
LINEAR DIFFERENTIAL GAMES

WITH VECTOR-VALUED CRITERIA∗

Constantin Drăguşin†

Abstract

This paper deals with a problem of linear differential games with
several quadratic objective criteria (with vector-objective). In this case
the notion of Pareto min-max is used as optimum point of the differ-
ential game. We mention that the notion of Pareto min-max was in-
troduced for the first time in [5]. Existence conditions (Theorem 1),
necessary conditions (Theorem 2) and sufficient conditions (Theorem
3) are given.
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§ 1. Notations and Definitions

Let X and Y be real Banach spaces, ∅ 6= U ⊂ X, ∅ 6= V ⊂ Y and
J : U× V→ Rm, m > 1.

Definition 1. Let U and V be convex sets. The function J is called
convex with respect to u ∈ U and concave with respect to v ∈ V if and only
if J(·, v) : U → Rm is a convex function, ∀v ∈ V and J(u, ·) : V → Rm is a
concave function, ∀u ∈ U (see [4]).
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108

Ann. Acad. Rom. Sci.
Ser. Math. Appl.

ISSN 2066 - 6594 Vol. 5, No. 1-2 / 2013



Linear differential games with vector-valued criteria 109

Definition 2. The function J is called (weakly) lower semicontinuous
with respect to u ∈ U at the point (u◦, v◦) ∈ U × V if J(·, v◦) : U → Rm

is (weakly) lower semicontinuous at the point u◦ ∈ U. The function J is
called (weakly) lower semicontinuous with respect to u ∈ U on U × V if
J(·, v) : U→ Rm is (weakly) lower semicontinuous with respect to u, ∀v ∈ V.

The function J is called (weakly) upper semicontinuous with respect to
v ∈ V at the point (u◦, v◦) ∈ U × V if J(u◦, ·) : V → Rm is (weakly) upper
semicontinuous at the point v◦ ∈ V. The function J is called (weakly) upper
semicontinuous with respect to v ∈ V on U×V if J(u, ·) : V→ Rm is (weakly)
upper semicontinuous with respect to v, ∀u ∈ U.

Definition 3. An element (u◦, v◦) ∈ U×V is called Pareto local min-max
point for the function J : U × V → Rm if

[
∃U0 ∈ V(u◦) and ∃V0 ∈ V(v◦)

]
with the property that @(u, v) ∈

(
U ∩ U0

)
×
(
V ∩ V0

)
such that

J(u, v◦) ≤ J(u◦, v◦) ≤ J(u◦, v), (i)

and {
either ‖J(u◦, v◦)− J(u, v◦)‖2 > 0,
or ‖J(u◦, v◦)− J(u◦, v)‖2 > 0.

(ii)

An element (u◦, v◦) ∈ U × V is called Pareto global min-max point for
the function J : U× V→ Rm if @(u, v) ∈ U× V such that

J(u, v◦) ≤ J(u◦, v◦) ≤ J(u◦, v), (i′)

and {
either ‖J(u◦, v◦)− J(u, v◦)‖2 > 0,
or ‖J(u◦, v◦)− J(u◦, v)‖2 > 0.

(ii′)

§ 2. Differential Games with Vector-valued Criterion

We consider the following problem of a linear differential game with sev-
eral quadratic criteria:

Ω1 ⊂ Rp, Ω2 ⊂ Rr, p ≥ 1 ≤ r convex and compact sets,
U := {u(·)|u(·) ∈ L2([0, T ]; Rp), u(t) ∈ Ω1, t ∈ [0, T ]},
V := {v(·)| v(·) ∈ L2([0, T ]; Rr), v(t) ∈ Ω2, t ∈ [0, T ]},

the system of linear differential equations{
ẋ∗(t) = A · x∗(t) +B1 · u∗(t) +B2 · v∗(t),
x∗(0) = x∗0,

(1)
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where A ∈Mn×n(R), B1 ∈Mn×p(R), B2 ∈Mn×r(R) are constant matrix,

J = (J1, ..., Jm) : U× V→ Rm

Jk
(
u(·), v(·)

)
:= xuv(T ) ·Pk ·x∗uv(T )+

T∫
0

[
u(t) ·Qk ·u∗(t)+v(t) ·Rk ·v∗(t)

]
dt,

(2)
where

Pk ∈ Mn×n(R) is a constant, symmetrical and positive semi-definite
matrix,

Qk ∈Mp×p(R) is a constant, symmetrical and positive definite matrix,
Rk ∈ Mr×r(R) is a constant, symmetrical and negative definite matrix,

k ∈ {1, ...,m},
xuv(T ) ∈ Rn is the point where the system (1) trajectory reaches, ac-

cording to the pair (u, v) at the final moment T ,
x∗uv(T ) ∈M1×n

(
R
)

is the transpose of the vector xuv(T ) ∈ Rn.(
P.O.

