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Abstract

We consider a Cauchy problem for a fractional semilinear differen-
tial inclusions involving Caputo’s fractional derivative in non separable
Banach spaces under Filippov type assumptions and we prove the ex-
istence of solutions.

MSC: 34A60, 26A33, 34B15

keywords: fractional derivative, fractional semilinear differential inclu-
sion, Lusin measurable multifunctions.

1 Introduction

Differential equations with fractional order have recently proved to be strong
tools in the modelling of many physical phenomena. As a consequence there
was an intensive development of the theory of differential equations of frac-
tional order ([20, 22, 24] etc.). The study of fractional differential inclusions
was initiated by El-Sayed and Ibrahim ([17]). Very recently several qualita-
tive results for fractional differential inclusions were obtained in [1, 3, 7-11,
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13, 23] etc.. Applied problems require definitions of fractional derivative al-
lowing the utilization of physically interpretable initial conditions. Caputo’s
fractional derivative, originally introduced in [5] and afterwards adopted in
the theory of linear visco elasticity, satisfies this demand. For a consistent
bibliography on this topic, historical remarks and examples we refer to [1].

The study of theory of abstract differential equations with fractional
derivatives in infinite dimensional spaces is also very recent. The main prob-
lem consists in how to introduce new concepts of mild solutions. One of the
first paper on this topic is [16]. In [19] it is showed that several papers on
fractional differential equations in Banach spaces were incorrect and used an
approach to treat these equations based on the theory of resolvent opera-
tors for integral equations. A suitable definition of mild solutions based on
Laplace transform and probability density functions may be found in [25-28].

In this paper we study fractional semilinear differential inclusions of
the form

Dr
cx(t) ∈ Ax(t) + F (t, x(t)) t ∈ I, x(0) = x0 (1.1)

where I = [0, T ], X is a Banach space, A is the infinitesimal generator of
a strongly continuous semigroup {T (t), t ≥ 0}, F (., .) : I ×X → P(X) is a
set-valued map and Dr

c is the Caputo fractional derivative of order r ∈ (0, 1].
In our recent paper [12] it is shown that Filippov’s ideas ([18]) can be

suitably adapted in order to prove the existence of solutions to problem (1.1)
provided the Banach space X is separable.

De Blasi and Pianigiani ([15]) established the existence of mild solutions
for semilinear differential inclusions on an arbitrary, not necessarily separa-
ble, Banach space X. Even if the ideas of Filippov are still present, the ap-
proach in [15] has a fundamental difference which consists in the construction
of the measurable selections of the multifunction. This construction does not
use classical selection theorems as Kuratowsky and Ryll-Nardzewski ([21])
or Bressan and Colombo ([4]).

The aim of this note is to obtain an existence result for problem (1.1)
similar to the one in [15]. We will prove the existence of solutions for problem
(1.1) in an arbitrary space X under assumptions on F of Filippov type. Our
result may be interpreted as extension of the result in [15] to fractional
semilinear differential inclusions and as an extension of the result in [12] to
non separable Banach spaces.
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The paper is organized as follows: in Section 2 we present the notations,
definitions and the preliminary results to be used in the sequel and in Section
3 we prove the main result.

2 Preliminaries

Consider X an arbitrary real Banach space with norm |.| and with the cor-
responding metric d(., .). Let P(X) be the space of all bounded nonempty
subsets of X endowed with the Pompeiu-Hausdorff pseudometric

dH(A,B) = max{d∗(A,B),d∗(B,A)}, d∗(A,B) = sup
a∈A

d(a,B),

where d(x,A) = infa∈A |x− a|, A ⊂ X,x ∈ X.
Let L be the σ-algebra of the (Lebesgue) measurable subsets of R and,

for A ∈ L, let µ(A) be the Lebesgue measure of A.
Let X be a Banach space and Y be a metric space. An open (resp.

closed) ball in Y with center y and radius r is denoted by BY (y, r) (resp.
BY (y, r). In what follows B = BX(0, 1).

A multifunction F : Y → P(X) with closed bounded nonempty values
is said to be dH -continuous at y0 ∈ Y if for every ε > 0 there exists δ > 0
such that for any y ∈ BY (y0, r) we have dH(F (y), F (y0)) ≤ ε. F is called
dH -continuous if it is so at each point y0 ∈ Y .

