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Abstract

The purpose of the paper is to present a design procedure of the
optimal filter for discrete-time stochastic linear system with periodic
coefficients simultaneously affected by a non-homogeneous but periodic
Markov chain and state multiplicative white noise perturbations. The
optimal filter minimizes a performance index described by the Cesaro
limit of the mean square of the deviations of the signal generated by
the filter from the values of the signal which must be estimated. It
is proved that the optimal filter with respect to the considered perfor-
mance criterion has a Luenberger observer form which gain depends on
the unique periodic solution of a discrete-time linear equation together
with the stabilizing solution of a suitable discrete-time Riccati type
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equation with periodic coefficients. The theoretical developments are
illustrated by a numerical example.
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1 Introduction.

The estimation of a remote signal when measurements of another observed
signal are available is a classical problem. Usually, both the remote signal
and the measured signal are outputs of a dynamic system. In the case when
the two signals are linear combinations of the states of a dynamic linear
system, a significant advanced in the estimation problem was achieved by
the Kalman-Bucy filter [15, 16]. In this case both the system describing the
evolution of the states as well as the measured output are assumed to be cor-
rupted only by additive noise. Although the first applications of the Kalman
filtering were in aerospace domain, these techniques were rapidly dissemi-
nated in many other fields of engineering sciences, geophysics, economy and
finance. An important issue in the Kalman type filtering intensively investi-
gated over the last few decades is the influence of the modelling uncertainty
of the plant which generates the remote signal over the filtering performance.
It is a known fact that in the case of classical Kalman filters the performance
deteriorates in the presence of modelling errors. Among the papers devoted
to the robust filtering for systems subjected to parametric uncertainty one
mentions for example in [18] and its references. Besides the deterministic
representations of the model uncertainties there are many other cases when
the plant parameters variations can be described as random perturbations
of their nominal values. An important class of stochastic systems frequently
used to approximate such variations are the models with state dependent
noise (or multiplicative white noise). These stochastic systems have been
intensively studied over the last four decades and many useful theoretical
results including stability, robust design and optimal control are available
(see e.g. [19] and [9]).

The filtering problem for discrete-time linear stochastic systems with
multiplicative white noise perturbations attracted a great deal of interest in
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the past decades under different assumptions and performance criteria. So,
in [3, 4] was considered the case when the multiplicative noises affect only
the measured output of the plant, while, in [2] was investigated the case
when the multiplicative noises affect only the state equations. In [5, 20, 6]
the estimation problem was considered for a wider class of linear stochastic
systems. We refer to linear stochastic systems with Markovian jumping
of the coefficients and affected by multiplicative and additive white noise
perturbations.

Lately, there is an increasing interest regarding the various control prob-
lems for time varying systems with periodic coeflicients. A convincing mo-
tivation concerning the arising of the mathematical models described by
equations with periodic coefficients together with a rich list of references re-
lated to this topic, may be found in the monographs [1, 11, 12]. It is worth
mentioning that unlike the general time varying context, in the case of con-
trolled systems with periodic coefficients, the derived algorithms for different
control problems may be implemented due to the finite memory required by
the numerical computations.

The goal of this paper is to extend the results proved in Chapter 12 of
[1] to the case of systems having the state space representation described by
systems of discrete-time stochastic equations with periodic coefficients simul-
taneously affected by multiplicative and additive white noise perturbations
and Markovian switching. It is known, see for example [10], that in the case
of this kind of stochastic systems the Kalman filter constructed based on
the stabilizing solution of corresponding Riccati type equation of stochastic
control is not implementable because its state space representation contains
multiplicative white noise.

In our approach the class of admissible filters consists of all discrete-time
linear systems with periodic coefficients and Markovian switching having ar-
bitrary dimension of the state space. To measure the performance achieved
by an admissible filter, we introduced a performance index described by
the Cesaro limit of the mean square of the deviations of the signal gener-
ated by the filter from the values of the signal which must be estimated.
We show that the optimal filter with respect to the considered performance
criterion has in fact the structure of a Luenberger observer which gain is
constructed based on the unique periodic solution of a discrete-time linear
equation together with the stabilizing solution of a suitable discrete-time Ric-
cati type equation with periodic coefficients. Unlike the filters constructed
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via discrete-time Riccati equation of stochastic control, as in [10], the op-
timal filter derived in the present paper is implementable. The theoretical
developments are illustrated by a numerical example.