)
The problem of optimum:

min - max
(u,v)∈U×V

J
(
u(·), v(·)

)
.

From system (1) we deduce

x∗uv(T ) = eAT
[
x∗0 +

T∫
0

e−As
(
B1 · u∗(s) +B2 · v∗(s)

)
ds
]

(3)

and hence

Jk(u, v) = x0 · P̃k · x∗0 + 2x0P̃k

T∫
0

e−As
(
B1 · u∗(s) +B2 · v∗(s)

)
ds+

+

T∫
0

T∫
0

(
u(τ) ·B∗1 + v(τ) ·B∗2

)
·Hk(τ, s) ·

(
B1 · u∗(s) +B2 · v∗(s)

)
dτds+

+

T∫
0

(
u(s) ·Qk · u∗(s) + v(s) ·Rk · v∗(s)

)
ds, (4)
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where

P̃k = eA
∗TPke

AT and Hk(τ, s) = eA
∗(T−s)Pke

A(T−τ), k ∈ {1, ...,m}. (5)

Lemma 1. Let C ∈ Mn×n(R) be a constant, symmetrical and positive
semi-definite matrix. The quadratic form ϕ : L2

(
[0, T ],Rn

)
→ R,

ϕ(y) =

T∫
0

T∫
0

y(τ) · C · y∗(s)dτds,

is positive semi-definite.

Proof. Since C ≥ 0, ∃C1 ≥ 0, C∗1 = C1 such that C = C2
1 . Hence

ϕ(y)=

T∫
0

T∫
0

(
y(τ)·C∗1

)
·
(
C1 ·y∗(s)

)
dτds=

( T∫
0

y(τ)·C∗1dτ
)( T∫

0

C1 ·y∗(s)ds
)
≥ 0.

Remark 1. The sets U a̧nd V are weak-sequentially compact (see [12],
Lemma 1A) and convex.

Remark 2. From the above hypotheses it results that the function J :
U× V→ Rm is convex with respect to u ∈ U

(
see [7], Lemma 2

)
.

Since J is continuous, it results that J is weakly lower semicontinuous
with respect to u ∈ U (see [16], th. 8.2).

Assumption 1. The matrices A, B2, Pk and Rk satisfy the condition

T∫
0

[ T∫
0

v(τ) ·B∗2 ·Hk(τ, s) ·B2dτ + v(s) ·Rk

]
· v∗(s)ds ≤ 0, (6)

∀v(·) ∈ L2

(
[0, T ],Rr

)
, ∀k ∈ {1, ...,m}.

Remark 3. If Pk = 0, k ∈ {1, ...,m} then Assumption 1 is true.

Proposition 1. If Assumption 1 is fulfilled, then the function J : U ×
V → Rm is concave with respect to v(·) ∈ V. In addition is weakly upper
semicontinuous with respect to v(·) ∈ V.
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dThe proof follows from the fact that for ψk : [0, 1] → R, it should be
ψk(t) := = Jk

(
u(·), t · v′(·) + (1− t) · v′′(·)

)
, we get

ψ′′k(t) =

T∫
0

[ T∫
0

(
v′(τ)− v′′(τ)

)
B∗2 ·Hk(τ, s) ·B2dτ+

+
(
v′(s)− v′′(s)Rk

]
·
(
v′(s)− v′′(s)

)∗
ds ≤ 0,

∀v′(·), v′′(·) ∈ V a̧nd ∀k ∈ {1, ...,m}.c

Theorem 1. If Assumption 1 is fulfilled for the problem
(
P.O.

)
, then

there ∃
(
u◦, v◦

)
∈ U× V Pareto min-max point for the function J on U× V.

Proof. Function Fλ : U× V→ R,

Fλ(u, v) :=
〈
λ, J(u, v)

〉
=

m∑
k=1

λk · Jk(u, v), (7)

where λ ∈
◦
Km= int(Rn

+), is convex and weakly lower semicontinuous with
respect to u and concave and weakly upper semicontinuous with respect to
v. Then there ∃

(
u◦, v◦

)
∈ U × V a saddle point for Fλ on U × V

(
see [7],

Lemmas 4 and 6
)
. Hence

(
u◦, v◦

)
is a Pareto min-max point for J on U×V(

see [5], [6]
)
.

