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Abstract

In this paper we investigate several properties of Lyapunov type op-
erators occurring in connection with the characterization of exponential
stability in mean square of systems of linear Itô differential equations
perturbed by a Markov process with an infinite countable number of
states. A criterion for exponential stability of linear differential equa-
tions defined by a Lyapunov operator is derived under the assumption
of property of detectability adequately defined for this type of operator
valued functions.

MSC: 34G10, 47B65, 34D20

keywords: Lyapunov type operators, ordered Banach spaces, Minkovski
norms, exponential stability.

∗Accepted for publication in revised form on April 2, 2013.
†vasile.dragan@imar.ro; toader.morozan@imar.ro Institute of Mathematics

”Simion Stoilow” of the Romanian Academy, Research Unit Nr.2, P.O.Box 1-764,
RO-014700, Bucharest, Romania;
‡Department of Mathematics, “Constantin Brancusi” University, Tg. Jiu, Bulevardul

Republicii, nr. 1, jud. Gorj, Romaina, e-mail vio@utgjiu.ro.

65

Ann. Acad. Rom. Sci.
Ser. Math. Appl.

ISSN 2066 - 6594 Vol. 5, No. 1-2 / 2013



66 Vasile Dragan, Toader Morozan, Viorica Ungureanu

1 Introduction

The Lyapunov type linear operators play a central role in the characteriza-
tion of exponential stability of linear systems of differential equations both in
deterministic and stochastic framework, continuous time and discrete-time
cases. For the readers convenience, we refer to [13, 14] for the deterministic
framework and [1, 2, 9, 10, 15] for the stochastic context. In the stochastic
case, the differential equations defined by the Lyapunov type operator valued
functions offer a deterministic framework for the characterization of expo-
nential stability in mean square for stochastic linear differential equations
with multiplicative white noise perturbations and/ or Markovian jumping.
The systematic investigation of linear differential equations defined by Lya-
punov type operator valued functions regarded as mathematical object with
interest in itself, started with the time invariant case, namely, the differential
equation is defined by a Lyapunov operator not depending upon the time.
In this case, criteria for exponential stability of differential equations de-
fined by a Lyapunov operator were derived based on properties of resolvent
positive operators [4, 5, 6]. In the time varying case, criteria for exponen-
tial stability of differential equations defined by a Lyapunov type operator
valued function were obtained in [8, 7] for the finite dimensional case and
in [11] for infinite dimensional case. The derived criteria are expressed in
terms of existence of some global bounded and uniform positive solutions
of some suitable affine differential equations. It is known that in the case
when the operator valued function defining the Lyapunov type differential
equation is either periodic function or constant function, the unique global
bounded solution of the affine differential equations involved in study of ex-
ponential stability criteria, is also periodic or constant function. Therefore,
in this important special cases, the existence of a positive definite solution
may be tested by numerical computations. Usually, to a system of stochas-
tic linear differential equations one may associate two kinds of Lyapunov
type operator valued functions which define two types of differential equa-
tions on some linear spaces of symmetric matrices: a forward differential
equation and a backward differential equation. In the case of finite dimen-
sional linear space of symmetric matrices one may introduce in a natural
way an inner product which induces a Hilbert space structure. In this case
the two types of Lyapunov type operators are interconnected, one of them
being the adjoint operator of the other. A detailed study of linear differen-
tial equations defined by the Lyapunov type operator valued functions on
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a finite dimensional linear space of symmetric matrices may be found in
Chapter 2 in [9]. The goal of the present paper is to study the Lyapunov
type operator valued functions on an infinite dimensional linear space of
bounded sequences of symmetric matrices. Such linear spaces can be orga-
nized as infinite dimensional ordered Banach spaces. We shall prove that
under some additional assumptions we may identify some suitable subspaces
which may be organized as infinite dimensional ordered Hilbert spaces where
the two Lyapunov type linear operators are interconnected. More precisely,
the restriction of the Lyapunov type operator defining a backward differen-
tial equation coincides with the adjoint of the Lyapunov operator defining
a forward differential equation. Finally, we shall introduce a concept of de-
tectability for Lyapunov type operators and we shall derive a new criterion
for exponential stability for differential equations defined by the Lyaponov
type operator valued functions.

2 Linear differential equations with positive evo-
lution on an ordered Banach space

2.1 Linear evolution operators on ordered Banach spaces

Let (X , ‖ · ‖) be a real Banach space. Let I ⊂ R be an interval of real
numbers. Let L : I → B(X ) be a strongly continuous operator valued
function. This means that for each x ∈ X the vector valued function t →
L(t)x is continuous on I.

We consider the linear differential equation on X :

d

dt
x(t) = L(t)x(t). (1)

Based on the developments in Chapter 3 of [3] we deduce that for each
(t0, x0) ∈ I × X there exists a unique C1-function x(·; t0, x0) : I → X
satisfying (1) and the initial condition x(t0; t0, x0) = x0.

In Chapter 3 of [3] it is shown that there exists an operator valued func-
tion TL : I × I → B(X ) with the property that x(t; t0, x0) = TL(t, t0)x0 for
all t, t0 ∈ I and x0 ∈ X . The operator valued function (t, τ) → TL(t, τ) or
TL(t, τ) for shortness is named the linear evolution operator on X defined
by the operator valued function L(·) or, equivalently, the linear evolution
operator defined on X by the linear differential equation (1).
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Often, we shall write T (t, τ) instead of TL(t, τ) if confusions are not
possible.

Remark 1 A linear evolution operator T (t, τ) on a Banach space X has the
properties (see [3] Chapter 3 for details).

(i) t → T (t, τ) is the unique solution of the problem with given initial
value on B(X )

d

dt
X(t) = L(t)X(t), X(τ) = IX

where IX is the identity operator on X . More precisely,

d

dt
T (t, τ) = L(t)T (t, τ), t ∈ I (2)

T (τ, τ) = IX .

(ii) τ → T (t, τ) : I → B(X ) satisfies

d

dτ
T (t, τ) = −T (t, τ)L(τ), ∀τ ∈ I. (3)

(iii)
T (t, τ)T (τ, s) = T (t, s), (∀) t, τ, s ∈ I. (4)

(iv) For each (t, τ) ∈ I×I, the operator T (t, τ) is invertible and T−1(t, τ) ∈
B(X ). More precisely, we have T−1(t, τ) = T (τ, t).

(v) ‖T (t, τ)‖ ≤ e
|
tR
τ
‖L(s)‖ds|

, ∀ t, τ ∈ I.

(vi) If L(t) = L ∈ B(X ) then T (t, τ) = eL(t−τ), where eLt =
∞∑
k=0

tk

k!L
k.

This series is convergent in the topology induced by the operator norm uni-
formly on any compact subinterval of R.

(vii) If I = R and L(t + θ) = L(t) for all t ∈ R and some θ > 0 then
T (t+ kθ, τ + kθ) = T (t, τ) for any t, τ ∈ R, k ∈ Z.

The strongly continuous operator valued function L(·) defines also the
linear differential equation

d

dt
y(t) + L(t)y(t) = 0. (5)

Applying the results from Chapter 3 of [3] to the operator valued function
t → −L(t) we deduce that for each (t0, y0) ∈ I × X the linear differential
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equation (5) has a unique solution y(·; t0, y0) : I → X which satisfy the initial
condition y(t0; t0, y0) = y0. In what follows we denote by T aL(t, t0) the causal
evolution operator generated by −L(t) and we call it the anticausal linear
evolution operator on X generated by the operator valued function L(·).
One proves also that y(t; t0, y0) = T aL(t, t0)y0 for all (t; t0, y0) ∈ I × I × X
and therefore the evolution operator T aL(t, t0) : I × I → B(X ) will be also
called the anticausal linear evolution operator on X generated by the linear
differential equation (5).

In the sequel, we shall write T a(t, t0) instead of T aL(t, t0), if confusions
are not possible.

Remark 2 Many of the assertions of Remark 1 remain valid if the causal
linear evolution operator T (t, τ) is replaced by the anticausal linear evolution
operator T a(t, τ).

In the case of anticausal linear evolution operator, the statements (i),
(ii), (vi) from Remark 1 become:

(i
′
) for each τ ∈ I, t → T a(t, τ) satisfies the linear differential equation

on B(X ):
d

dt
T a(t, τ) = −L(t)T a(t, τ) (6)

and the initial condition T a(τ, τ) = IX .
(ii
′
) for each t ∈ I, τ → T a(t, τ) satisfies:

d

dτ
T a(t, τ) = T a(t, τ)L(τ). (7)

(vi
′
) If L(t) = L ∈ B(X ), t ∈ R, then, T aL(t, τ) = eL(τ−t), ∀ t, τ ∈ R.

Beside the linear differential equations (1) and (5) respectively, we asso-
ciate the following affine differential equations:

d

dt
x(t) = L(t)x(t) + f(t) (8)

and
d

dt
y(t) + L(t)y(t) + g(t) = 0 (9)

where L(·) is an operator valued function as before, and f : I → X , g : I →
X are continuous vector valued functions.
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The solutions of (8) and (9) have the following representation formulae:

x(t; t0, x0) = T (t, t0)x0 +

t∫
t0

T (t, s)f(s)ds (10)

for all t ∈ [t0,∞) ∩ I, x0 ∈ X and

y(t; t0, y0) = T a(t, t0)y0 +

t0∫
t

T a(t, s)g(s)ds (11)

for all t ∈ (−∞; t0] ∩ I, y0 ∈ X .
In the development from this paper, the affine differential equation of

type (8) will be called forward affine differential equation while the affine
differential equations of type (9) will be named backward affine differential
equations.

Remark 3 If y(t) is a solution of the backward affine differential equation

d

dt
y(t) + L(t)y(t) + g(t) = 0

then x̂(t) defined by x̂(t) = y(−t) is a solution of the forward affine equation
d
dtx(t) = L̂(t)x(t) + f̂(t) where L̂(t) = L(−t) and f̂(t) = g(−t).

