LINEAR DIFFERENTIAL GAMES WITH VECTOR-VALUED CRITERIA*

Constantin Drăgușin[†]

Abstract

This paper deals with a problem of linear differential games with several quadratic objective criteria (with vector-objective). In this case the notion of Pareto min-max is used as optimum point of the differential game. We mention that the notion of Pareto min-max was introduced for the first time in [5]. Existence conditions (Theorem 1), necessary conditions (Theorem 2) and sufficient conditions (Theorem 3) are given.

MSC: 91A23, 49N90

Keywords: Existence, necessary and sufficient conditions for Pareto min-max.

§1. Notations and Definitions

Let \mathfrak{X} and \mathfrak{Y} be real Banach spaces, $\emptyset \neq \mathfrak{U} \subset \mathfrak{X}, \ \emptyset \neq \mathfrak{V} \subset \mathfrak{Y}$ and $J: \mathfrak{U} \times \mathfrak{V} \to \mathbb{R}^m, \ m > 1.$

Definition 1. Let \mathcal{U} and \mathcal{V} be convex sets. The function J is called convex with respect to $u \in \mathcal{U}$ and concave with respect to $v \in \mathcal{V}$ if and only if $J(\cdot, v) : \mathcal{U} \to \mathbb{R}^m$ is a convex function, $\forall v \in \mathcal{V}$ and $J(u, \cdot) : \mathcal{V} \to \mathbb{R}^m$ is a concave function, $\forall u \in \mathcal{U}$ (see [4]).

^{*}Accepted for publication in revised form on January 15, 2013.

[†]dragusinc@gmail.com, University Politehnica of Bucharest, Department of Mathematics, Splaiul Independenței 313, ROMANIA