Theorem 2. The necessary condition so that
(
u◦, v◦

)
∈ U×V should be

a Pareto min-max point for J on U× V is that

W :=
{

(h1, h2) ∈ L2

(
[0, T ],Rp

)
× L2

(
[0, T ],Rr

)
| ∃(t1 > 0 < t2) such that(

u◦ + t1h1, v
◦) ∈ U× V,

(
u◦, v◦+t2h2

)
∈ U× V,

T∫
0

[
x0P̃ke

−AsB1+u◦(s)Qk+

T∫
0

(
u◦(τ)B∗1 + v◦(τ)B∗2

)
Hk(τ, s)B1dτ

]
h∗1(s)ds<0,

T∫
0

[
x0P̃ke

−AsB2+v◦(s)Rk+

T∫
0

(
u◦(τ)B∗2 + v◦(τ)B∗2

)
Hk(τ, s)B2dτ

]
h∗2(s)ds>0,

∀k ∈ {1, ...,m}
}

(8)
should be empty set

(
W = ∅

)
.
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Proof. Let us assume, by reduction ad absurdum, that W 6= ∅. Let
(h1, h2) ∈ W. There exist t1 > 0 < t2 such that (u◦ + t1h1, v

◦) ∈ U× V and
(u◦, v◦ + t2h2) ∈ U× V. But U and V are convex, hence ∀t ∈]0,min{t1, t2}]
⇒

(u◦ + th1, v
◦) ∈ U× V and (u◦, v◦ + th2) ∈ U× V.

For k ∈ {1, ...,m} and t ∈ ]0,min{t1, t2}] we get

Jk
(
u◦ + th1, v

◦)− Jk(u◦, v◦) = t

T∫
0

[
2x0P̃ke

−AsB1 + 2u◦(s)Qk+

+2

T∫
0

(
u◦(τ)B∗1 + v◦(τ)B∗2

)
·Hk(τ, s) ·B1dτ

]
h∗1(s)ds+

+t2
T∫

0

(
h1(s)Qk +

T∫
0

h1(τ)B∗1 ·Hk(τ, s) ·B1dτ
)
h∗1(s)ds.

For a sufficiently small t > 0, it follows that

Jk
(
u◦ + th1, v

◦)− Jk(u◦, v◦) < 0, ∀k ∈ {1, ...,m},

which contradicts definition 3 and the theorem is proved.

Theorem 3. Consider that Assumption 1 is fulfilled. If for (u◦, v◦) ∈
U× V we get

W ∗ :=
{

(h1, h2) ∈ L2

(
[0, T ],Rp

)
× L2

(
[0, T ],Rr

)
| ∃(t1 > 0 < t2) such that(

u◦ + t1h1, v
◦) ∈ U× V,

(
u◦, v◦ + t2h2

)
∈ U× V,

T∫
0

[
x0P̃ke

−AsB1 + u◦(s)Qk +

T∫
0

(
u◦(τ)B∗1 +v◦(τ)B∗2

)
Hk(τ, s)B1dτ

]
h∗1(s)ds≤0,

T∫
0

[
x0P̃ke

−AsB2 + v◦(s)Rk +

T∫
0

(
u◦(τ)B∗2 +v◦(τ)B∗2

)
Hk(τ, s)B2dτ

]
h∗2(s)ds≥0,

∀k ∈ {1, ...,m}
}

=
{

(0, 0)
}
,

(9)
then (u◦, v◦) is a Pareto min-max point for J on U× V.
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Proof. We suppose that (u◦, v◦) is not a Pareto min-max point for J on
U× V. Then there exists (u, v) ∈ U× V such that

J(u, v◦) ≤ J(u◦, v◦) ≤ J(u◦, v) (10)

and there exist
either i0 ∈ {1, ...,m} for which

Ji0(u, v◦) < Ji0(u◦, v◦) ≤ Ji0(u◦, v), (11)

or k0 ∈ {1, ...,m} for which

Jk0(u, v◦) ≤ Jk0(u◦, v◦) < Jk0(u◦, v) (12)(
hence (u◦, v◦) 6= (u, v)

)
.