2 Problem formulation

Consider the system G having the state space representation described by:

2t +1) = {Aou, W+ 3 A mﬂ £(t) + Blt.n)o(t),

y(t) = [Co(tﬂh) + él w t>ck<t,nt>] £(t) + D(t, ) (t), 1)

Z(t) - Cz(tv nt)x(t)'

t € Zy ={0,1,2,...}, where z(t) € R™ are the state vectors, y(t) € R™ are
the measurements available at time ¢, while z(¢) is the signal which must
be estimated. In (1) the sequence {n:}+>0 is a nonhomogeneous Markov
chain on a given probability space (2, F,P) with the set of the states & =
{1,2,..., N} and the sequence of probability transition matrices {P;}; > 0
(for details regarding the nonhomogeneous Markov chains we refer to [7] or
[14]); {w(®) }i>0 (w(t) = (wi(t), wa(t), ..., w.(t))T), {v(t)}i>0 are sequences
of independent random vectors satisfying the assumptions:

H,) E[w(t)] = 0, Elw(t)w? (t)] = I, for all t € Z; the stochastic process
{w(t)}+>0 is independent of the stochastic process {n;}+>o0.

H) E[v(t)] = 0, E[v(t)vT ()] = L, for all t € Z; the stochastic process
{v(t) }+>0 is independent of {w(t), Nt }>o0-

As usual FE[-] stands for the mathematical expectation and superscript
T denotes the transposition of a matrix or a vector.

Regarding the coefficients of the system (1) we assume that the sequences
{Ak(t,i)}fzo C R™*7, {Ck(t,i)}tzo Cc Rwxn 0 <k <r, {B(t,i)}tzo -
R™>me {C,(t,1) b0 C R™X™, {D(t,i)}t>0 C R™*™ are periodic with a
period # > 1. Throughout this paper, we also assume that the sequence
{P;}+>0 is periodic with period 6.

Our goal is to design a linear dynamic system (often called filter) fed to
its input with the measurements y(s), 0 < s < t, such that its output zp(t)
to be "a best estimation” of z(¢). The class of admissible filters considered
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in this paper consists of the family of linear systems G of the form:

Gr { J:F(t + 1) = AF(tv nt)xF(t) + BF(t’ nt)y(t)’ (2)
ZF(t) = CF(t, nt).%'F(t).
with the properties:
a) the sequences {Ap(t,i)}iez, C R {Bp(t,i)}ez, C R"FX"y,
{CF(t,i)}tez, C R"*"F are periodic with period 6.
() the zero solution of the linear equation

acp(t+1) ZAF(t,m)m'F(t) (3)

is exponentially stable in mean square (ESMS).

Throughout this paper §s stands for the set of all filters G of arbitrary
dimension np > 1 of the state space, satisfying the conditions «) and [3)
from above.

To measure the quality of the estimation achieved by an admissible filter
we introduce the performance index J : §s — Ry defined by

T(Gr) = Tim 3" Bll=(t) - 2r ()P (®)
t=0

In Section 4 we shall provide a set of conditions which guarantee the ex-
istence of a filter Gp € §s satisfying the optimality condition J(Gr) =
min J(Gp).

GF ES"S
Also, we shall provide a state space representation of the optimal filter

Gr. In the special case of N = 1 (no Markovian jumps) and Ay(t,1) = 0,
Cr(t,1) = 0,1 < k < r,t € Z, the optimal filter derived in this paper
recovers the one designed in [1]. It is worth mentioning that in our approach,
the class of admissible filters is wider than the one considered in [1], where,
only filters in state observer form were considered.

3 Computation of the performance of an admissi-
ble filter

When a filter Gp is coupling to the system (1) one obtains the following
system on the space R” x R"F:

ra(t+1) = [Aod(t, ne) + ]él Wi () Ager (£, m¢) | Za(t) + Be(t, ne)v(t) (5)

zal(t) = z(t) — zr(t) = Cult,n)zalt)
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where we denoted:

xcl(t) = ( xT(t) IL‘%(t) )T’AOCl(t7i) = < BF(?:(;(;C”Z)(LZ) AF?t,i) ) )
o At)) 0 o B(t, 1) (6)
Apal(t1) = ( Br(t.i)Cu(t.i) 0 )  Bati) = < Bt i) D(t,1) ) )

Ca(t,i) = ( C.(t,i) —Cp(t,i) ).