Let A ∈ L, with µ(A) <∞. A multifunction F : Y → P(X) with closed
bounded nonempty values is said to be Lusin measurable if for every ε > 0
there exists a compact set Kε ⊂ A, with µ(A\Kε) < ε such that F restricted
to Kε is dH -continuous.

It is clear that if F,G : A → P(X) and f : A → X are Lusin mea-
surable then so are F restricted to B (B ⊂ A measurable), F + G and
t → d(f(t), F (t)). Moreover, the uniform limit of a sequence of Lusin mea-
surable multifunctions is also Lusin measurable.

We recall next the following definitions. For more details, we refer to
[20].

Definition 2.1. a) The fractional integral of order r > 0 of a Lebesgue
integrable function f : (0,∞)→ R is defined by

Irf(t) =
∫ t

0

(t− s)α−1

Γ(r)
f(s)ds, t > 0, r > 0
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provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the
(Euler’s) Gamma function defined by Γ(α) =

∫∞
0 tα−1e−tdt.

b) The Riemann-Liouville derivative of order r of f(.) ∈ L1(I,R) is
defined by

Dr
Lf(t) =

1
Γ(n− r)

dn

dtn

∫ t

0

f(s)
(t− s)r+1−nds, t > 0, n− 1 < r < n.

c) The Caputo fractional derivative of order r of f(.) ∈ L1(I,R) is defined
by

Dr
cf(t) = Dr

L(f(t)−
n−1∑
k=0

tk

k!
f (k)(0)) t > 0, n− 1 < r < n.

Remark 2.2. a) If f(.) ∈ Cn([0,∞),R) then Dr
cf(t) = In−rf (n)(t),

t > 0, n− 1 < r < n.
b) The Caputo derivative of a constant is equal to zero.
c) If f : I → X, with X a Banach space, then integrals which appears in

Definition 2.1 are taken in Bochner’s sense.

Let denote by I the interval [0, T ], T > 0, consider F : I ×X → P(X)
a set-valued map and x0 ∈ X. Consider A : D(A) → X the infinitesimal
generator of a strongly continuous semigroup {T (t), t ≥ 0} and let M ≥ 0
be such that supt∈I |T (t)| ≤M .

Definition 2.3. A continuous function x(.) ∈ C(I,X) is called a mild
solution of problem (1.1) if there exists a (Bochner) integrable function f(.) ∈
L1(I,X) such that f(t) ∈ F (t, x(t)) a.e. (I) and

x(t) = S1(t)x0 +
∫ t

0
(t− u)r−1S2(t− u)f(u)du ∀t ∈ I, (2.1)

where

S1(t) =
∫ ∞

0
ξr(θ)T (trθ)dθ, S2(t) = r

∫ ∞
0

θξr(θ)T (trθ)dθ,

ξr(θ) =
1
r
θ−1− 1

rωr(θ−
1
r ) ≥ 0,

ωr(θ) =
1
π

∞∑
n=1

(−1)n−1θ−rn−1 Γ(nr + 1)
n!

sin(nπr), θ > 0
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and ξr is a probability density function defined on (0,∞), i.e. ξr(θ) ≥ 0,
θ ∈ (0,∞) and

∫∞
0 ξr(θ)dθ = 1.

We shall call (x(.), f(.)) a trajectory-selection pair of (1.1).
The results summarized in the next lemmas will be used in the proof of

our main results.

Lemma 2.4. ([27,28]) a) For any fixed t ≥ 0, S1(t) and S2(t) are linear
and bounded operators, i.e. for any x ∈ X

|S1(t)x| ≤M |x|, |S2(t)x| ≤ M

Γ(r)
|x|.

b){S1(t), t ≥ 0} and {S2(t), t ≥ 0} are strongly continuous.
c) If T (t), t ≥ 0 is compact, then S1(t), t ≥ 0 and S2(t), t ≥ 0 are also

compact operators.

In what follows X is a real Banach space and we assume the following
hypotheses.

Hypothesis 2.5. i) F (., .) : I×X → P(X) has nonempty closed bounded
values and for any x ∈ X F (., x) is Lusin measurable on I.

ii) There exists l(.) ∈ L1(I, (0,∞)) with L := supt∈I Irl(t) < +∞ such
that, ∀t ∈ I

dH(F (t, x1), F (t, x2)) ≤ l(t)|x1 − x2|, ∀ x1, x2 ∈ X.

iii) There exists q(.) ∈ L1(I, (0,∞)) with Q := supt∈I Irq(t) < +∞ such that
∀t ∈ I we have

F (t, 0) ⊂ q(t)B.