Since U and V are convex sets and J is convex with respect to u and
concave with respect to v (Prop. 1), then for any t ∈]0, 1[ we get

(û, v̂) = t(u, v) + (1− t)(u◦, v◦) ∈ U× V, (13)

J(û, v◦) ≤ J(u◦, v◦) ≤ J(u◦, v̂),

and {
either Ji0(û, v◦) < Ji0(u◦, v◦) ≤ Ji0(u◦, v̂)

or Jk0(û, v◦) ≤ Jk0(u◦, v◦) < Jk0(u◦, v̂).
(14)

Let (h1, h2) := (u, v)− (u◦, v◦).
For t ∈]0, 1[, from relation (13) we deduce

Jk(u◦ + th1, v
◦)− Jk(u◦, v◦) = 2t

T∫
0

[
x0P̃ke

−AsB1 + u◦(s)Qk+

+

T∫
0

(
u◦(τ)B∗1 + v◦(τ)B∗2

)
·Hk(τ, s) ·B1dτ

]
h
∗
1(s)ds+

+t2
T∫

0

[
h1(s)Qk +

T∫
0

h1(τ)B∗1 ·Hk(τ, s) ·B1dτ
]
h
∗
1(s)ds ≤ 0

(15)
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and

Jk(u◦, v◦ + th2)− Jk(u◦, v◦) = 2t

T∫
0

[
x0P̃ke

−AsB2 + u◦(s)Rk+

+

T∫
0

(
u◦(τ)B∗1 + v◦(τ)B∗2

)
·Hk(τ, s) ·B2dτ

]
h
∗
2(s)ds+

+t2
T∫

0

[
h2(s)Rk +

T∫
0

h̄2(τ)B∗2 ·Hk(τ, s) ·B2dτ
]
h
∗
2(s)ds ≥ 0

k ∈ {1, ...,m}.

(16)

Taking into account Assumption 1 and the relations (15) and (16) it
results that

T∫
0

[
x0P̃ke

−AsB1+u◦(s)Qk+

T∫
0

(
u◦(τ)B∗1+v◦(τ)B∗2

)
·Hk(τ, s)·B1dτ

]
h
∗
1(s)ds ≤ 0,

(17)
and

T∫
0

[
x0P̃ke

−AsB2+u◦(s)Rk+

T∫
0

(
u◦(τ)B∗1+v◦(τ)B∗2

)
·Hk(τ, s)·B2dτ

]
h
∗
2(s)ds ≥ 0,

(18)
∀k ∈ {1, ...,m}, that is (h1, h2) ∈W ∗\{(0, 0)} which contradicts the hypoth-
esis and the theorem is proved.

Example. We consider

Ω1 = [0, 1], Ω2 = [0, 1], T = 1,

U =
{
u(·) |u(·) ∈ L2

(
[0, 1]; R

)}
, u(t) ∈ [0, 1], t ∈ [0, 1],

V =
{
v(·) | v(·) ∈ L2

(
[0, 1]; R

)}
, v(t) ∈ [0, 1], t ∈ [0, 1],

and the motion equation{
ẋ(t) + x(t) = u(t)− v(t), t ∈ [0, 1],
x(0) = 1.

(∗)

Let J =
(
J1, J2

)
: U× V→ R2, where
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J1

(
u(·), v(·)

)
= x2(1) +

1∫
0

[
2u2(t)− v2(t)

]
dt,

J2

(
u(·), v(·)

)
= 2x2(1) +

1∫
0

[
u2(t)− 2v2(t)

]
dt.

The solution of system (∗) is

x(t) = e−t
[
1 +

t∫
0

(
u(s)− v(s)

)
esds

]
and

x(1) = e−1
[
1 +

1∫
0

(
u(t)− v(t)

)
etdt

]
For finding a solution of the problem, we attach the functional

J̃
(
(u·), v(·)

)
=

1
3
[
J1

(
(u·), v(·)

)
+J2

(
(u·), v(·)

)]
= x2(1)+

1∫
0

(
u2(t)−v2(t)

)
dt.

We get

J̃
(
(u·), v(·)

)
=

1∫
0

[
u2(t)− v2(t)

]
dt+ e−2

[
1 +

1∫
0

(
u(t)− v(t)

)
etdt

]2
.

The functional J̃
(
(u·), v(·)

)
is convex with respect to u(·) ∈ U and one

obtains

ϕ(v(·)) = min
u(·)∈U

J̃
(
u(·), v(·)

)
= J̃
(
0, v(·)

)
= −

1∫
0

v2(t)dt+e−2
[
1−

1∫
0

v(t)etdt
]2
.