Consider the linear system

x(t+1) =

,
Aolt,m) + Zwku)Ak(t,m)] "0 (7)
k=1

obtained from (1) for B(¢,7) = 0. Combining Corollary 3.9 (iii) with Theo-
rem 3.10 in [6] one obtains:

Corollary 3.1. If the zero solution of the linear system (7) is ESMS,
then for any admissible filter Gg € §s the zero solution of the linear closed-
loop system

wcl(tL + 1) =

AOcl(t’ 77t) + Z Wi (t>Akcl (tv nt)] xcl(t) (8)
k=1

is ESMS.

Before stating the main result of this section, let us introduce the nota-
tion: Py = FPy- P -...- P._1, t > 1. Since Py is a stochastic matrix, then the
following matrix is well defined by

) = tim - S (9)
k=0

Throughout this paper, S; stands for the linear space of real symmetric
matrices of size d x d. Set, Scjlv = 84 X 84... X S8g. The space SC]lV equipped
with the inner product

N
<X, Y >=) Tr[X()Y(j) (10)
j=1

is a Hilbert space.
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Based on the coefficients of the system (8), we introduce the linear op-
erators Lo(t) : SNipy — Shiny by La(®)Y = (Lar(D)Y, ..., Lan(1)Y) with

clz Zzpt .77 Akcl t .]) (])Azcl(tvj) (11)

k=0 j=1

for all Y = (Y/(1),..., Y(N)) € S},
The main result of this section is:
Theorem 3.2. Under the considered assumptions, if the zero solution of
the discrete-time linear system (7) is ESMS, then, for each admissible filter

Gr, the value of the performance index (4) is given by:

0—1 N
J(G =5 Z Calt, )Y (t, )CH (¢, 5)) (12)
0 j=1

—_

where Y7 (t) = (Y°(t,1),...,YJ°(t, N)) is the unique 0-periodic solution of

e
the following discrete-time forward affine equation:

Y (t+1)=Lat)Y(t) + B (1) (13)

B (t) = (B (t,1),.... B (t,N)) with

Bﬂ-o t Z Zpt ], ,ut cl(taj)Bg;(tvj) (14)

1<i<N,teZ,.
The scalars p17°(j) involved in (14) are computed via

N
= S mo(Dpe(l. ) (15)
=1

wui(l,j) being the elements of the matriz

M(t) = 9(9)%“ (16)

t € Z4, Q(0) being the matriz introduced in (9) and w9 = (mp(1), ..., mo(N))
is the initial distribution of the Markov chain.
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-
Proof. First, let us remark that J(Gp) = lim 1 > E[|Cy(t,n)za(t)?].
T—00 t=0
Applying Theorem 4.2 in [8], we obtain

-1

N
J Z [Bg;(tvj)Xcl(t+ 1vl)Bcl(t7j)} (17)

Q:\
e
iy
C>

where the scalars ;;°(j) are defined by (15)-(16) and
Xa(t) = (Xalt,1),..., Xa(t,N))

is the unique 6-periodic solution of the following discrete-time backward
affine equation:

Xcl(t) = ‘Czl(t)xcl(t + 1) + Ecl(t) (18)

where E4(t) = (CL(t,1)Cy(t, 1), ..., CL(t, N)Cy(t, N)). In (18) L*(¢) is the
adjoint operator of (11) with respect to the inner product (10). Further,
combining (14) with (10), we may write successively:

. l) ?O(j)TT[Bg;(t7j)Xcl(t+ 1vl)Bcl(taj)] =

at +1L,DBY(8,1)] =< Xa(t + 1), B2 (t) > . (19)

Based on the equations (13) and (18) we may write:
<Xyt +1),BR(t) >=< Xg(t +1), YOt +1) > —
— < Xa(t+1), La(t) YR () >=< Xg(t +1), Yt +1) > —
— < LH®Xa(t+1), Y (1) >=< Xyt +1), Y (t+1) > —
— < Xg(t), YI(t) > + < Eq(t), Y (t) >

(
(
So, (19) becomes:

lelpt(]a ) ( )TT[BT( )Xcl(t+ 1’l)Bcl(t7j)] (20)

=< Xt +1), YRt +1) > — < Xg(t), Y (t) > + < Eq(t), Y (t) >
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0<t<o-—1. B
Plugging (20) in (17) and taking into account that X(-) and Y.’(-) are
f-periodic sequences, we obtain:

>
—_

J(GF) = < Ecl(t),Ycl(t) > . (21)

SIS

t

Il
=)

Invoking again the formula of the inner product from (10) we deduce that
(21) coincides with (12). Thus the proof is complete.