Moreover if T a(t, t0) is the anticausal evolution operator defined by the
operator valued function L(·) then T̂ (t, t0) defined by

T̂ (t, t0) = T a(−t,−t0), ∀t, t0 ∈ Î = {t ∈ R;−t ∈ I} (12)

is the causal evolution operator defined by the operator valued function L̂ :
Î → B(X ), L̂(t) = L(−t).

2.2 Linear differential equations with positive evolutions on
ordered Banach spaces

Let (X , ‖ · ‖) be a real Banach space ordered by a solid, closed, normal,
convex cone X+.

Let L : I → B(X ) be a strongly continuous operator valued function.
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Definition 1 We say that the operator valued function L(·) generates:
(i) a causal positive evolution on X , or a positive evolution (for short-

ness) if TL(t, t0)X+ ⊂ X+, for all t ≥ t0, t, t0 ∈ I.
(ii) an anticausal positive evolution on X , if T aL(t, t0)X+ ⊂ X+, for all

t ≤ t0, t, t0 ∈ I.

In other words, the operator valued function L(·) generates a positive
evolution on X if the solutions of the linear differential equation (1) have
the property that x(t; t0, x0) ∈ X+ for all t ≥ t0, t, t0 ∈ I if x0 ∈ X+. In this
case we shall say that the linear differential equation (1) defines a positive
evolution on X .

Similarly the operator valued function L(·) generates an anticausal posi-
tive evolution on X if and only if the solutions of linear differential equation
(5) have the property that y(t; t0, y0) ∈ X+, for all t ≤ t0, t, t0 ∈ I, if
y0 ∈ X+. In this case, we shall say that the linear differential equation (5)
defines an anticausal positive evolution on X .

Based on (12) we obtain:

Corollary 1 Let L : I → B(X ) be a strongly continuous operator valued
function and L̂(t) = L(−t), t ∈ Î. Then the operator valued function L(·)
defines an anticausal positive evolution if and only if the operator valued
function L̂(·) generates a causal positive evolution on X .

The next result was proved in [8] for the finite dimensional case. In
infinite dimensions, the proof can be found in [11].

Corollary 2 Let L(·),Π(·) be two strongly continuous operator valued func-
tions defined on I, taking values in B(X ). Assume that Π(t) ≥ 0 for all
t ∈ I. Then the following are true:

(i) If L(·) generates a positive evolution on X then L(·) + Π(·) generates
a positive evolution on X .

(ii) If L(·) generates an anticausal positive evolution on X , then L(·) +
Π(·) generates an anticausal positive evolution on X .

(iii) Π(·) generates both a causal positive evolution and anticausal posi-
tive evolution on X .

Definition 2 (i) We say that the zero state equilibrium of the linear dif-
ferential equation (1) is exponentially stable, or equivalently, the operator
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valued function L(·) generates an exponentially stable evolution if there exist
the constants β ≥ 1, α > 0 such that

‖T (t, t0)‖ ≤ βe−α(t−t0) (13)

for all t ≥ t0, t, t0 ∈ I.
(ii) We say that the zero state equilibrium of the linear differential equa-

tion (5) is anticausal exponentially stable, or equivalently, the operator valued
function L(·) generates an anticausal exponentially stable evolution on X if
there exist the constants β ≥ 1, α > 0 such that

‖T a(t, t0)‖ ≤ βeα(t−t0) (14)

for all t ≤ t0, t, t0 ∈ I.

Since both (1) and (5) are linear differential equations we will often say
that the linear differential equation (1) is exponentially stable and the linear
differential equation (5) is anticausal exponentially stable, respectively if
(13) and (14), respectively, are fulfilled.

It is worth mentioning that under the considered assumptions for any
ξ ∈ IntX+ the corresponding Minkovski operator norm ‖ · ‖ξ is equivalent
with the norm ‖ · ‖ (see the Appendix for the definition of ‖ · ‖ξ). Therefore,
the above definition may be stated in terms of the operator norm ‖ · ‖ξ for
some ξ ∈ IntX+.

Based on the identity (12) together with the Definition 2 we obtain:

Corollary 3 Let L : I → B(X ) be a strongly continuous operator valued
function and L̂(t) = L(−t), t ∈ Î = {t ∈ R;−t ∈ I}. Then the operator
valued function L(·) defines an anticausal exponentially stable evolution if
and only if the operator valued function L̂(·) generates a causal exponentially
stable evolution.

The above corollary allows us to derive criteria for anticausal exponen-
tial stability of a linear differential equation defined by an operator valued
function L(·) directly from the criteria for causal exponential stability for
the linear differential equation defined by the operator valued function L̂(·).

Criteria for exponential stability of differential equations with positive
evolution on an ordered Banach space are derived in [11].
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2.3 The case of differential equations with positive evolution
on ordered Hilbert spaces

Throughout this subsection (X ; 〈·, ·〉) is a real Hilbert space, ordered by the
ordering ”≤” induced by the closed, solid, selfdual, convex cone. Based on
Proposition 2.4 in [10] we deduce that the norm ‖ · ‖, induced by the inner
product is monotone with respect to the cone X+. So, X+ is a normal cone
with a constant b̃ = 1 (see Definition 5 from the Appendix).

Let ξ ∈ IntX+ be fixed and | · |ξ be the corresponding Minkovski norm.
As we can see, applying Proposition 4 and Proposition 5 one deduces that
| · |ξ is equivalent with the norm ‖ · ‖ of the Hilbert space X . It is known
that, if T ∈ B(X ) and T ∗ is its adjoint operator, then, ‖T ∗‖ = ‖T‖. The
equality ‖T ∗‖ξ = ‖T‖ξ is not, in general, true. However, one can prove, via
the equivalence of the operator norms ‖·‖ and ‖·‖ξ, that there exist positive
constants, c̃1, c̃2 such that

c̃1‖T‖ξ ≤ ‖T ∗‖ξ ≤ c̃2‖T‖ξ, ∀ T ∈ B(X ). (15)

Let L : I → B(X ) be a continuous operator valued function, I ⊂ R
being a right unbounded interval. In this case t→ L∗(t) : I → B(X ) is also
a continuous operator valued function. It is known that if T (t, τ), t, τ ∈ I,
is the linear evolution operator defined by the linear differential equation

d

dt
x(t) = L(t)x(t), t ∈ I (16)

then, τ → T ∗(t, τ) verifies

∂

∂τ
T ∗(t, τ) = −L∗(τ)T ∗(t, τ) (17)

T ∗(t, t) = IX .

So we have:
T ∗(t, τ) = T aL∗(τ, t) (18)

∀ t, τ ∈ I, where T aL∗(τ, t) is the anticausal linear evolution operator defined
by the operator valued function L∗(·). This means that, T aL∗(τ, t) is a linear
evolution operator associated to the linear differential equation

d

dτ
y(τ) = −L∗(τ)y(τ). (19)

Combining (15), (18) one obtains the following result:
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Proposition 1 If L : I → B(X ) is a continuous operator valued function,
then the following statements are true:

(i) The operator valued function L(·) defines a causal positive evolution
on X , iff the operator valued function L∗(·) defines an anticausal positive
evolution on X .

(ii) The operator valued function L(·) defines an exponentially stable evo-
lution on X iff the operator valued function L∗(·) defines an anticausal ex-
ponentially stable evolution on X .

Using criteria for the anticausal exponential stability of the linear differ-
ential equation defined by the operator valued function L∗(·) and taking into
account the equality (18) and Proposition 1 one obtains a set of criteria for
the causal exponential stability of the linear differential equation (16). For
details see [11]. Such criteria are specific to the linear differential equations
with positive evolution on ordered Hilbert spaces.

3 Ordered vector spaces of sequences of symmetric
matrices

This section collects several examples of real ordered Banach spaces. As
usual |x| stands for the euclidian norm of a vector x ∈ Rn, that is, |x| =
(xTx)1/2. For a matrix A ∈ Rm×n, |A| stands for the matrix norm induced
by the euclidian norm | · |, that is

|A| = sup
|x|≤1

|Ax| (20)

Also, we shall use the notation |A|2 for the Frobenius norm of the matrix A,
i.e.

|A|2 =
(
Tr[ATA]

)1/2
(21)

where Tr[·] stands for the trace operator. Beside the two norms introduced
before, we shall use also the norm

|A|1 = Tr
[
(ATA)1/2

]
(22)

where (ATA)1/2 is the unique positive semidefinite matrix X such that X2 =
ATA.
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Let Sn ⊂ Rn×n be the linear subspace of symmetric matrices of size
n× n, that is S ∈ Sn iff S = ST .

The restrictions of the norm (20)-(22) to the subspace Sn take the equiv-
alent form:

|S| = max{|λ|;λ ∈ Λ(S)} = sup
|x|≤1
{|xTSx|} (23)

|S|2 =

(
n∑
i=1

λ2
i

)1/2

(24)

|S|1 =
n∑
i=1

|λi| (25)

where λ1, ..., λn ∈ Λ(S) with Λ(S) is the spectrum of the matrix S.
For a matrix S ∈ Sn the following hold:

|S| ≤ |S|2 ≤ |S|1 ≤ n|S|. (26)

Throughout this paper D denotes either the set {1, 2, ..., d} or the set Z+.

3.1 The space SDn
Let X = SDn = `∞{D,Sn} be the linear space of the bounded sequences of
symmetric matrices, that is

`∞{D,Sn} =
{

X = {X(i)}i∈D|X(i) ∈ Sn, i ∈ D, sup
i∈D
|X(i)| < +∞

}
.