In order to show that the functional ϕ is concave we define

ψ(t) := ϕ
(
tv1(·) + (1− t)v2(·)

)
=

= −
1∫

0

(
tv1(s) + (1− t)v2(s)

)2
ds+ e−2

[
1−

1∫
0

(
tv1(s) + (1− t)v2(s)

)
esds

]2
,



Linear differential games with vector-valued criteria 117

from which, we deduce

ψ′′(t) = −2

1∫
0

(
v1(s)− v2(s)

)2
ds+

[ 1∫
0

(
v1(s)− v2(s)

)
es−1ds

]2
ds.

Because

[ 1∫
0

(
v1(s)− v2(s)

)
es−1ds

]2
ds ≤

1∫
0

(
v1(s)− v2(s)

)2
ds ·

1∫
0

e2(s−1)ds,

it follows
ψ′′(t) ≤ 0,

, hence ϕ(·) is concave. We get

max
v(·)∈V

min
u(·)∈U

J̃
(
u(·), v(·)

)
= max

v(·)∈V
ϕ
(
u(·)

)
= ϕ(0) = J̃

(
0, 0
)

= e−2.

On the other hand, because the functional J̃
(
u(·), v(·)

)
is convex with

respect to u(·) ∈ U, we get

ϕ1

(
u(·)

)
:= max

v(·)∈V
J̃
(
u(·), v(·)

)
= J̃
(
u(·), 0

)
=

1∫
0

u2(s)ds+e−2
[
1+

1∫
0

u(s)esds
]2
,

which is a convex functional.
Now

min
u(·)∈U

max
v(·)∈V

J̃
(
u(·), v(·)

)
= min

u(·)∈U
ϕ1

(
u(·)

)
= ϕ1(0) = J̃

(
0, 0
)

= e−2,

hence

min
u(·)∈U

max
v(·)∈V

J̃
(
u(·), v(·)

)
= e−2 = max

v(·)∈V
min
u(·)∈U

J̃
(
u(·), v(·)

)
= J̃

(
0, 0
)
.

Therefore, a solution of the problem is
(
u◦(·), v◦(·)

)
=
(
0, 0
)
.

Remark 4. (i) The functionals J1

(
u(·), v(·)

)
and J2

(
u(·), v(·)

)
are con-

vex with respect to u(·) ∈ U and concave with respect to v(·) ∈ V. As above,
we deduce

min
u(·)∈U

max
v(·)∈V

J1

(
u(·), v(·)

)
= e−2 = max

v(·)∈V
min
u(·)∈U

J1

(
u(·), v(·)

)
= J1(0, 0),
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and

min
u(·)∈U

max
v(·)∈V

J2

(
u(·), v(·)

)
= 2e−2 = max

v(·)∈V
min
u(·)∈U

J2

(
u(·), v(·)

)
= J2(0, 0),

hence

min
u(·)∈U

max
v(·)∈V

J
(
u(·), v(·)

)
=
(
e−2, 2e−2

)
= max

v(·)∈V
min
u(·)∈U

J
(
u(·), v(·)

)
= J(0, 0).

In this case, we obtain the same solution
(
u◦(·), v◦(·)

)
=
(
0, 0
)
.

(ii) Let α ∈ ]0, 1[. Consider the functional

Jα
(
u(·), v(·

)
= αJ1

(
u(·), v(·)

)
+ (1− α)J2

(
u(·), v(·)

)
=

= [α+ 2(1− α)
]
x2(1) +

1∫
0

{[
2α+ (1− α)

]
u2(t)−

[
α+ 2(1− α)

]
v2(t)

}
dt =

=
(
2−α

){
e−1
[
1+

1∫
0

(
u(t)−v(t)

)
etdt

]}2
+

1∫
0

[(
1+α

)
u2(t)−

(
2−α

)
v2(t)

]
dt.

The functional Jα
(
u(·), v(·)

)
is convex with respect to u(·) ∈ U and con-

cave with respect to v(·) ∈ V and we deduce

min
u(·)∈U

max
v(·)∈V

Jα
(
u(·), v(·)

)
= max

v(·)∈V
min
u(·)∈U

Jα
(
u(·), v(·)

)
= Jα(0, 0).

We get
(
u◦(·), v◦(·)

)
=
(
0, 0
)
.
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Moscou, 1977.

14. Lee E.B., Markus L., Foundations of Optimal Control Theory, New
York-London-Sydney, John Wiley & Sons, Inc., 1967.

15. Mehlmann A., Applied Differential Games, Plenum Press - New York
and London, 1988.

16. Pascali D., Operatori neliniari, Editura Academiei RSR, Bucureşti,
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