−τ0)+

+
1
6

[−(1−η1−η2)β0h
′′′(x∗2)ϕ3(0)+e−γQτ02(1−η1−η2)β0h

′′′(x∗2)·ϕ3(−τ0)]+. . .

It is convenient to introduce the following notations:

β2 = h′′(x∗2), β3 = h′′′(x∗2)

c12 = −(1− η1 − η2)
β0β2

2
, c22 = e−γQτ02(1− η1 − η2)β0β2

C13 = −1
6
β0β3, c23 =

1
3
e−γQτ02(1− η1 − η2)β0β3

(3.15)
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With these notations F0 becomes

F0(ϕ) = c12ϕ
2(0) + c22ϕ

2
τ0(0) + c13ϕ

3(0) + c23ϕ
3
τ0(0) + . . . (3.16)

(3.14) and (3.16) imply that

g(z, z) = d{c12[w(0) + z + z]2 + c13[w(0) + z + z]3+

+ O(|w(0) + z + z)4|+ c22[w(−τ0) + ze−iω0τ0 + zeiω0τ0 ]2+

+ c23[w(−τ0) + ze−iω0τ0 + zeiω0τ0 ]3+

+ O(|w(−τ0) + ze−iω0τ0 + zeiω0τ0 |4) :=

=
g20

2
z2 + g11zz +

g02

2
z2 +

1
2
g21z

2z + . . .

(3.17)

These coefficients of z2, zz, z2 and z2z in (3.17) are essential for the com-
putation of the first Lyapunov coefficient.

It follows directly from (3.17) that

1
2
g20 = d(c12 + c22e

−iω0τ0)

g11 = 2d(c12 + c22)

1
2
g02 = d(c12 + c22e

iω0τ0)

1
2
g21 = d[c12(2w11(0) + w20(0))3c13 + c22(2w11(−τ0)

e−iω0τ0 + w20(−τ0)eiω0τ0) + 3c23e
−iω0τ0 ]

so one needs to find the expressions of w20(0), w20(−τ0), w11(0) and w11(−τ0).

Recall from (3.12) that w(s) = w20(s) +
z2

2
+w11(s)zz+w02(s)

z2

2
+ . . . Tak-

ing the derivative with respect to t in (3.11) and taking into account (3.8)
and (3.11) it follows that

d

dt
w(t, ·) =

d

dt
yt −

d

dt
[z(t)q(·) + z(t)q(·)] =

= Ã0yt +X0F0(yt)− 2Re [ż(t)q(·)] =

= Ã0[w(t, ·) + 2Re z(t)q(·)] +X0F0[w(t, ·)+

+ 2Re (z(t)q(·))]− 2Re [ż(t)q(·)].
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But Ã0(2Re z(t)q(·)) = 2Re [iω0z(t)q(·)] and from (3.13) it follows that

Re[ż(t)q(·)] = Re iω0z(t)q(·) + Re[g(z(t), z(t))q(·)].

Finally
d

dt
w(t, ·) = Ã0w(t, ·) +H(z, z, ·) (3.18)

where

H(z, z, s) = −2Re[g(z, z)q(s)] +X0(s)F0[W (z, z, s) + 2Re(zq(s))]. (3.19)

Then, for s ∈ [−τ0, 0)

H(z, z, s) = −2Re[g(z, z)q(s)] =

= −
(
g20

z2

2
+ g11zz + g02

z2

2
+ . . .

)
q(s)−

−
(
g20

z2

2
+ g11zz + g02

z2

2
+ . . .

)
q(s) =

= H20(s)
z2

2
+H11(s)zz +H02(s)

z2

2
+ . . .

(3.20)

It follows that
H20(s) = −g20q(s)− g02q(s)

H11(s) = −g11q(s)− g11q(s)

H02(s) = H20(s)

(3.21)

From (3.12), (3.13), (3.18) and (3.21) we infer that

Ã0w(t, ·) +H[z(t), z(t), ·] = w20(·)z(t)ż(t)+

+w11(·)[ż(t)z(t) + z(t)ż(t)] + w02(·)z(t)ż(t) + . . . =

= w20(·)z(t)[iω0z(t) + g(z(t), z(t)]+

+w11(·)z(t)[iω0z(t)] + g(z(t), z(t))]+

+w11(·)z(t)[−iω0z(t) + g(z(t), z(t))]+

+w02(·)z(t)[−iω0z(t) + g(z(t), z(t))].