The space SDn equipped with the norm

‖X‖∞ = sup
i∈D
|X(i)| (27)

is a real Banach space. On SDn we consider the ordering induced by the cone
X+ = SDn+ = `∞{D,Sn+} where

`∞{D,Sn+} = {X = {X(i)}i∈D;X(i) ≥ 0, i ∈ D} . (28)
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Here X(i) ≥ 0 means that X(i) is positive semidefinite. One verifies that
X+ is a closed, solid, convex cone. Its interior IntX+ consists of the subset
of the sequences X = {X(i), i ∈ D;X(i) ≥ δIn,∀i ∈ D for some δ > 0
independent of i}.

Based on the monotonicity of the norm | · | on Sn one obtains that ‖ · ‖∞
introduced by (27) is monotone with respect to the cone X+. Hence X+ is
a normal cone.

Further we shall use Sdn instead of SDn and Sdn+ for SDn+ when D =
{1, 2, .., d}, while S∞n is used for SDn when D = Z+. In the last case, S∞n+

stands for the convex cone `∞(Z+,Sn+). It is obvious that (Sdn, ‖ · ‖∞) is a
finite dimensional real ordered Banach space, while (S∞n , ‖·‖∞) is an infinite
dimensional real ordered Banach space.

Specializing the results from Theorem 4, Proposition 4, Proposition 5,
to the ordered Banach space SDn we obtain:

Corollary 4 In the case of the Banach space (SDn , ‖·‖∞), the following hold:
(i) If D = {1, 2, ..., d} and Jd = (In, In, ..., In)︸ ︷︷ ︸

d

∈ IntSdn+ then the

Minkovski norm defined by (112) for ξ = Jd is:

|X|Jd = ‖X‖∞ (29)

for all X = (X(1), X(2), ..., X(d)) ∈ Sdn.
(ii) If D = Z+ and J∞ = (In, In, ..., In, ...) ∈ IntS∞n+ then the Minkovski

norm introduced by (112) for ξ = J∞ is given by

|X|J∞ = ‖X‖∞ (30)

for all X = {X(i)}i∈Z+.

Remark 4 For the sake of brevity we shall use |X| and |X|, respectively,
instead of |X|Jd and |X|J∞, respectively, for the Minkovski norms defined
by (29) and (30), respectively, if no confusions are possible.

3.2 The space `1(D,Sn)

Let X = `1(D,Sn), where

`1(D,Sn) = {X = {X(i)}i∈D ⊂ Sn;
∑
i∈D
|X(i)|1 <∞}.
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Taking

‖X‖1 =
∑
i∈D
|X(i)|1 (31)

one obtains that (X , ‖ · ‖1) is a real Banach space.
On the Banach space (X , ‖·‖1) we consider the order relation induced by

the convex cone X+ = `1(D,Sn+) = {X ∈ `1(D,Sn); X = {X(i)}i∈D, X(i) ≥
0}. It is a closed convex cone. In the case D = {1, 2, ..., d}, `1(D,Sn)
coincides with Sdn and `1(D,Sn+) coincides with Sdn+. In the case D = Z+,
X = `1(Z+,Sn) ⊂ S∞n . The convex cone `1(Z+,Sn+) has an empty interior.
Finally, let us remark that based on (26) we may introduce a new norm on
X , by

‖̃X‖̃1 =
∑
i∈D
|X(i)|. (32)

Based on (26), (32) we deduce that the norms ‖ ·‖1 and ‖̃ · ‖̃1 are equivalent,
more precisely we have:

‖̃X‖̃1 ≤ ‖X‖1 ≤ n‖̃X‖̃1 (33)

for all X = {X(i)}i∈D ∈ `1(D,Sn).

3.3 The space `2(D,Sn)

Let X = `2(D,Sn) = {X = {X(i)}i∈D ⊂ Sn;
∑
i∈D

(|X(i)|2)2 < ∞}. On

`2(D,Sn) we introduce the inner product:

〈X,Y〉2 =
∑
i∈D

Tr[X(i)Y (i)] (34)

for all X = {X(i)}i∈D, Y = {Y (i)}i∈D from `2(D,Sn).
To show that the sum from the right hand side of (34) is convergent, let

us remark that∑
i∈D

Tr[X(i)Y (i)] =
1
4

∑
i∈D

{
|X(i) + Y (i)|22 − |X(i)− Y (i)|22

}
=

1
4

{∑
i∈D
|X(i) + Y (i)|22 −

∑
i∈D
|X(i)− Y (i)|22

}
∈ R
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because ∑
i∈D
|X(i) + Y (i)|22 < +∞

∑
i∈D
|X(i)− Y (i)|22 < +∞.

One may check that the inner product 〈·, ·〉2 induces a real Hilbert space
structure on `2(D,Sn). Set

‖X‖2 = 〈X,X〉1/22 . (35)

On the space `2(D,Sn) we consider the order relation induced by the convex
cone X+ = `2(D,Sn+) = {X = {X(i)}i∈D ∈ `2(D,Sn);X(i) ≥ 0, i ∈ D}.
The cone `2(D,Sn+) is a closed cone. If D = Z+ its interior is empty.
Remark 5 In the case D={1, 2, ..., d}the linear spaces `∞(D,Sn), `1(D,Sn),
`2(D,Sn) coincide with Sdn = Sn × Sn × ...× Sn︸ ︷︷ ︸

d

.

On Sdn we have three norms:
‖ · ‖∞ introduced via (27),
‖ · ‖1 defined in (31) and
‖ · ‖2 introduced by (35) for D = {1, 2, ..., d}.
We have ‖S‖∞ ≤ ‖S‖2 ≤ ‖S‖1 ≤ nd‖S‖∞ for all S ∈ Sdn. The convex

cone `2(D,Sn+) coincides with the convex cone Sdn+ = Sn+ × Sn+...Sn+︸ ︷︷ ︸
d

if

D = {1, 2, ..., d}. The cone Sdn+ is a closed, solid, selfdual convex cone. It is
selfdual with respect to the inner product

〈X,Y 〉 =
d∑
i=1

Tr[X(i)Y (i)] (36)

for all X = (X(1), X(2), ..., X(d)), Y = (Y (1), Y (2), ..., Y (d)) ∈ Sdn which is
the special form of (34) for the case D = {1, 2, ..., d}.

In the case D = Z+ we have the following result.

Proposition 2 If `1(Z+,Sn) and `2(Z+,Sn+) are the linear spaces intro-
duced in a previous subsections for D = Z+ then

`1(Z+,Sn) ⊂ `2(Z+,Sn+).

Proof is similar to the one given in [19] for the case of sequences of
nuclear operators and Hilbert-Schmith operators.
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4 Lyapunov type linear differential equations on
the space SDn

In this section we emphases several properties of an important class of oper-
ator valued functions on the Banach spaces SDn and `1(Z+,Sn), respectively.
These operators extend to this framework the well known Lyapunov op-
erators and they will play an important role in the characterization of the
exponential stability in mean square of stochastic linear differential equation.

4.1 Extended Lyapunov operators

LetMDmn := `∞(D,Rm×n) be the space of the bounded sequences of matri-
ces A = {A(i)}i∈D where A(i) ∈ Rm×n. We introduce the norm ‖A‖∞ =
sup
i∈D
|A(i)| where |A(i)| is defined by (20). One obtains that (MDmn, ‖ · ‖∞)

is a real Banach space. If m = n we shall write MDn instead of MDnn. If
D = Z+,M∞mn andM∞n , respectively stand forMDmn andMDn . It is obvious
that SDn ⊂MDn .

We make the following convention of notation:
(a) If A = {A(i)}i∈D ∈ MDmn, X = {X(i)}i∈D ∈ MDnp, by Y = AX we

understand the sequence Y = {Y (i)}i∈D ∈MDmp, Y (i) = A(i)X(i), i ∈ D.
(b) If A = {A(i)}i∈D ∈MDmn then AT = {AT (i)}i∈D ∈MDnm.
Let A : I → MDn be a continuous function. This means that A(t) =

{A(t, i)}i∈D, where t → A(t, i) are matrix valued functions which are con-
tinuous on I uniformly with respect to i ∈ D.

The extended Lyapunov operators associated to A(t):

LA(t) : SDn → SDn ,

LA(t) : SDn → SDn ,

are defined as follows

LA(t)X = A(t)X +XAT (t) (37)

LA(t)X = AT (t)X +XA(t) (38)

for all X = {X(i)}i∈D ∈ SDn .
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According to the notation introduced at the beginning of this subsection
the ith component of (37) and (38) respectively, is:

[LA(t)X](i) = A(t, i)X(i) +X(i)AT (t, i)

[LA(t)X](i) = AT (t, i)X(i) +X(i)A(t, i)

i ∈ D, t ∈ I.
We deduce that ‖LA(t)X‖∞ ≤ 2‖A(t)‖∞‖X‖∞ and ‖LA(t)X‖∞ ≤

2‖A(t)‖∞‖X‖∞. Hence, LA(t),LA(t) ∈ B(SDn ). Moreover t → LA(t) and
t→ LA(t) are continuous functions in the topology induced by the operator
norm.

Remark 6 To be sure that the linear differential equations (39), (44), re-
spectively, defined by LA(t) and LA(t) on SDn have nice properties, would be
sufficient to assume that t → LA(t) and t → LA(t) are strongly continuous
operator valued functions. This means that for each X ∈ SDn , t → LA(t)X
and t → LA(t)X are continuous vector valued functions. If we take X =
{X(i)}i∈D with X(i) = In, ∀i ∈ D one obtains that t → AT (t) + A(t) must
be continuous. This condition is not far from our assumption that t→ A(t)
is a continuous function.

Let us consider the extended Lyapunov equation

d

dt
X(t) = LA(t)X(t), t ∈ I. (39)

Let TA(t, t0) t, t0 ∈ I be the linear operator defined by

(TA(t, t0)X)(i) = Φi(t, t0)X(i)ΦT
i (t, t0) (40)

∀i ∈ D and X = {X(i)}i∈D ∈ SDn , where Φi(t, t0) is the fundamental matrix
solution of the linear differential equation on Rn:

d

dt
x(t) = A(t, i)x(t).

