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Abstract

We consider a Cauchy problem for a fractional semilinear differen-
tial inclusions involving Caputo’s fractional derivative in non separable
Banach spaces under Filippov type assumptions and we prove the ex-
istence of solutions.
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1 Introduction

Differential equations with fractional order have recently proved to be strong
tools in the modelling of many physical phenomena. As a consequence there
was an intensive development of the theory of differential equations of frac-
tional order ([20, 22, 24] etc.). The study of fractional differential inclusions
was initiated by El-Sayed and Ibrahim ([17]). Very recently several qualita-
tive results for fractional differential inclusions were obtained in [1, 3, 7-11,
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13, 23] etc.. Applied problems require definitions of fractional derivative al-
lowing the utilization of physically interpretable initial conditions. Caputo’s
fractional derivative, originally introduced in [5] and afterwards adopted in
the theory of linear visco elasticity, satisfies this demand. For a consistent
bibliography on this topic, historical remarks and examples we refer to [1].

The study of theory of abstract differential equations with fractional
derivatives in infinite dimensional spaces is also very recent. The main prob-
lem consists in how to introduce new concepts of mild solutions. One of the
first paper on this topic is [16]. In [19] it is showed that several papers on
fractional differential equations in Banach spaces were incorrect and used an
approach to treat these equations based on the theory of resolvent opera-
tors for integral equations. A suitable definition of mild solutions based on
Laplace transform and probability density functions may be found in [25-28].

In this paper we study fractional semilinear differential inclusions of
the form

Dlz(t) € Ax(t) + F(t,z(t)) tel, xz(0)=xo (1.1)

where I = [0,7], X is a Banach space, A is the infinitesimal generator of
a strongly continuous semigroup {7T'(t),t > 0}, F(.,.): I x X — P(X) is a
set-valued map and D7, is the Caputo fractional derivative of order r € (0, 1].

In our recent paper [12] it is shown that Filippov’s ideas ([18]) can be
suitably adapted in order to prove the existence of solutions to problem (1.1)
provided the Banach space X is separable.

De Blasi and Pianigiani ([15]) established the existence of mild solutions
for semilinear differential inclusions on an arbitrary, not necessarily separa-
ble, Banach space X. Even if the ideas of Filippov are still present, the ap-
proach in [15] has a fundamental difference which consists in the construction
of the measurable selections of the multifunction. This construction does not
use classical selection theorems as Kuratowsky and Ryll-Nardzewski (][21])
or Bressan and Colombo ([4]).

The aim of this note is to obtain an existence result for problem (1.1)
similar to the one in [15]. We will prove the existence of solutions for problem
(1.1) in an arbitrary space X under assumptions on F of Filippov type. Our
result may be interpreted as extension of the result in [15] to fractional
semilinear differential inclusions and as an extension of the result in [12] to
non separable Banach spaces.
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The paper is organized as follows: in Section 2 we present the notations,
definitions and the preliminary results to be used in the sequel and in Section
3 we prove the main result.

2 Preliminaries

Consider X an arbitrary real Banach space with norm |.| and with the cor-
responding metric d(.,.). Let P(X) be the space of all bounded nonempty
subsets of X endowed with the Pompeiu-Hausdorff pseudometric

dg (A, B) = max{d* (A, B),d*(B,A)}, d*(A,B)= sugd(a,B)7
ac
where d(z, A) = infaecq |z —a|, AC X,z € X.

Let £ be the o-algebra of the (Lebesgue) measurable subsets of R and,
for A € L, let u(A) be the Lebesgue measure of A.

Let X be a Banach space and Y be a metric space. An open (resp.
closed) ball in Y with center y and radius r is denoted by By (y,r) (resp.
By (y,r). In what follows B = Bx(0,1).

A multifunction F : Y — P(X) with closed bounded nonempty values
is said to be dy-continuous at yg € Y if for every € > 0 there exists § > 0
such that for any y € By (yo,r) we have dg(F(y), F(yo)) < e. F is called
dg-continuous if it is so at each point yy € Y.

Let A € £, with u(A) < co. A multifunction F' : Y — P(X) with closed
bounded nonempty values is said to be Lusin measurable if for every € > 0
there exists a compact set K. C A, with u(A\K.) < € such that F restricted
to K. is dg-continuous.

It is clear that if ;G : A — P(X) and f : A — X are Lusin mea-
surable then so are F' restricted to B (B C A measurable), F' + G and
t — d(f(t), F(t)). Moreover, the uniform limit of a sequence of Lusin mea-
surable multifunctions is also Lusin measurable.

We recall next the following definitions. For more details, we refer to
[20].