From (12)-(15) one sees that the value of the performance J(Gp) de-
pends upon the initial distribution my of the Markov chain. Based on the
monotonicity property of the 6 periodic solution of the Lyapunov type equa-
tions we may introduce a new performance criterion not depending upon the
initial distributions of the Markov chain. f 0 <t <f#—1and 1 < j < N we
define

vi(d) = max pu(i, 7). (22)
From (15) one obtains
pi’(3) < ve(d) (23)

forall 0 <t <#—1,1<j < N and for any initial distribution 7y of the
Markov chain.

Let Y (t) = (Yu(t,1), ..., Yy(t, N)) be the unique 6 periodic solution of
the discrete-time forward affine equation

Y (t + 1) = £cl(t)Ycl(t) + Bcl(t) (24)

where B(t) = (By(t,1), ..., By(t, N)) with

N

Ba(t,i) = pi(§,))on(§) Ba(t, ) BY(t, 5)- (25)
j=1

In (25) the scalars (j), t € Z are obtained from 14(j) by periodicity, i.e.
n(j) = yt_[é]e(j) for all ¢ € Z, where [f] is the largest integer, less or
equal with 5 If the zero solution of (7) is ESMS, then for each admissible
filter G € §s, the corresponding equation (24) has a unique bounded on Z
solution {Y ¢ (t)}rez. Additionally, this solution is 6 periodic.
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Furthermore, if Y/ (t) = (Y°(t,1), ..., Y,]° (¢, N)) is the unique §-periodic

el
solution of the discrete-time affine equation (13)-(16), we have

Y70(t,4) < Ya(t,q) (26)
for all (¢,7) € Z x 6. We introduce the performance index

0—1 N

J(Gr) = 5 S 3 Tr{Calt, i)Vl S 1, (27)

t=0 1=1

From (12), (26) and (27) we deduce that
J(Gr) < J(Gr) (28)

for all Gp € §,. J(-) introduced via (27) does not depend upon the initial
distributions of the Markov chain. From (28), we deduce that the minimiza-
tion of the cost (27) may lead to an acceptable value of the cost (4).

4 Main result

In order to provide a unified approach of the optimization problems asking
for the designing of a filter Gp € §s minimizing either the cost J(-) intro-
duced via (4) or the cost J(-) introduced in (27) we shall consider a new
performance criterion J : §s — Ry defined by

6—-1 N

J(G fgzz (Calt, Y5 (1, )CT (1,0)] (20)
0 =1

where Y, (t) = (Y5(t,1),....,Y5(t,N)) is the unique #-periodic solution of

o fel
the discrete-time forward affine equation

alt+1) = La()Yq(t) +By(t), t€Z (30)
where B¢, (t) = (B (t, 1), ..., B5(t, N)) with

N
i) =Y _ (G, i)er(§) Balt, 5)BY (¢, 5) (31)
j=1

{e:(4) htez, 1 < j < N are some given #-periodic sequences of non-negative
real numbers. One sees that in the special case €/(j) = p;°(j) we have
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J(Gp) = J(Gp) for all G € §s while, if ¢(j) = 4(j) for all ¢,j € Z x &,

then for any Gp € §s we have J (Gp) = J(Gp).
Let us introduce the discrete-time forward affine equation on SY:

Qutt+1.9) = 3 i) { 5 Aclt. Q0.1 417
()BT}, 1T N,
The equation (32) may be written in a compact form as:
Qlt +1) = £()Qu(0) + B (1) 3
where Qu(t) = (Qult, 1), Qelts V),