This means that t→ Φi(t, t0) verifies

d

dt
Φi(t, t0) = A(t, i)Φi(t, t0) (41)

Φi(t0, t0) = In.
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Based on the convention of notations introduced before we may write (40)
in the compact form:

TA(t, t0)X = Φ(t, t0)XΦT (t, t0) (42)

for all t, t0 ∈ I, where Φ(t, t0) = {Φi(t, t0)}i∈D. If D = {1, 2, ..., d} one may
check that t→ Φ(t, t0) is a differentiable map and it satisfies:

d

dt
Φ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = Jd = (In...In).

By direct calculations one obtains from (42) that

d

dt
TA(t, t0)X = LA(t)TA(t, t0)X (43)

TA(t0, t0)X = X

for all t, t0 ∈ I, X ∈ Sdn. Therefore TA(t, t0) defined by (40), or equivalently
by (42) is just the linear evolution operator on Sdn defined by the linear
differential equation (39).

It remains to show that (40) defines also the linear evolution operator
generated by (39) on S∞n . To this end, let us notice that

|Φi(t, s)| ≤ eγ(t−s)

for all i ∈ Z+, t, s ∈ I, where γ = supt∈I ‖A(t)‖∞. Using also the fact that
t → A(t, i) are continuous functions uniformly with respect to i ∈ Z+ we
deduce that

lim
h→0

1
|h|
|Φi(t+ h, t0)− Φi(t, t0)− hA(t, i)Φi(t, t0)| = 0

uniformly with respect to i ∈ Z+.
This shows that t → Φ(t, t0) : I → M∞n is a differentiable map and it

satisfies:

d

dt
Φ(t, t0) = LA(t)Φ(t, t0), Φ(t0, t0) = J∞ = (In...In...) ∈ S∞n .

Thus we may obtain that TA(t, t0) defined by (42) for D = Z+ is differen-
tiable and satisfies (43).
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Remark 7 From (40) one sees that TA(t, t0)X ∈ SDn+ if X ∈ SDn+. This
shows that the operator valued function LA(·) generates a positive evolution
on the Banach space SDn .

Changing A(t, i) with AT (t, i) in (40), (41) one obtains that the oper-
ator valued function LA(·) generates also positive evolution on the Banach
space SDn . However, concerning the operator valued function LA(·) we are
interested by the anticausal evolution operator T aA(t, t0) defined by the linear
differential equation

d

dt
Y (t) + LA(t)Y (t) = 0. (44)

Reasoning as in the case of the equation (39) we may conclude that

(T aA(t, t0)Y )(i) = ΦT
i (t0, t)Y (i)Φi(t0, t) (45)

for all i ∈ D, 0 ≤ t ≤ t0, Y = {Y (i)}i∈D ∈ SDn .
From (45) one deduces that the operator valued function LA(·) generates

an anticausal positive evolution on the Banach space SDn .

4.2 Lyapunov-type differential equations on the space Sdn
Let I ⊆ R be an interval and Ak : I → Md

n, k = 0, . . . , r be continuous
functions

Ak (t) = (Ak (t, 1) , . . . Ak (t, d)) , k ∈ {0, . . . , r} , t ∈ I.

Denote by Q ∈ Rd×d a matrix which elements qij verify the condition

qij ≥ 0 if i 6= j. (46)

For each t ∈ I we define the linear operator L (t) ,L (t) : Sdn → Sdn by

(L (t)S) (i) = A0 (t, i)S (i) + S (i)AT0 (t, i) (47)

+
r∑

k=1

Ak (t, i)S (i)ATk (t, i) +
d∑
j=1

qjiS (j) ,

(L (t)S) (i) = AT0 (t, i)S (i) + S (i)A0 (t, i) (48)

+
r∑

k=1

ATk (t, i)S (i)Ak (t, i) +
d∑
j=1

qijS (j)
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i ∈ D, S ∈ Sdn. It is easy to see that t 7−→ L (t) and t 7−→ L (t) are continuous
operator valued functions.

One can see that (47) and (48) may be written as:

L(t)S = LA(t)S + Π(t)S

L(t)S = LA(t)S + Π̃(t)S

where LA(t) and LA(t) are the extended Lyapunov operators introduced via
(37) and (38), respectively, for D = {1, 2, ..., d} and A(t, i) = A0(t, i)+ 1

2qiiIn,

(Π(t)S)(i) =
r∑

k=1

Ak(t, i)S(i)ATk (t, i) +
d∑

j=1,j 6=i
qjiS(j),

(Π̃(t)S)(i) =
r∑

k=1

ATk (t, i)S(i)Ak(t, i) +
d∑

j=1,j 6=i
qijS(j).

Based on (46) one obtains that Π(t)S ≥ 0, Π̃(t)S ≥ 0 if S ≥ 0. Therefore,
combining Remark 7 and Corollary 2 (i) we conclude that the operator
valued function L(·) introduced via (47) generates a positive evolution on Sdn.
Also, combining (45) and Corollary 2 (ii) we infer that the operator valued
function L(·) defines an anticausal positive evolution on Sdn. Moreover, by
direct calculation one obtains that L(t) = L∗(t) where L∗(t) is the adjoint
operator with respect to the inner product (36) of L(t).

The Lyapunov operator L (t) defines the following linear differential equa-
tion on Sdn:

d

dt
S (t) = L (t)S (t) , t ∈ I (49)

while, the linear operator L(t) defines the following backward differential
equation

d

dt
S (t) + L (t)S (t) = 0, t ∈ I. (50)

Criteria for exponential stability of the zero solution of differential equations
(49) and (50) may be found in Chapter 2 in [9].
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4.3 Lyapunov-type differential equations on the space S∞n
4.3.1 Definition and basic properties

Let Ak : I → M∞n , 0 ≤ k ≤ r be continuous and bounded functions. This
means that Ak(t) = {Ak(t, i)}i∈Z+ are such that t→ Ak(t, i) are continuous
functions on I uniformly with respect to i ∈ Z+ and supt∈I ‖Ak(t)‖∞ <∞.
Let Q = (qij)i,j∈Z+ be an infinite real matrix whose elements satisfy the
conditions:

qij ≥ 0, if i 6= j (51)

and

sup
i∈Z+

(|qii|+
∞∑

j=0,j 6=i
qij) = ν <∞. (52)

It is worth mentioning that the conditions (51) and (52) are satisfied by
the generator matrix of a standard homogeneous Markov process with an
infinite countable number of states (η(t), P,Z+) (see Section 7 in [11] for
more details).

Based on the functions t → Ak(t, i) and the elements qij of the matrix
Q, one constructs the operators L and L by:

(L(t)X)(i)=A0(t, i)X(i)+X(i)AT0 (t, i)+
r∑

k=1

Ak(t, i)X(i)ATk (t, i)+
∞∑
j=0

qjiX(j)

(53)

(L(t)X)(i)=AT0 (t, i)X(i)+X(i)A0(t, i)+
r∑

k=1

ATk (t, i)X(i)Ak(t, i)+
∞∑
j=0

qijX(j)

(54)
for all sequences X = {X(i)}i∈Z+ .

Lemma 1 If the real numbers qij satisfy conditions (51) and (52) then for
each t ∈ I, L(t) ∈ B(`1(Z+,Sn)) and L(t) ∈ B(S∞n ).

Proof. If X ∈ `1(Z+,Sn) then one obtains via (32), (51)-(53) that:

‖̃L(t)X ‖̃1 =
∞∑
i=0

|(L(t)X)(i)| ≤ γ(t)‖̃X ‖̃1
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where

γ(t) = 2‖A0(t)‖∞ +
r∑

k=1

‖Ak(t)‖2∞ + ν. (55)

Based on (33) we may write ‖L(t)X‖1 ≤ n‖̃L(t)X ‖̃1 ≤ nγ(t)‖̃X ‖̃1 which
yields ‖L(t)X‖1 ≤ nγ(t)‖X‖1. This shows that L(t) introduced by (53)
defines a linear and bounded operator on `1(Z+,Sn) and ‖L(t)‖1 ≤ nγ(t),
t ≥ 0.

Similarly, if X ∈ S∞n one obtains via (51), (52), (54) that

‖L(t)X‖∞ ≤ γ(t)‖X‖∞

where γ(t) is defined by (55). This completes the proof.

In the developments of this paper the linear operator L(t) introduced via
(53) will be named the Lyapunov type operator on the space `1(Z+,Sn) de-
fined by the system (A0, A1, ..., Ar;Q) while L(t) will be named the Lyapunov
type operator on the space S∞n defined by the system (A0, A1, ..., Ar;Q).

Proposition 3 [11] Under the considered assumptions, the operator valued
function L(·) introduced by (53) defines a positive evolution on `1(Z+,Sn)
while, the operator valued function L(·) introduced by (54) defines an anti-
causal positive evolution on the Banach space S∞n .

Let T (t, τ), (t, τ) ∈ I × I be the linear evolution operator on `1(Z+,Sn)
defined by the linear differential equation

d

dt
X(t) = L(t)X(t). (56)

This means that d
dtT (t, τ) = L(t)T (t, τ), T (τ, τ) = I`1(Z+,Sn).

Consider, also T a(t, τ) the anticausal linear evolution operator on S∞n
defined by the backward linear differential equation

d

dt
X(t) + L(t)X(t) = 0. (57)

This means that
∂
∂tT

a(t, τ) = −L(t)T a(t, τ),
T a(τ, τ) = IS∞n .

(58)
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Remark 8 Under the considered assumptions the operator valued functions
t→ L(t) and t→ L(t) are continuous in the topology induced by the norms
of Banach algebras B(`1(Z+,Sn)) and B(S∞n ), respectively.