(3.22)
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Identification of the coefficients of z2, zz and z2 in (3.22) yields

(Ã0 − 2iω0)w20(s) = −H20(s)

Ã0w11(s) = −H11(s)

(Ã0 + 2iω0)w02(s) = −H02(s)

(3.23)

so, for s ∈ [−τ0, 0) one has

ẇ20(s) = 2iωw20(s) + g20e
iω0s + g02e

−iω0s

whence
w20(s) = − g20

iω0
eiω0s − g02

3iω0
e−iω0s + C1e

2iω0s.

For s = 0 the definition of Ã0 and (3.23) give

a(0)
(
− g20

iω0
− g02

3iω0
+ C1

)
+ 2g20 +

2
3
g02 − 2iω0C1+

+b(0)
(
− g20

iω0
eiω0τ0 − g02

3iω0
e−iω0τ0 + C1e

2iω0τ0

)
= −H20(0).

Setting s = 0 in (3.19) gives, by (3.13),

H(z, z, 0) = −2Re [g(z, z)] + F0[W (z, z, s) + 2Re (zq(s))]|s=0 =

= −g(z, z)− g(z, z) +
1
d
g(z, z)

so
H20(0) = −g20 − g02 +

1
d
g20

H11(0) = −g11 − g11 +
1
d
g11

(3.24)

and it follows that

C1 =
1

a(0)− 2iω0 + b(0)e2iω0τ0

[
−g20 +

1
3
g02 −

1
d
g20 +

+a(0)
(
g20

iω0
+

g02

3iω0

)
+ b(0)

(
g20

iω0
eiω0τ0 +

g02

3iω0
e−iω0τ0

)]
.

(3.25)

In a similar way, for s ∈ [−τ0, 0),

ẇ11 = g11e
iω0s + g11e

−iω0s
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whence
w11(s) =

g11

iω0
(eiω0s − 1)− g11

iω0
(e−iω0s − 1) + C2.

For s = 0 (3.23) gives

a(0)w11(0) + b(0)w11(−τ0) = −H11(0)

that is

a(0)C2 + b(0)
[
g11

iω0
(e−iω0τ0 − 1)− g11

iω0
(eiω0τ0 − 1) + C2

]
= −H11(0)

so, by (3.24), C2 is given by

C2 =
1

a(0) + b(0)
{b(0)

[
− g11

iω0
(e−iω0τ0 − 1) +

g11

iω0
(eiω0τ0 − 1)

]
−

− H11(0)} =
1

a(0) + b(0)

{
b(0)

[
− g11

iω0
(e−iω0τ0 − 1)+

+
g11

iω0
(eiω0τ0 − 1)

]
+ g11 + g11 −

1
d
g11

}
(3.26)

Once C1 and C2 are calculated, one has the values w20(0), w20(−τ0),
w11(0) and w11(−τ0) and from (3.17) the following formula is obtained for
g21

g21

2
= d [c12(2w11(0) + w20(0)) + 3c13 + c22(2w11(−τ0)e−iω0τ0+

+w20(−τ0)eiω0τ0) + 3c23e
−iω0τ0 ] (3.27)

The Lyapunov coefficient is given by

l1(0) = Re L1(0)

with
L1(0) =

1
2ω0

(
g20 g11 − 2|g11|2 −

1
3
|g02|2

)
+

1
2
g21 (3.28)

Introduce also
µ2 = − l1(0)

Re λ′(τ0)

T2 = − Im L1(0) + µ2Im λ′(τ0)
ω0

.

(3.29)
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The following theorem summs up the informations on the limit cycle that
can be obtained from the above calculations (see [18]).