Definition 2.1. a) The fractional integral of order r > 0 of a Lebesgue
integrable function f : (0,00) — R is defined by

t _Safl
Irf(t):/o (tr(r))f(s)ds, t>0,7>0
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provided the right-hand side is pointwise deﬁned on (0,00) and I'(.) is the
(Euler’s) Gamma function defined by I'(a) = [5° ¢t te~tdt.

b) The Riemann-Liouville derlvatlve of order r of f(.) € L*(I,R) is
defined by

Loodm gt f(s)
0 R R A R P 1 _
f(t) F(n—r)dt"/o(t—s)an s, t>0, n—1<r<n
c¢) The Caputo fractional derivative of order r of f(.) € L*(I,R) is defined

by
. nltk
Dl f(t)=D E k'f t>0, n—-1<r<n.

Remark 2.2. a) If f(.) € C™([0,00),R) then DLf(t) = I""f(™(¢),
t>0,n—-1<r<n.

b) The Caputo derivative of a constant is equal to zero.

c)If f: I — X, with X a Banach space, then integrals which appears in
Definition 2.1 are taken in Bochner’s sense.

Let denote by I the interval [0,7], T > 0, consider F' : I x X — P(X)
a set-valued map and z¢p € X. Consider A : D(A) — X the infinitesimal
generator of a strongly continuous semigroup {7'(t),t > 0} and let M > 0
be such that sup,c; |T(t)| < M.

Definition 2.3. A continuous function z(.) € C(I, X) is called a mild
solution of problem (1.1) if there exists a (Bochner) integrable function f(.) €
L'(I,X) such that f(t) € F(t,z(t)) a.e.(I) and

z(t) = S1(t)zo + /Ot(t —u)" 1Sy (t —u) f(u)du Wt e, (2.1)
where

_ / TG OTE0) 0, Sa(t) = r / 06, (0)T (£ 6)df
0 0

&(0) = %9—1—;%(9—

8

n 19—7“71—1 F(m’ + 1)

—sin(nzr), 6>0
n!

:1
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and & is a probability density function defined on (0,00), i.e. &.(6) > 0,
0 € (0,00) and [5°&(0)d = 1.

We shall call (z(.), f(.)) a trajectory-selection pair of (1.1).

The results summarized in the next lemmas will be used in the proof of
our main results.

Lemma 2.4. ([27,28]) a) For any fized t > 0, S1(t) and Sa(t) are linear
and bounded operators, i.e. for any x € X

M
[Si(t)z| < Mlx|,  [Sa(t)z] < m\l‘\-
b){S1(t),t > 0} and {Sa(t),t > 0} are strongly continuous.
c) If T(t),t > 0 is compact, then Si(t),t > 0 and Sa(t),t > 0 are also
compact operators.

In what follows X is a real Banach space and we assume the following
hypotheses.

Hypothesis 2.5. i) F(.,.) : IxX — P(X) has nonempty closed bounded
values and for any v € X F(.,x) is Lusin measurable on I.

ii) There exists I(.) € L*(I,(0,00)) with L := sup,c; I"l(t) < 400 such
that, ¥Vt € T

dH(F(t,Hjl),F(t,.%'g)) Sl(t)]ml—xg\, Va:l,mg e X.

iii) There exists q(.) € L(I,(0,00)) with Q := sup,c; I"q(t) < 400 such that
vVt € I we have
F(t,0) C q(t)B.

Lemma 2.6. ([15]) 1) Let F; : [ — P(X), i=1,2 be two Lusin measurable
multifunctions and let ¢; > 0, i=1,2 be such that

H(t):= (Fi(t) + e1B) N (Fa(t) +e2B) £ 0, Vtel.

Then the multifunction H : I — P(X) has a Lusin measurable selection
h:I—X.

ii) Assume that Hypothesis 2.5 is satisfied. Then for any xz(.) : [ — X
continuous, u(.) : I — X measurable and € > 0 we have

a) the multifunction t — F(t,x(t)) is Lusin measurable on I.
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b) the multifunction G : I — P(X) defined by
G(t) := (F(t,xz(t)) + eB) N Bx (u(t), d(u(t), F(t,z(t))) + €)

has a Lusin measurable selection g : I — X.

3 The main results
We are ready now to prove our main result.

Theorem 3.1. Consider A the infinitesimal generator of a strongly
continuous semigroup {T'(t),t > 0} on a Banach space X such that there
exists a constant M > 1 with sup,c; |T(t)| < M. We assume that Hypothesis
2.5 is satisfied and ML < 1.

Then, for every xog € X the problem (1.1) has a solution z(.) : I — X.