In the previous subsection we saw that in the case D = {1, 2, ..., d} the
operator defined by (48) which is the analogous of the operator L(t) (intro-
duced by (54)) coincides with the adjoint L∗(t) of the operator L(t).

In the case D = Z+, such an equality is not possible because the operator
L(t) and L(t) act on different linear spaces.

In the next developments we shall see that under some additional assump-
tions the restriction of the operator L(t) to the Hilbert space (`2(Z+,Sn), ‖ ·
‖2) coincides with the adjoint operator of L(t).

To this end we need the following auxiliary result which could be also of
interest in itself.

Lemma 2 If A,M ∈ Rn×n are given matrices, then |AM |2 ≤ min{|A||M |2,
|A|2|M |} where | · | and | · |2 are the norms introduced by (20) and (21).

Theorem 1 Assume that beside the conditions (51)-(52) the real numbers
qij satisfy the condition:

sup
i∈Z+

∞∑
j=0

|qji| = q̃ < +∞. (59)

Let L̃(t) = L(t)|`2(Z+,Sn) be the restriction of the operator L(t) to `2(Z+,Sn) ⊂
S∞n . Under these conditions, for each t ∈ I, the following hold:

(i) L̃(t) ∈ B(`2(Z+,Sn)).
(ii) L(t) ∈ B(`2(Z+,Sn)).
(iii) L̃(t) = L∗(t).

Proof. (i) Let X = {X(i)}i∈Z+ ∈ `2(Z+,Sn) be arbitrary but fixed.
Based on (54) we obtain

|(L(t)X)(i)|22 ≤ 4[|AT0 (t, i)X(i)|22 + |X(i)A0(t, i)|22+

|
r∑

k=1

ATk (t, i)X(i)Ak(t, i)|22 + |
∞∑
j=0

qijX(j)|22].



Lyapunov operators on ordered Banach spaces 87

Based on Lemma 2 we deduce

|(L(t)X)(i)|22 ≤ 4

γ1(t)|X(i)|22 +

 ∞∑
j=0

|qij ||X(j)|2

2 (60)

where γ1(t) = 2‖A0(t)‖2∞ + r
r∑

k=1

‖Ak(t)‖4∞.

Let N ∈ Z+, N ≥ 1 be arbitrary but fixed. We have N∑
j=0

|qij ||X(j)|2

2

≤
N∑
j=0

|qij |
N∑
j=0

|qij ||X(j)|22. (61)

Using (52) we obtain: N∑
j=0

|qij ||X(j)|2

2

≤ ν
N∑
j=0

|qij ||X(j)|22. (62)

Further we have
N1∑
i=0

(
N∑
j=0
|qij ||X(j)|2

)2

≤ ν
N∑
j=0

(
N1∑
i=0
|qij ||X(j)|22

)
for all

N1 ∈ Z+, N1 ≥ 1. Using (59) one gets:

N1∑
i=0

 N∑
j=0

|qij ||X(i)|2

2

≤ νq̃‖X‖22

for all N1, N ∈ Z+.
Taking the limit for N →∞, N1 →∞ one obtains

∞∑
i=0

 ∞∑
j=0

|qij ||X(j)|2

2

≤
∞∑
i=0

 ∞∑
j=0

|qij ||X(j)|2

2

≤ νq̃‖X‖22 (63)

for all i ∈ Z+.
So, we have shown that the right hand side of (60) is finite. Further,

from (60)-(63) we deduce:

∞∑
i=0

|(L(t)X)(i)|22 ≤ 4(γ1(t) + νq̃)‖X‖22.
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This shows that (L(t)X) ∈ `2(Z+,Sn) if X ∈ `2(Z+,Sn). Furthermore we
have ‖L(t)X‖2 ≤ γ2(t)‖X‖2 ∀X ∈ `2(Z+,Sn), with

γ2(t) = 2(γ1(t) + νq̃)
1
2 . (64)

Thus (i) is proved.
Further we show that (53) is well defined ifX = {X(i)}i∈Z+ ∈ `2(Z+,Sn).

Proceeding as in the proof of (i), we show that

|(L(t)X)(i)|22 ≤ 4

γ1(t)|X(i)|22 +

 ∞∑
j=0

|qji||X(i)|2

2 (65)

i ∈ Z+, γ1(t) being as in (60).

For each N ≥ 1 we have (
N∑
j=0
|qji||X(j)|2)2 ≤

N∑
j=0
|qji|

N∑
j=0
|qji||X(j)|22

which yields (
N∑
j=0
|qji||X(j)|2)2 ≤ q̃

N∑
j=0
|qji||X(j)|22.

Further we obtain
N1∑
i=0

(
N∑
j=0
|qji||X(j)|2

)2

≤ νq̃‖X‖22.

Taking the limits for N →∞ and N1 →∞ we deduce

∞∑
i=0

 ∞∑
j=0

|qji||X(j)|2

2

≤
∞∑
i=0

(
∞∑
j=0

|qji||X(j)|2)2 ≤ νq̃‖X‖22

for all i ∈ Z+, X ∈ `2(Z+,Sn).
This shows that the right hand side of (65) is finite for all i ∈ Z+.

Furthermore we obtain that

∞∑
i=0

|(L(t)X)(i)|22 ≤ γ2(t)‖X‖22, (∀) X ∈ `2(Z+,Sn)

where γ2(t) is defined as in (64). Thus we have proved that L(t)∈B(`2(Z+,Sn).
In order to prove (iii) one employs (34), (53), (54) to show that the

equality 〈L̃(t)X,Y 〉2 = 〈X,L(t)Y 〉2 holds for all X,Y ∈ `2(Z+,Ln). Thus
the proof is complete.
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Remark 9 Under the assumptions of Lemma 1, the condition (59) is satis-
fied if there exist h1 ≥ 0, h2 ≥ 0 such that qij = 0 if i < j−h1 or i > j+h2.
In this case (59) is satisfied with q̃ = (h1 + h2 + 1)ν where ν is the constant
from (52).

By direct calculation one shows that L̃ : I → B(`2(Z+,Sn)) is a strongly
continuous operator valued function. This function defines the linear differ-
ential equation:

d

dt
Y (t) + L̃(t)Y (t) = 0 (66)

t ∈ I on the space (`2(Z+,Sn), ‖ · ‖2).
Let T a

L̃
(t, τ), t, τ ∈ I, be the anticausal linear evolution operator on

`2(Z+,Sn) defined by the linear differential equation (66).

Corollary 5 Under the assumptions of the Theorem 1 we have:

T a
L̃

(τ, t) = T ∗(t, τ), ∀ t, τ ∈ I.

T (t, τ) being the linear evolution operator defined by L(t) ∈ B(`2(Z+,Sn)).

Proof follows from Theorem 1 (iii) and the equality (18).

Let L(t) = LA(t)+Π̃(t) be the partition of the linear operator L(t) where

(Π̃(t)X)(i) =
r∑

k=1

ATk (t, i)X(i)Ak(t, i) +
∞∑

j=0,j 6=i
qijX(j). (67)

We prove:

Lemma 3 For any monotone and bounded sequence {Xk}k∈Z+ ⊂ S∞n we
have:

(i) lim
k→∞

(Π̃(t)[Xk])(i) = (Π̃(t)[X])(i) for all i ∈ Z+, t ∈ I.

(ii) lim
k→∞

(T a(t, t0)Xk)(i) = (T a(t, t0)X)(i) for all i ∈ Z+, t ≤ t0, t, t0 ∈
I, where X = {X(i)}i∈Z+ ∈ S∞n is defined by X(i) = lim

k→∞
Xk(i), i ∈ Z+.
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Proof. Without loss of generality we may assume that {Xk}k∈Z is an
increasing and bounded sequence. This means that there exist µj ∈ R,
j = 1, 2 such that

µ1In ≤ Xk(i) ≤ Xk+1(i) ≤ µ2In, ∀(k, i) ∈ Z+ × Z+ (68)

Therefore, for each i ∈ Z+, X(i) ∈ Sn is well defined by

X(i) = lim
k→∞

Xk(i). (69)

Based on (68) we infer that X = {X(i)}i∈Z+ ∈ S∞n . From (67) we obtain

(Π̃(t)Xk)(i)−(Π̃(t)X)(i)=
r∑
l=1

ATl (t, i)(Xk(i)−X(i))Al(t, i)+

+
∞∑
j=0
j 6=i

qij(Xk(j)−X(j)). (70)

First, from (68) we obtain

lim
k→∞

r∑
k=1

ATl (t, i)(Xk(i)−X(i))Al(t, i) = 0 (71)

On the other hand, applying Corollary 7 from the Appendix for ak(j) =
qij |Xk(j) − X(j)|, we deduce that limk→∞

∑∞
j=0,j 6=i qij |Xk(j) − X(j)| = 0

which leads to

lim
k→∞

∞∑
j=0,j 6=i

qij(Xk(j)−X(j)) = 0. (72)

Combining (70)-(72) we obtain that (i) is true.
Let us now prove that (ii) holds. To this end, let us denote Yk(t) =

T a(t, t0)Xk, t ∈ (−∞, t0]∩I, t0 ∈ I being fixed. Since T a(t, t0) is a positive
operator, if t ≤ t0 the inequalities (68) yield

µ1(T a(t, t0)J∞)(i) ≤ Yk(t, i) ≤ Yk+1(t, i) ≤ µ2(T a(t, t0)J∞)(i) (73)

for all i ∈ Z+, t ≤ t0, t ∈ I. From (73) we obtain that the matrices Z(t, i)
are well defined by