Theorem 3.1. If l1(0) < 0 bifurcating periodic solutions exist for τ > τ0,
τ − τ0 small, and are orbitally stable. The period of the cycle is approxi-

matelly
2π
ω0

and is increasing if T2 > 0 and decreasing if T2 < 0. With

ε =
(
τ − τ0
µ2

)1/2

the cycle is given by

x(t) = x∗2(τ0) + 2
(
τ − τ0
µ2

)1/2

Re (eiω0t)+

+
τ − τ0
µ2

Re (C1e
2iω0t + C2) +O(ε3)

for
0 ≤ t ≤ T ≤ 2π

ω0
(1 + T2ε

2 + . . .)

4 The model for treatment of CML with Imatinib

Chronic Myelogenous Leukemia (CML), one of the most frequent types
of leukemia is believed to arise from a precursor in the myeloid line in
hematopoiesis. It is characterized by a reciprocal translocation between
one chromosome 9 and one chromosome 22. As a result, a new chromosome,
called Philadelphia chromosome, appears and with it a fusion gene that
causes the production of an abnormal tyrosine kinase protein BCR-ABL1.

This protein is no longer controlled by the normal mechanisms and un-
regulated activates multiple pathways that are responsible for apoptosis reg-
ulation and cells’ proliferation.

In the last ten years the standard treatment against CML is the use
of Imatinib, a molecular targeted drug that selectively inhibits BCR-ABL1
action ([6]). The standard dose used in adults is 400 mg/day. Imatinib
is well absorbed after oral administration with a bioavailability exceeding
90%. Pharmako-kinetics studies ([22], [23]) show that imatinib exhibits lin-
ear pharmakokinetics.

Imatinib shows a very good therapeutic efficiency induceing complete
hematological remission in almost all pacients and cytogenetic remission in
75% - 80% of cases ([13]). Nevertheless an important problem is represented
by the appearance of resistance to imatinib treatment ( [24]). The generation
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of clone mutations in the ABL1 kinase domain is considered the main cause
of resistance.

Let us suppose that every time a cell traverses the cell cycle there is a
constant probability p that a mutation toward resistance appear in one of
the two daughter cells. This p does not depend on time or on the amount of
drug that is used in the therapy.

Then, following the Goldie-Coldman law ([16]) the population of resistant

cells would be Q

(
1− k1

x0 − k0

x−p+1
0

Qq
)

with q = −p. Thus, the number of

cells susceptible to treatment is k1
x0 −R0

x−p+1
0

Qp+1 where x0 is the number

of infected cells and R0 is the number of resistant cells at the moment of
diagnosis. It follows that the action of the treatment on the stem-like cell

compartment is given by the function k1
x0 −R0

x−p+1
0

Qq+1 with k1 =
1

6, 543
([19]).

Denote k̃ = k1
x0 −R0

x−p+1
0

.

Then equation (1.1) is replaced by

Q̇ = −γQQ− (η1 + η2)k0Q− (1− η1 − η2)β(Q)Q− k̃Qq+1+

+ 2e−γQτ (1− η1 − η2)β(Qτ )Qτ + η1k0e
−γQτQτ .

When the scaling Q = θx is performed one obtains

ẋ = −γQx− (η1 + η2)k0x− (1− η1 − η2)β0h(x)− k̃θqxq+1+

+ 2e−γQτ [2(1− η1 − η2)β0h(xτ ) + k0η1xτ .
(4.1)

Define k = k̃θq =
1

6, 543
x0 −R0

x−p+1
0

θq.

Since q+ 1 > 0 the equation (4.1) will still have x = 0 as an equilibrium
point but this time, since q < 0, one cannot use first approximation stability
analysis.

Consider instead the candidate Lyapunov-Krasovskii functional (see [15])

V (x, t) = x2(t) + 2α
∫ t

t−τ
x(s)2ds, α > 0.
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Write equation (4.1) in the simplified form

ẋ = −c1x− c2h(x) + c3x(t− τ) + c4h[x(t− τ)]− kxq+1.