N

N
Be(t): Zpt(Jv 1)€t(])B(taJ)BT(ta])7 ’Zpt(]’ N)Gt(])B(tvj)BT(tM]) (34)
=1 j=1

and Ly : SN — SN is defined by L()X = (L1(1)X, ..., Ly (t)X),
N r
LiX = pi(5,1) Y Awlt, 5)X ()AL (¢, 5) (35)
j=1 k=0

for all X = (X (1),..., X(N)) € SV.
Combining Theorem 3.10 and Theorem 2.6 (ii) from [6], we obtain:
Corollary 4.1. Under the considered assumptions if the zero solution of
the discrete-time linear system (7) is ESMS, then the discrete-time forward
affine equation (32) has a unique bounded solution {Qc(t)}tcz. Moreover
this solution is a f-periodic sequence. It has the representation formula:

t—1

Q)= Y T(ts+1)B(s) (36)

where T'(t,s) = L(t — 1)L(t —2)..L(¢,s) if t > sand T'(t,s) = Iy if t =5
(Isy being the identity operator on SM).

Remark 4.1. From (36) one obtains Q.(#) = T'(6, O)QC(O)—l—eilT(Q, s+
s=0
1)B¢(s). The periodicity condition Q.(f) = Q.(0) leads to
0—1
[Isy —T(6,0)]Qc(0) = > T(6, s+ 1)B(s). (37)

s=0
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This shows that the initial value Q.(0) of the #-periodic solution of (32) is
obtained as solution of the linear equation (37). Since the zero solution of
the system (7) is ESMS, iff p[T'(6,0)] < 1 (p[:] being the spectral radius)
we may conclude that under the assumptions of Corollary 4.1, the linear
equation (37) has a unique solution.

Let us associate the following discrete-time Riccati equation of filtering
(DTRE-F)

Y(t—i—l,l)z ipt(jvz){AO(thy)Y( )AT(t ]) [AO(t7j)Y(t7])Cg(tvj)

+LE(E, G)IR(E, §) + Co(t, 7)Y (¢, J)Co (t,)]
x[Co(t, )Y (t,4) AT (¢, 5) + (L(t, )]+ M<(t, j) }

where we denoted

(38)

Re(t,j) = e(j)D(t, ))DT(t, ) + > Cr(t, 5)Qc(t, ))CF (£, )
LE(t,§) = €(§)B(t,/)DT(t,5) + > Aw(t, /)Qc(t, /)CL (¢, 5) (39)
k=1
Me(t,5) = e(§)B(t, )BT (t,4) + Y Ak(t, §)Qe(t, 1) AL (¢, 5)
k=1

We recall that a global solution {Y(t)}:cz of the DTRE-F (38) is a stabi-
lizing solution if the zero solution of the closed-loop system

(L‘(t + 1) = [A()(t, 77t) + KS(ta Ut)CO(t7 Ut)]x(t) (40)

is ESMS, where

Ks(tvj) = [Aﬂ(taj)}/s(taj)cgﬂ(tv]) + Le(tvj)”RE(t’j)
+Co(t.4)Ya(t, )CG (1) 7Y (84) €Zx 6. (41)

Remark 4.2. a) In the definition of the stabilizing solution Y (-) we tacitly
assumed that the matrices R(t, )+ Co(t, 7)Ys(t, 7)CZ (¢, 7) are invertible for
all (t,j) € Zx 6&.

b) Since the coefficients of the DTRE-F are 6-periodic sequences then the
bounded and stabilizing solution {Y(t)}1ez, if it exists, is also a f-periodic
sequence.
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Reasoning as in the proof of Theorem 26 in [21] (see also Theorem A5
in [8]), we obtain the following set of necessary and sufficient conditions for
the existence of the stabilizing and #-periodic solution of DTRE (38).

Theorem 4.2. Assume: a) the zero solution of the system (7) is ESMS.

N
b) S pi(i,j) >0,0<t<6—-1,1<j<N.
i=1
Under these conditions, the following are equivalent:

(i) the DTRE-F (38) has a stabilizing solution {Ys(t)}tcz which is 6-
periodic and satisfies the following sign conditions:

RE(t,4) + Co(t,1)Ys(t,i)CL (t,i) > 0 (42)

for0<t<0-1,1<i<N;
(i) there exist the symmetric matrices Z(t,i) € R™", 0 <t <6 —1,
1 <i < N satisfying the following system of LMIs:

(&) S o245

diag|Z(t,1),0] + ( (Qf(t(’t;.;))T éii 3 > >0

0<t<0-1,1<1i< N with Z(-1,i) = Z(0 — 1,i) and p_1(i,j) =
po_1(i,§) Vi, j e {1,2,..,N}.