Z(t, i) = lim
k→∞

Yk(t, i), i ∈ Z+, t ∈ (−∞; t0] ∩ I.
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Furthermore (73) yields |Z(t, i)| ≤ µ3|T a(t, t0)J∞| = µ3‖T a(t, t0)‖ for all
i ∈ Z+. This leads to

|Z(t)| ≤ µ3‖T a(t, t0)‖, ∀t ∈ I, t ≤ t0,

where Z(t) = {Z(t, i)}i∈Z+ .
Since t → ‖L(t)‖∞ is a bounded function we deduce that ‖T a(t, t0)‖ ≤

ec(t0−t), for all t ∈ I, t ≤ t0. This leads to

|Z(t)| ≤ µ3e
c(t0−t). (74)

Reasoning in the same way we obtain from (73)

|Yk(t)| ≤ µ3e
c(t0−t) (75)

for all t ∈ I, t ≤ t0, k ∈ Z+.
Let T aA(t, s) be the anticausal linear evolution operator on S∞n defined by

the extended Lyapunov operator LA(t). We have the representation formula

Yk(t) = T aA(t, t0)Xk +

t0∫
t

T aA(t, s)Π̃(s)Yk(s)ds

for all t ≤ t0, t ∈ I.
Based on (45) written for A(t, i) replaced by A0(t, i) + 1

2qiiIn, we obtain
the component wise representation formula

Yk(t, i) = ΦT
i (t0, t)Xk(i)Φi(t0, t) +

t0∫
t

ΦT
i (s, t)(Π̃(s)Yk(s))(i)Φi(s, t)ds (76)

for all i ∈ Z+, t ≤ t0, t ∈ I, where Φi(s, t) is the fundamental matrix solution
of the differential equation

d

dt
x(t) = (A0(t, i) +

1
2
qiiIn)x(t).

Using the result proved in the part (i) of the lemma, we obtain that

lim
k→∞

ΦT
i (s, t)(Π̃(s)Yk(s))(i)Φi(s, t) = ΦT

i (s, t)(Π̃(s)Z(s))(i)Φi(s, t) (77)

for all i ∈ Z+, t ≤ s ≤ t0.
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We recall that the boundedness of the function s → ‖A0(s)‖∞ together
with (52) allow us to deduce that

|Φi(s, t)| ≤ ec1(s−t), (78)

∀t ≤ s ≤ t0, t ∈ I, where c1 > 0 is a constant not depending upon s, t.
Further, from (76), (78) together with the boundedness of the functions

s→ ‖Al(s)‖∞, 0 ≤ l ≤ r yield

xTΦT
i (s, t)(Π̃(s)Yk(s))(i)Φi(s, t)x ≤ β̃ec̃(s−t)|x|2 (79)

for all t ≤ s ≤ t0, where β̃, c̃ are positive constants. Applying Lebesque’s
Theorem we obtain via (77) and (79) that

lim
k→∞

t0∫
t

xTΦT
i (s, t)(Π̃(s)Yk(s))(i)Φi(s, t)xds

=

t0∫
t

xTΦT
i (s, t)(Π̃(s)Z(s))(i)Φi(s, t)xds

for all x ∈ Rn. By a standard procedure, one obtains finally that

lim
k→∞

t0∫
t

ΦT
i (s, t)(Π̃(s)Yk(s))(i)Φi(s, t)ds =

t0∫
t

ΦT
i (s, t)(Π̃(s)Z(s))(i)Φi(s, t)ds

for all t ≤ t0, t ∈ I. Taking the limit for k →∞ in (76) we obtain that

Z(t, i) = ΦT
i (t0, t)X(i)Φi(t0, t) +

t0∫
t

ΦT
i (s, t)(Π̃(s)Z(s))(i)Φi(s, t)ds

for all i ∈ Z+, t ≤ t0, t ∈ I.
The above equality may be rewritten in a compact form:

Z(t) = T aA(t, t0)X +

t0∫
t

T aA(t, s)Π̃(s)Z(s)ds. (80)
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Under the considered assumptions the identity (80) allows us to deduce
that t → Z(t) is differentiable and additionally it solves the problem with
given terminal condition:

d

dt
Z(t) + L(t)Z(t) = 0, t ≤ t0 (81)

Z(t0) = X.

From the uniqueness of the solution of the problem (81) we conclude that

Z(t, i) = (T a(t, t0)X)(i) (82)

for all i ∈ Z+, t ≤ t0, t ∈ I.
The conclusion follows now from (82). So, the proof is complete. �

Lemma 4 Assume that the assumptions of Theorem 1 are fulfilled. Let
Hx
i = {Hx

i (j)}j∈Z+ be defined by

Hx
i (j) =

{
0, if j 6= i
xxT , if j = i.

(83)

where x ∈ Rn and i ∈ Z+ are arbitrary but fixed.
Under the considered assumptions we have:

‖T (t, τ)Hx
i ‖1 = xT [(T a(τ, t)J∞)(i)]x (84)

for all t ≥ τ , t, τ ∈ I.

Proof. First we notice that Hx
i ∈ `1(Z+,Sn) and ‖Hx

i ‖1 = |x|2. Therefore
T (t, τ)Hx

i is well defined and we have

‖T (t, τ)Hx
i ‖1 =

∞∑
j=0

Tr[(T (t, τ)Hx
i )(j)] (85)

for all t, τ ∈ I.
For each k ∈ Z+ we consider J∞k = {J∞k (j)}j∈Z+ where

J∞k (j) =
{
In, if 0 ≤ j ≤ k
0, if j > k.

It is obvious that J∞k ∈ `2(Z+,Sn) ⊂ S∞n and we have ‖J∞k ‖2 = (k + 1)
√
n

and ‖J∞k ‖∞ = 1. Also we have J∞k ≤ J∞k+1 ≤ J∞ for all k ∈ Z+. This
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yields: T a(τ, t)J∞k ≤ T a(τ, t)J∞k+1 ≤ T a(τ, t)J∞, for all k ∈ Z+, t ≥ τ ,
t, τ ∈ I because T a(τ, t) ≥ 0 for all t ≥ τ

This allows us to obtain

xT [(T a(τ, t)J∞k )(i)]x ≤ xT [(T a(τ, t)J∞k+1)(i)]x ≤ xT [(T a(τ, t)J∞)(i)]x (86)

for all k ∈ Z+. Moreover, applying Lemma 3 (ii) for Xk = J∞k we obtain
that

lim
k→∞

xT (T a(τ, t)J∞k )(i)x = xT (T a(τ, t)J∞)(i)x. (87)

On the other hand, from Theorem 1 (i) we deduce that T a(τ, t)J∞k ∈
`2(Z+,Sn). Therefore we may write:

xT [(T a(τ, t)J∞k )(i)]x = Tr[(T a(τ, t)J∞k )(i)xxT ] =

=
∞∑
j=0

Tr[(T a(τ, t)J∞k )(j)Hx
i (j)] = 〈T a(τ, t)J∞k ,Hx

i 〉2.

Further, the equality proved in Theorem 1 (iii) together with (18) yield:

〈T a(τ, t)J∞k ,Hx
i 〉2 = 〈T ∗(t, τ)J∞k ,H

x
i 〉2 =

= 〈J∞k , T (t, τ)Hx
i 〉2 =

k∑
j=0

Tr[(T (t, τ)Hx
i )(j)].

Thus we obtain

xT [(T a(τ, t)J∞k )(i)]x =
k∑
j=0

Tr[(T (t, τ)Hx
i )(j)]. (88)

Based on (88) we get

‖T (t, τ)Hx
i ‖1 = lim

k→∞

k∑
j=0

Tr[(T (t, τ)Hx
i )(j)] = lim

k→∞
xT [(T a(τ, t)J∞k )(i)]x.

(89)
The conclusion follows from (89) and (87). Thus the proof is complete. �

Theorem 2 Assume that the assumptions of Theorem 1 are fulfilled. Then
we have

‖T (t, τ)‖1 ≤ ‖T a(τ, t)‖ ∀ t ≥ τ, t, τ ∈ I. (90)
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Proof. Let i ∈ Z+ be arbitrary but fixed and ψi : `1(Z+,Sn)→ `1(Z+,Sn)
be defined by

ψi(X)(j) =
{

0, if j 6= i
X(i), if j = i

(91)

for any X = {X(j)}j∈Z+ ∈ `1(Z+,Sn). We have
∥∥∥∥X− k∑

i=0
ψi(X)

∥∥∥∥
1

=

∞∑
i=k+1

|X(i)|1 which leads to lim
k→∞

∥∥∥∥X− k∑
i=0

ψi(X)
∥∥∥∥

1

= 0.

Hence X =
∞∑
i=0

ψi(X) for all X ∈ `1(Z+,Sn).

Further we have

T (t, τ)X =
∞∑
i=0

T (t, τ)ψi(X) (92)

because T (t, τ) ∈ B(`1(Z+,Sn)).
Let λi1, λi2, ..., λin be real numbers and ei1, ei2, ..., ein ∈ Rn be orthogonal

vectors such that |eij | = 1, 1 ≤ j ≤ n and X(i) =
n∑
j=1

λijeije
T
ij . Combining

(83) and (91) we deduce:

ψi(X) =
n∑
j=1

λijH
eij
i (93)

where Heij
i is defined as in (83) with eij instead of x.

For each k ≥ 1 we write∥∥∥∥∥
k∑
i=0

T (t, τ)ψi(X)

∥∥∥∥∥
1

≤
k∑
i=0

‖T (t, τ)ψi(X)‖1 ≤
k∑
i=0

n∑
j=1

|λij |
∥∥T (t, τ)Heij

i

∥∥
1
.