Then the derivative of V along (4.1) is

V̇ = 2x(t)ẋ(t) + 2αx(t)2 − 2αx(t− τ)2 =

= 2x(t){−c1x(t)− c2h[x(t)] + c3x(t− τ) + c4h[x(t− τ)]−

− kx(t)q+1}+ 2αx(t)2 − 2αx(t− τ)2 =

= −2[(c1 − α)x(t)2 − c3x(t)x(t− τ) + αx(t− τ)2]−

− 2x(t){c2h[x(t)]− c4h[x(t− τ)} − 2kx(t)q+2.

One can conclude that if there exists a Lyapunov-Krasovskii functional
related to the trivial equillibrium, that has a negative derivative along the
system, for the model without treatment (thus the trivial solution is locally
asymptotically stable) then the same holds when treatment is introduced.

The functional V can be generally used to study asymptotic stability for
the trivial solution of (4.1).

The formula for the nontrivial equilibrium point becomes more involved

γ − e−γQτη1k0 + kx∗q =
1− η1 − η2

1 + x∗n
β0(2eγQτ − 1). (4.2)

When (4.2) has a solution x∗ > 0 the linearization of (4.1) around x∗ is the
following equation

ẋ(t) = −[γ + (1− η1 − η2)β0β1 + (q + 1)kx∗q]x(t)+

+ e−γQτ [2(1− η1 − η2)β0β1 + k1η1]x(t− τ).
(4.3)

The reasonings in §2 can be easily adapted with

a(τ) = −γ − (1− η1 − η2)β0β1 − (q + 1)kx∗q (4.4)

and the same b(τ).
When ω0 and τ0 verify

ω0τ0 = arccos
(
−a(τ0)
b(τ0)

)
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one can study the stability of the limit cycles on the line in §3. This time

Gµ(ϕ) = −γ[ϕ(0) + x∗]− (1− η1 − η2)β0h[ϕ(0) + x∗]− k[ϕ(0) + x∗]q+1+

+e−γQ(µ+τ0)[2(1− η1 − η2)β0h[ϕ(−µ− τ0) + x∗] + k0η1(ϕ(−µ− τ0) + x∗)].

One has the same formula for Lµϕ but with a(τ) given by (4.4). Formulas
(3.9) and (3.10) rest unchanged

F0(ϕ) = −(1−η1−η2)β0
h′′(x∗)

2
ϕ(0)2+e−γQτ0(1−η1−η2)β0h

′′(x∗)ϕ(−τ0)2−

−1
2

(q + 1)qx∗q−1ϕ(0)2 − 1
6

(1− η1 − η2)β0h
′′′(x∗)ϕ(0)3−

−1
6

(q + 1)q(q − 1)x∗q−2ϕ(0)3 − 1
3
e−γQτ0(1− η1 − η2)β0h

′′′(x∗)ϕ(−τ0)3 + . . .

so

c12 = −(1− η1 − η2)
β0β2

2
− 1

2
(q + 1)qx∗q−1

c13 = −1
6

(1− η1 − η2)β0β3 −
1
6

(q + 1)q(q − 1)x∗q−2.

(4.5)

These new coefficients are then used in formulas (3.17), (3.20), (3.21), (3.23),
(3.24), (3.25), (3.26) and (3.27) and provide new values for l1(0), µ2 and T2

by (3.28) and (3.29).

5 Numerical results and simulations

In what follows the previous formulae are used for the calculation of the
relevant coefficients for the limit cycles. The tables that follow contain the
values of the parameters of the system and the values calculated for the
nontrivial equilibrium, for the values of τ where bifurcation occur and for
the description of the limit cycles. Simulations in some particular cases
illustrate these computations. The evolution is shown with and without
treatment.
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6 Concluding remarks

One of the main issues of the approach in the paper was the consideration
of asymmetric division in the dynamics of stem cell population. Phenomena
as bifurcations, already known to appear as the delay is varied (see [3], [4],
[5]), are now studied in this new approach. Corresponding formulae for the
stability of the limit cycles are deduced on the lines in [18], [25]. One step
further is the consideration of Imatinib treatment for CML, taking into con-
sideration recent studies of pharmakokinesis as well as the already classical
low Goldie-Coldman, that tries to capture the appearance of resistance to
drug therapy in cancer.
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