The dependence of the stabilizing solution of (38) and of the stabilizing
gain (41) with respect to € was suppressed for the sake of simplicity.

The main result of this paper is:

Theorem 4.3. a) The assumptions Hy) and Hs) are fulfilled;

b) the zero solution of the linear system (7) is ESMS;

¢) the DTRE-F (38) has a 0-periodic and stabilizing solution {Y s(t) }iez
which satisfy the sign condition (42).

Consider the filter Gp having the state space representation given by

.%'F(t + 1) = [AO(ta nt) + Ks(t7 nt)CO(ta nt)]fEF(t) - Ks(ta nt)y(t)
zp(t) = Cu(t,n)zp(t) (43)
where K4(t,1) is introduced via (41).

Under the considered assumptions, the filter GF lies in §s and satisfies
the optimality condition: J.(Gp) = Gming J(GF).
FE s
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The optimal value achieved by the cost performance (29) is:

Yi(t,i)CT (t,4)]. (44)

||M2

92

t=0 ¢

Q:\P—‘

Proof. The fact that Gp € F, is obtained using Corollary 3.1. To
this end, one takes into account that, in this special case, the system (3)
coincides with (40). Let Gr € §s be an arbitrary admissible filter and let
Y (t) = (Y5(t,1),...,Y5(t, N)) be the #-periodic solution of the correspond-

ing discrete-time forward affine equation (30)-(31).

Lot ( Yii(t,i) Yia(t, i)

Yg(t, l) Y22 (tv 7’)

patible with the structure of the coefficients given in (6), i.e. Y11(¢,7) € S,

and Ya3(t,4) € Sy,.. Based on (6) and (11) we obtain the following partition
of (30)-(31):

) be the partition of the matrix Yj(¢,4) com-

M=

N
Y11<t+ 1,2): glpt(ja Z){

Yio(t +1,i)= ipt(ja i){
]_-I-Ao(t )

Yoot +1,14) Zpt )
+AF(t 7)Ya2

+ Z Bp(t,j

k=1
( )BF(t’ J

Aku,wu(t,j)AZ<t,j>+et<j>B<t,j)BT(tJ)}

il
o

M=

Ak(t, 7)Y (t, §)Cp (t,5)BE(, 5)

AL(t, ) + €()B(t, j) DT (t,§) BE(t, 4) }
Co(t, ) Y11 (t,5)Cq (¢, 5)BE(t, )

2¥))

)Y (t, 5)CF (,5) BE(t, 7)
D(t,§)BE(t,5)} -

b
Il
o

).<

12(t, 7

—

(45)

——
S

F ta]

:3>
Bl

t,J
Ck

D(

t,

— =
~~

— .

2 J

One sees that the first equation of (45) coincides with (32). From the unique-
ness of f-periodic solution of the equation (32) we deduce that Y1:(¢,i) =
5 0 : L (Qelt,d) = Ys(t,6) Yaa(t,4) )
t,1) for all (t,7) € Zx 6. Weset, U(t,1)= R
@t forall 1.1 = e
(t,i) € Zx &. By direct calculations, involving (38) together with (45) with
Y11(t,7) replaced by Q.(t,4) one obtains that U(t) = (U(t, 1),...,U(t,N)) is
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a f-periodic solution of the following discrete-time forward affine equation:

N
U(t + 1’ Z) = Zpt(ja i){AOCZ(tvj)U(t7j)Agcl(taj) + (46)
7j=1

for all (t,4) € Z x &, where By(t,i) = < %(t(’tz)l) >
—DF\Y

Since Gp € §s we deduce via Corollary 3.1 that the zero solution of the
corresponding system (8) is ESMS. Consequently, the zero solution of the
discrete-time linear equation x.(t + 1) = Ao (t, n¢)xa(t) is also ESMS.