Applying Lemma 4 we obtain

k∑
i=0

‖T (t, τ)Ψi(X)‖1 ≤
k∑
i=0

n∑
j=1

|λij |eTij [(T a(τ, t)J∞)(i)]eij ≤

≤
k∑
i=0

h∑
j=1

|λij ||(T a(τ, t)J∞)(i)|.
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Invoking (25) we infer
k∑
i=0
‖T (t, τ)ψi(X)‖1 ≤ ‖T a(τ, t)J∞‖∞

∞∑
i=0
|X(i)|1 for

all k ≥ 1.
Hence we have shown that

∞∑
i=0

‖T (τ, t)ψi(X)‖1 ≤ ‖T a(τ, t)J∞‖∞‖X‖1. (94)

Further, from (92)-(94) we get:

‖T (t, τ)X‖1 ≤ ‖T a(τ, t)J∞‖∞‖X‖1, ∀ X ∈ `1(Z+,Sn), t ≥ τ, t, τ ∈ I.

So, we may conclude that ‖T (t, τ)‖1 ≤ ‖T a(τ, t)J∞‖∞ for all t ≥ τ , t, τ ∈ I.
To show that the last inequality coincides with (90) we apply Theorem 5 in
the special case of the positive operator T a(τ, t) together with Corollary 4
(ii) and obtain that ‖T a(τ, t)J∞‖∞ = ‖T a(τ, t)‖. This ends the proof. �

4.3.2 Detectability and exponential stability

Let L and L be the Lyapunov type operators defined by (53) and (54),
respectively. In this section we discuss the exponential stability of the an-
ticausal evolution generated by L under detectability conditions and under
the assumptions of Theorem 1.
Since the cone `1(Z+,Sn+) has empty interior we cannot apply the devel-
opments from Section 4 in [11] in order to derive criteria for exponential
stability of the linear differential equation (56) on `1(Z+,Sn). The next
corollary shows that the criteria for anticausal exponential stability of (57)
could be used as necessary and sufficient conditions for the exponential sta-
bility of (56).

Corollary 6 Under the assumptions of Theorem 1 the following are equiv-
alent:

(i) the operator valued function L(·) defines an exponentially stable an-
ticausal evolution on S∞n ;

(ii) the operator valued function L(·) defines an exponentially stable evo-
lution on `1(Z+,Sn).

Proof. (i) → (ii). If (i) holds then there exist β ≥ 1, α > 0 such that
‖T a(τ, t)‖ ≤ βe−α(t−τ) for all τ, t ∈ I, t ≥ τ . Then from Theorem 2 we get

‖T (t, τ)‖1 ≤ βe−α(t−τ) (95)
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for all t ≥ τ , t, τ ∈ I. This shows that (ii) is true.
Let us prove now that (ii) → (i). If (ii) holds, then there exist β ≥ 1,

α > 0 such that (95) is true. From Lemma 4 we have

xT (T a(τ, t)J∞)(i)x ≤ ‖T (t, τ)‖1‖Hx
i ‖1

which yields xT (T a(τ, t)J∞)(i)x ≤ βe−α(t−τ)|x|2 for all t ≥ τ ∈ I, x ∈ Rn,
i ∈ Z+. Therefore |(T a(τ, t)J∞)(i)| ≤ βeα(τ−t), (∀) i ∈ Z+, which leads
to

‖T a(τ, t)J∞‖∞ ≤ βeα(τ−t). (96)

Applying Theorem 5 to the positive operator T a(τ, t) and using Corollary
4 (ii) we obtain from (96) that ‖T a(τ, t)‖ ≤ βeα(τ−t), for all t ≥ τ , t, τ ∈
I. This confirms that the implication (ii) → (i) is true. So the proof is
complete. �

Definition 3 Let C : I → M∞pn be a continuous, bounded function. We
say that the pair (L, C) is detectable if there is a continuous and bounded
function F : I →M∞np such that

LF (t) (X) = L (t) (X) + F (t)C (t)X +XC (t)T F (t)T , X ∈ `1(Z+,Sn)
(97)

generates a positive and exponentially stable causal evolution on `1(Z+,Sn).

A standard computation shows that t ∈ I → LF (t) ∈ B
(
`1(Z+,Sn)

)
is a well defined, strongly continuous mapping, which generates a causal
evolution operator TLF (t, s) on `1(Z+,Sn). Since LF and L have the same
form, we can apply Proposition 3 to deduce that TLF (t, s) is a positive
operator. Moreover, TLF (t, s) is exactly the restriction to `1(Z+,Sn) of the
positive causal evolution operator T̂LF (t, s) generated by LF on `2(Z+,Sn)
( [18], [3]). Let

LF (t) (X) = L (t) (X) + C (t)T F (t)T X +XF (t)C (t) ,

for all X ∈ S∞n and t ∈ I. Obviously, the conclusions of Corollary 6 re-
main true if we replace the operators L and L with LF and LF , respec-
tively. Therefore LF generates an anticausal exponentially stable evolution
on S∞n if and only if LF generates a causal exponentially stable evolution on
`1(Z+,Sn).
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Remark 10 The pair (L, C) is detectable if and only if there is F : I →
M∞n×p a continuous and bounded function such that LF (t) , t ∈ I generates
a positive and exponentially stable anticausal evolution on S∞n .

Let I = R+ := [0,∞). A mapping P : I→S∞n+ will be called nonnega-
tive. The next theorem is the main result of this section. It gives sufficient
conditions for the exponential stability of the anticausal evolution gener-
ated by the Lyapunov type operator L, in terms of global solvability of an
associated affine equation.

Theorem 3 Assume that (L, C) is detectable and the backward differential
equation

dP (t)
dt

+ L (t)P (t) + CT (t)C (t) = 0 (98)

has a nonnegative solution in the class of all bounded C1-mappings P :
I→S∞n . Then L generates an exponentially stable anticausal evolution on
S∞n .

Proof. If i ∈ Z+ and x ∈ Rn are fixed, then the unique solution in
`1(Z+,Sn) of the equation

dZ (t)
dt

= L (t) (Z (t)) , t ≥ s ≥ 0 (99)

Z (s) = Hx
i , i ∈ Z+, (100)

exists and is given by Z (t, s; (Hx
i )) = TL (t, s) (Hx

i ) ≥ 0, t ≥ s. Let us prove
that there is γ > 0 such that

∞∫
s

‖Z (τ, s;Hx
i )‖1 dτ ≤ γx

Tx (101)

for all s ∈ R+,i ∈ Z+ and x ∈ H. Then, Lemma 4 shows that

∞∫
s

xT [(T aL(s, τ)J∞)(i)]xdτ ≤ γxTx.

From Theorem 4.4 from [11] it follows that L generates an anticausal expo-
nentially stable evolution on S∞n and the proof is complete.
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It remains to prove (101).
First, we establish a sufficient condition for (101). From the detectabil-

ity hypothesis, there is a bounded and continuous function F : I → M∞np
such that the causal evolution operator TLF (t0, t) is exponentially stable on
`1(Z+,Sn). We define

ΩF,ε (t) (X) = LF (t) (X) + ε2X,X ∈ `1(Z+,Sn).

Using Gronwall’s Lemma and a standard computation we deduce that there
is ε0 ∈ (0, 1) such that the causal evolution operator TΩF,ε (t, s) , generated
by ΩF,ε (t), t ∈ R+, is exponentially stable for all 0 < ε < ε0. Then there
are β1 ≥ 1 and α1 ∈ (0, 1) such that ‖TΩF,ε (t, s)‖1 ≤ β1α

t−s
1 for all t ≥ s.

Moreover, by Proposition 3.3 from [11] (see also Corollary 2), TΩF,ε (t, s) is
a positive operator. Now, for such an ε ∈ (0, ε0) , we consider the equation

dY (t)
dt

= ΩF,ε (t) (Y (t)) +
1
ε2
F (t)C (t)Z (t)C (t)T F (t)T , t ≥ s ≥ 0,

(102)

Y (s) = Hx
i , (103)

where Z (t) is the solution of (99). We obtain

d (Y (t)− Z (t))
dt

= ΩF,ε (Y (t)− Z (t)) + Ψ (t) , t ≥ s, t ∈ N, (104)

Y (s)− Z (s) = 0, (105)

where

Ψ (t) =
(
ε+

1
ε
FC

)
Z

(
ε+

1
ε
FC

)T
(t) .

By a standard way it follows that Y (t) − Z (t) ≥ 0 for all t ∈ R+ and,
consequently, ‖Y (t)‖1 ≥ ‖Z (t)‖1 . Therefore the existence of γ > 0 such
that

∞∫
s

‖Y (t, s;Hx
i )‖1 dt ≤ γx

Tx, (106)

is a sufficient condition for (101) to hold. Then, let us prove (106).
Applying (10) for (102), (103) we obtain

Y (t) = TΩF,ε (t, s) (Hx
i ) +

1
ε2

t∫
s

TΩF,ε (t, r)
(

(FCZ) (r) (FC) (r)T
)
dr,
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for any t > s. Hence

‖Y (t)‖1 ≤ β1α
t−s
1 xTx+

1
ε2

t∫
s

αt−r1

∥∥∥(FCZ) (r) (FC) (r)T
∥∥∥

1
dr. (107)

By virtue of (26), the conclusions of Lemma 2 remains valid for |.|1
replacing |.|2 and we get∥∥∥(FCZ) (r) (FC) (r)T

∥∥∥
1

=
∑
j∈Z+

∣∣∣[(FCZ) (r) (FC) (r)T
]

(j)
∣∣∣
1

=
∑
j∈Z+

Tr
[(

(FCZ) (r) (FC) (r)T
)

(j)
]
≤

l2
∑
j∈Z+

Tr
[(
CZCT

)
(r) (j)

]
= l2

∑
j∈Z+

Tr
[(
CTCZ

)
(r) (j)

]
:= (∗) .

The restrictions of the operators L and L to `2(Z+,Sn) will be still
denoted by L and L. So, Corollary 5 ensures that

T ∗L (r, s) = T aL (s, r) (108)

in `2(Z+,Sn) and

Z (r) = TL (r, s) (Hx
i ) = (T aL (s, r))∗ (Hx

i ) .