Proof. Let 0 < e <1, &, = iz and fo(.) : [ — X, fo(t) = 0 and
define

xo(t) = S1(t)xo + /Ot(t — S)T_ISQ(t —s)fo(s)ds = S1(t)xg, Vel

Since z¢(.) is continuous, by Lemma 2.6 ii) there exists a Lusin measur-
able function fi(.) : I — X satisfying, for t € I,

J1(t) € (F(t,z0(t)) +e1B) N B(fo(t),d(fo(t), F (¢, x0(t))) + €1)
Obviously, fi(.) is Bochner integrable on I. Define z1(.) : I — X by
x1(t) = S1(t)xo + /Ot(t —5)" 1Sy (t — 8) fi(s)ds, Vtel
By induction, we construct a sequence x,, : [ — X, n > 2 given by
Tn(t) = S1(t)xo + /Ot(t — §) LSy (t — §) fuls)ds, Vtel, (3.1)

where f,(.) : I — X a Lusin measurable function satisfying, for ¢ € I,

fn(t) € (F(t7$n—1(t)> -+ z’an) N B(fn—1<t)7 d(fn—l(t)v F(t7$n—1(t))) + ‘?n))
3.2
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From (3.2), for n > 2, and t € I we obtain
[fn(8) = fr1(B)] < d(fn1(t), F(t, 2n-1(t)))+en < d(fn1(t), F(t, 2n—2(t)))+
dp(F(t,vn—2(t)), F(t,2n-1(t))) + en < en—1 +1(t)[2n-1(t) — Tn—2(t)| + €n.
Since e,-1 + &, < €42 we deduce, for n > 2, that
[fu(t) = frn1(t)] < en—z + 1()[2n-1(t) — zn2(t)]. (3.3)
Denote po(t) := d(fo(t), F(t, z0(t))) = d(0, F(t, z0(t))),t € I. One has

(t) d(0, F(2,0)) + du (F(t,0), F(t,20(t))) <
< q(t) + 1) ]zo(t)] < q(t) + MI(t)[xo]-

Therefore

I"py(t) = I‘(lr) /Ot(t —8)" " po(s)ds < Q + M L|xo).

Denote k = Q + M L|xo| + F(r+1)
Next we prove, by recurrence, that, for n > 2 and t € I we have

Tr n—2 . . _
|$n(t) — l‘n_l(t)| S m Z €n_2_ij+1LJ =+ MnLn 1](3 (34)
7=0

We start with n = 2. In view of (3.1), (3.2) and (3.3), for ¢ € I, one has

rat) — 21(0)] < [ (0= 5 Salt = ) (als) — ()l <

M ! r— M t .
§F(T)/0(t—8) 1’f2(3)—f1(8)\d3§r(r)/0<t_3> Ueo+

MT"
I(s)|x1(s) — zo(s)|]ds < T(r+1)

r 2 t s

Fg\fz pot (FJZ))Q /0 (t - S)T_ll(s)(/o (s = )" f1(w) = folu)|du)ds
ur e
(T'(r))?

Mot .
%+HHA@_@ 1(s) 1 (s) — ao(s)|ds

<

<

= WEO /Ot(t — s)r_ll(s)(/os(s —u)" " po(u) + £1]du)ds
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MT"
I(r+1)
i.e, (3.4) is verified for n = 2.

Using again (3.3) and (3.4) we have

< g0+ M2Lk,

fenia () = (0] < Fs [ (6= 9 fuia(s) = fulo)lds <

M t MT"
< == — n - Ln— < o &n—
< F('r)/o ene o 5) (o) = ana ()l < o genat
Mt . MT"
p— t_ = l n - n— d < n—
m)/O( (M (s) — an 1 (9)lds € et
M t 1 Tr n—2 . .
— [ (t=s)" () [—— o MITLLT 4 ML R
REUAD gy 2 e Jds
MT" Tr 2 o
e R o MIT2LITL 4y
ST +1)° 1+F(r—|—1)j§)€ 2 *
Tr n—1
= o MITYLI 4+ ML
r(r+1)j§f 2~ +

and the statement (3.4) is true for n + 1.
From (3.4) it follows that, for n > 2 and ¢ € I one has

‘xn(t) - $n—1(t)| < an, (35)
where

T n—2 . ) T
) > en—o i MITL) + ML H(Q + M L|xo| + T
j=0

) D)

Ay —

Obviously, the series whose n-th term is a, is convergent. So, from
(3.5) we have that x,(.) converges uniformly on I to a continuous function,
z(): I — X.

On the other hand, in view of (3.3) we have

|fn(t) = foo1(t)| < en—2+1(t)an—1, t€l,n>3
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which implies that the sequence f,(.) converges to a Lusin measurable func-
tion f(.): I — X.
One may write successively,

[ =98 = ) fuls)ts = [ (¢ = 978l - 9) )] <

Mt _
By ) €= () — Folas <

Mt .
Foy ) = T (s)

—z(s)|ds < Llzp_1(.) —z()|c-

M
I'(r)

So, passing with n — oo in (3.1) we obtain

( Sl CC() +/ T ISQ t— u)f(u)du vVt e 1.

On the other hand, from (3.2) we get
fn(t) € F(t,zn(t) +enB, tel,n>1
and letting n — oo we have
f(t) € F(t,z(t)), tel.

and the proof is complete.
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