Invoking (42) we may conclude that the unique #-periodic solution of
(46) satisfies

U(t,i) >0 (47)

for all (¢t,i) € Z x &.
Further, we rewrite (29) in the form

N
JAGr) 2 5 3 S THC ()Y, )CT (1) (49)

for all Gp € §s.

It remains to show that in the case of the filter described by (43) we have
equality in (49). To this end, let us remark that in the special case of the
filter G given by (43) we may write:

Cul(t,)U(t,1)CH(t,i) = C.(t,i)( Ln —In, )U(ti -
xCT(t,i) = C.(t,))U11(t,1)CT(t,1)

“s
SN—
—
:"\4
:'\4
S—
S
—
ot
(an)
N—
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where Uy (t,i) is the (1,1)-block of the matrix U(t,i) = TU(t,i)T*, T =

< Ig _II" > Multiplying (46) by T to the left and 77 to the right one

obtains that {011(25, i) }tez and @ € G is the bounded solution of the equation

N

Ut+1,49) = Y pi(G,1)[Ao(t, §) + Ks(t, 5)Colt, )00 (¢, 5)[Ao(t, §) +
j=1
+K(t, §)Cq (8, 5)]- (51)

If we take into account that the zero solution of (40) is ESMS, we may
conclude that, the unique bounded solution of the equation (51) is U1 (¢,1) =
0 for all (t,i) € Z x 6.

Plugging this last equality in (50) we deduce that (48) reduces to (44) if
Gr is replaced by G given by (43). Thus the proof is complete.

Remark 4.3. In the special case ¢(j) = u°(j) the filter G designed
as in (43) minimizes the cost functional J(-) introduced in (4).

5 A numerical example
In order to illustrate the above theoretical developments, the following pe-

riodic stochastic system of form (1) withn =2, N =2, r=1and § = 3 is
considered

—0.1— O3t—1) 0.3
< 0.1+0.1(t—1) )
[ —04- Olt—l) 0.3
B < —0.1+0.3(t—1) >
1+01( ) o -3+01(t—1)
Bt,1) = < —0.2(t - ))’B(t’2)_< 14H01(t— 1) )
[ 01+02(t—1) 0.2
_<03 0.1(t—1) 1 )
0.2 — 01 - 1) 0.3
1(:2) _< 0.14+0.2(t—1)
(t,1) :(1+01t—1 2 ), Cot2):(1—02(t—1) 1),
(t,1)=(02401(t—-1) 0.1),Co(t,2)=(01+0.1(t—1) 0.2 ),
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D(t, 1) =1+0.1(t — 1), D(t,2) =3 — 0.2(t — 1),

[ 3+03(t—1) 9
C=(t1) = 3 14+0.2(t—1) )
[ 2-02(t—1) 3 B

Based on Theorem 4.3 and using iterative algorithms to compute the solution
of (32) and the stabilizing solutions of the SDTRE-F (38) respectively (for

details, see [6], one obtains for P = < 03 0.7

04 06 ) and for e1 =9 = 0.5

_ ( 3.2321 —0.3757 ) o2y = ( 5729 04059 )
—0.3757 1.040Q )’ V7 —0.4059 1.8243 )’
B ( 2.6092  —0.3507 ) O(2.2)  +0908  —0.3310 )
—0.3507  0.9163 )’ 7 ~0.3310 1.7786 )’
( 2.6932  —0.3475 ) 0.2y (43915 —0.335 )
—0.3475  0.8404 )7\ —0.3354 1.5700 )’
2.1277 0.4185
Y1) = < 0.4185 0.7618 )  ¥(1,2
0.8567 0.2148 1.4148 0.4867
Y21) = < 0.2148  0.6700 )  ¥(2,2 0.4867 1.3812 >

11782 0.1700 1.9872  0.3955
Y1) = ( 0.1700 0.4779 ) Y(32) = )

0.3955 0.9875

for which the optimal gains K, are

0.1151
KoL) = ( 0.1192 ) L2 =1 0358

—0.6402 )
Ky(2,1) = ( 0.1367 ) K(2,2) = —0.5826 ) ’

<

<

( 1.7786  0.2967
< 0.2967 0:4544 ) ’
-

<

|

|

0.1627 0.3295
0.0632 ~0.6961
K(3,1) = ( 0.1363 >  Ks(3,2) = < 0.4708 > ‘
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