From Lemma 21 in [19], we have

(∗) = l2
∑
j∈Z+

Tr
[(
CTC

)
(r) (T aL (s, r))∗ (Hx

i ) (j)
]

≤ l2
∑
j∈Z+

Tr
[
T aL (s, r)

(
CT (r)C (r)

)
Hx
i (j)

]
= l2xTT aL (s, r)

(
CT (r)C (r)

)
(i)x (109)

Let P : I → M∞n+
be a nonnegative solution of (98) in the class of all

bounded C1-mappings. From (11), P is also the unique solution of the
equation

P (s) = T aL (s, t) (P (t)) +

t∫
s

T aL (s, r)
(
CT (r)C (r)

)
dr, s ≤ t.
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By inequality (109) and the positiveness of T aL (t, s), we get successively

t∫
s

∥∥∥(FCZ) (r) (FC) (r)T
∥∥∥

1
dr ≤

t∫
s

xTT aL (s, r)
(
CT (r)C (r)

)
(i)xdr

= xT
t∫
s

T aL (s, r)
(
CT (r)C (r)

)
(i) drx

= xTP (s) (i)x− xTT aL (s, t) (P (t)) (i)x
≤ xTP (s) (i)x.

Setting m1 = l2 sups∈R+
‖P (s)‖∞ <∞ we obtain

t∫
s

∥∥∥FCZ (r) (CF ) (r)T
∥∥∥

1
dr ≤ l2xTP (s) (i)x ≤ m1x

Tx,

Taking the integral from t = s to ∞ in (107), we see that there are the
positive constants d1 and d2 such that

∞∫
s

‖Y (t)‖1 dt ≤ d1x
Tx+

d2

ε2

∞∫
s

∥∥∥FCZ (r) (CF ) (r)T
∥∥∥

1
dr (110)

≤ d1x
Tx+

d2

ε2
m1x

Tx ≤
(
d2m1/ε

2 + d1

)
xTx.

So, there is γ > 0 such that
∞∫
s

‖Y (t)‖1 dt ≤ γx
Tx

and (106) follows. The proof is complete. �

5 Appendix

A. Convex cones. In the sequel we collect several basic definitions regard-
ing the convex cones and ordered Banach spaces. For more details concerning
the convex cones and ordered linear spaces we refer to [4, 12, 16, 17] and
references therein.

Let (X , ‖ · ‖) be a real normed space.
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Definition 4 A nonempty subset C ⊂ X is called convex cone if:
(i) C + C ⊂ C
(ii) αC ⊂ C for all α ∈ R, α ≥ 0.

It is easy to see that a cone C is a convex subset and thus we shall say
convex cone when we refer to a cone.

Definition 5 (i) A cone C is called a pointed cone if C
⋂

(−C) = {0}.
(ii) A cone C is called a solid cone if its interior IntC is not empty.
(iii) A cone C is called normal cone if there exists a real number b̃ > 0

such that ‖x‖ ≤ b̃‖y‖ if 0 ≤ x ≤ y.

A convex cone C ⊂ X induces an ordering ” ≤ ” on X , by x ≤ y (or
equivalently y ≥ x) if and only if y−x ∈ C. If C is a solid cone then x < y (or
equivalently y > x) if and only if y − x ∈ IntC. Hence C = {x ∈ X |x ≥ 0}
and IntC = {x ∈ X |x > 0}. That is why, in this paper, we shall use the
notation X+ for the convex cone which induces the order relation on X .

Remark 11 (i) If in the definition of a normal cone we may take b̃ = 1 we
shall say that the norm ‖ · ‖ is monotone with respect to the convex cone C.

(ii) If C is a normal cone then it is a pointed cone. Indeed, if x is such
that x and −x are in C then from (1 + 1

n)x ∈ C we have 0 ≤ −x ≤ 1
nx.

Hence ‖x‖ ≤ b̃
n‖x‖. Taking the limit for n → ∞ we deduce that ‖x‖ = 0

hence x = 0. Thus we obtained that C is pointed cone.

B. Minkovski norms. Linear positive operators
We assume that X is a real Banach space ordered by an order relation

induced by a solid convex cone X+ where X+ 6= X . For a fixed ξ ∈ IntX+

we consider the open and convex subset

Bξ = {x ∈ X ;−ξ < x < ξ}. (111)

The Minkovski functional | · |ξ : X → R associated to the subset Bξ is

|x|ξ = inf

{
t > 0;

1
t
x ∈ Bξ

}
. (112)

The main properties of the Minkovski functional introduced by (112) are
collected in the next theorem.
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Theorem 4 The Minkovski functional introduced in (112) has the proper-
ties:

(i) |x|ξ ≥ 0 and |0|ξ = 0.
(ii) |αx|ξ = |α||x|ξ for all α ∈ R, x ∈ X .
(iii) |x|ξ < 1 if and only if x ∈ Bξ.
(iv) |x+ y|ξ ≤ |x|ξ + |y|ξ for all x, y ∈ X .
(v) There exists β(ξ) > 0 such that |x|ξ ≤ β(ξ)‖x‖, (∀)x ∈ X .
(vi) |x|ξ = 1 if and only if x ∈ ∂Bξ.
(vii) |x|ξ ≤ 1 if and only if x ∈ B̄ξ.
(viii) If X+ is closed then B̄ξ = {x ∈ X ;−ξ ≤ x ≤ ξ}.
(ix) |ξ|ξ = 1.
(x) The set T (x) = {t > 0; 1

tx ∈ Bξ} coincides with the interval (|x|ξ,∞).
(xi) If x, y, z ∈ X are such that y ≤ x ≤ z then |x|ξ ≤ max{|y|ξ, |z|ξ}.

Proof. Properties (i)-(iv), (vi) and (vii), can be proved in a more general
setting of Minkovski functionals, associated to some open and convex subsets
in linear topological spaces (see [12]). The other properties are based on the
special form of the set Bξ given in (111). For details see [10].

From (i) and (iv) in Theorem 4 one obtains that the Minkovski functional
is a seminorm.

The next result provides a sufficient condition such that the Minkovski
seminorm becomes a norm.

Proposition 4 [10] If Bξ is a bounded set then the Minkovski seminorm
| · |ξ defined by (112) is a norm. Moreover there exists αξ > 0 such that
‖x‖ ≤ αξ|x|ξ for all x ∈ X .

Proposition 5 [10] If the cone X+ is normal then for all ξ ∈ IntX+ the set
Bξ is bounded.

Let (X , || · ||) be a real Banach space ordered by the closed, solid, normal,
convex cone X+.
If (Y, || · ||) is another Banach space, then B(X ,Y) stands for the space of
linear and bounded operators defined on X and taking values in Y.
When X = Y we shall write B(X ) instead of B(X ,X ).

Under the considered assumptions, the Minkovski functional | · |ξ is a
norm equivalent with the norm ‖ · ‖ on X .
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If T ∈ B(X ) then ‖T‖ and ‖T‖ξ are the operator norms of T , induced
by ‖ · ‖ and | · |ξ, respectively. This means that

‖T‖ = sup
‖x‖≤1

‖Tx‖ (113)

‖T‖ξ = sup
|x|ξ≤1

|Tx|ξ. (114)

Definition 6 Let (X ,X+), (Y,Y+) be two ordered linear spaces with the
order relation induced by the convex cones X+ and Y+, respectively. An
operator T ∈ B(X ,Y) is called positive operator if TX+ ⊂ Y+. In this case
we shall write T ≥ 0.

By definition, if T1, T2 ∈ B(X ) then T1 ≤ T2 or equivalently T2 ≥ T1 if
and only if T2 − T1 ≥ 0.

Remark 12 If T : X → X is a linear bounded and positive operator then T
is a monotone operator. This means that Tx ≤ Ty if x ≤ y.

The next result provides a simple formula of the operator norm of a
bounded linear positive operator induced by the Minkovski norm.

Theorem 5 Let (X , ‖ · ‖) be a real Banach space ordered by a solid, closed,
normal, convex cone X+. Let ξ ∈ IntX+ be fixed. Then for every positive
operator T ∈ B(X ) we have ‖T‖ξ = |Tξ|ξ.

Proof may be done in a standard way using (114).

C. Lebesque’s theorem for discrete measures
In the sequel, we provide some useful applications of Lebesque’s Theorem

to the study of the series of real numbers.
Let (Z+,2(Z+), µ) be the space with measure, where Z+ is the set of

nonnegative integers, 2(Z+) is the family of all subsets of Z+ and µ : 2(Z+) →
R+ is defined by µ(A) is the number of elements of A if A is a finite subset,
µ(A) = +∞ if A is an infinite subset and µ(∅) = 0. It is obvious that
µ({i}) = 1 if i ∈ Z+. A function a : Z+ → R is a sequence of real numbers
a = {a(i)}i∈Z+ . It is easy to see that every function a : (Z+,2(Z+)) →
(R,B(R)) is a measurable function. The Definition 7, (ii), Chapter 1 in [9]
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specialized to this framework allows us to say that a function a = {a(i)}i∈Z+

is integrable if and only if
∑∞

i=0 |a(i)| <∞. We have∫
Z+

adµ =
∞∑
i=0

a(i)

if the right hand side is well defined.
Applying Theorem 11, Chapter 1, in [9] one obtains.

Corollary 7 Let ak, k ≥ 0 be a sequence of functions ak = {ak(i)}i∈Z+ with
the properties:

(a) limk→∞ ak(i) = x(i) for all i ∈ Z+;
(b) |ak(i)| ≤ m(i), k ≥ 0, i ≥ 0 where

∑∞
i=0m(i) <∞.

Under these conditions the following hold:
(i) The series

∑∞
i=0 |ak(i)|, k ≥ 0,

∑∞
i=0 |x(i)| are convergent.

(ii) limk→∞
∑∞

i=0 |ak(i)− x(i)| = 0.
(iii) limk→∞

∑∞
i=0 ak(i) =

∑∞
i=0 x(i).
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