Lemma 2.6. ([15]) i) Let Fi : I → P(X), i=1,2 be two Lusin measurable
multifunctions and let εi > 0, i=1,2 be such that

H(t) := (F1(t) + ε1B) ∩ (F2(t) + ε2B) 6= ∅, ∀t ∈ I.

Then the multifunction H : I → P(X) has a Lusin measurable selection
h : I → X.

ii) Assume that Hypothesis 2.5 is satisfied. Then for any x(.) : I → X
continuous, u(.) : I → X measurable and ε > 0 we have

a) the multifunction t→ F (t, x(t)) is Lusin measurable on I.
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b) the multifunction G : I → P(X) defined by

G(t) := (F (t, x(t)) + εB) ∩BX(u(t), d(u(t), F (t, x(t))) + ε)

has a Lusin measurable selection g : I → X.

3 The main results

We are ready now to prove our main result.

Theorem 3.1. Consider A the infinitesimal generator of a strongly
continuous semigroup {T (t), t ≥ 0} on a Banach space X such that there
exists a constant M ≥ 1 with supt∈I |T (t)| ≤M . We assume that Hypothesis
2.5 is satisfied and ML < 1.

Then, for every x0 ∈ X the problem (1.1) has a solution x(.) : I → X.

Proof. Let 0 < ε < 1, εn = ε
2n+2 and f0(.) : I → X, f0(t) ≡ 0 and

define

x0(t) = S1(t)x0 +
∫ t

0
(t− s)r−1S2(t− s)f0(s)ds = S1(t)x0, ∀t ∈ I

Since x0(.) is continuous, by Lemma 2.6 ii) there exists a Lusin measur-
able function f1(.) : I → X satisfying, for t ∈ I,

f1(t) ∈ (F (t, x0(t)) + ε1B) ∩B(f0(t), d(f0(t), F (t, x0(t))) + ε1)

Obviously, f1(.) is Bochner integrable on I. Define x1(.) : I → X by

x1(t) = S1(t)x0 +
∫ t

0
(t− s)r−1S2(t− s)f1(s)ds, ∀t ∈ I

By induction, we construct a sequence xn : I → X, n ≥ 2 given by

xn(t) = S1(t)x0 +
∫ t

0
(t− s)r−1S2(t− s)fn(s)ds, ∀t ∈ I, (3.1)

where fn(.) : I → X a Lusin measurable function satisfying, for t ∈ I,

fn(t) ∈ (F (t, xn−1(t)) + εnB) ∩B(fn−1(t),d(fn−1(t), F (t, xn−1(t))) + εn).
(3.2)
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From (3.2), for n ≥ 2, and t ∈ I we obtain

|fn(t)−fn−1(t)| ≤ d(fn−1(t), F (t, xn−1(t)))+εn ≤ d(fn−1(t), F (t, xn−2(t)))+

dH(F (t, xn−2(t)), F (t, xn−1(t))) + εn ≤ εn−1 + l(t)|xn−1(t)− xn−2(t)|+ εn.

Since εn−1 + εn < εn−2 we deduce, for n ≥ 2, that

|fn(t)− fn−1(t)| ≤ εn−2 + l(t)|xn−1(t)− xn−2(t)|. (3.3)

Denote p0(t) := d(f0(t), F (t, x0(t))) = d(0, F (t, x0(t))), t ∈ I. One has

p0(t) ≤ d(0, F (t, 0)) + dH(F (t, 0), F (t, x0(t))) ≤
≤ q(t) + l(t)|x0(t)| ≤ q(t) +Ml(t)|x0|.

Therefore

Irp0(t) =
1

Γ(r)

∫ t

0
(t− s)r−1p0(s)ds ≤ Q+ML|x0|.

Denote k = Q+ML|x0|+ T r

Γ(r+1)ε

Next we prove, by recurrence, that, for n ≥ 2 and t ∈ I we have

|xn(t)− xn−1(t)| ≤ T r

Γ(r + 1)

n−2∑
j=0

εn−2−jM
j+1Lj +MnLn−1k (3.4)

We start with n = 2. In view of (3.1), (3.2) and (3.3), for t ∈ I, one has

|x2(t)− x1(t)| ≤
∫ t

0
(t− s)r−1|S2(t− s)(f2(s)− f1(s))|ds ≤

≤ M

Γ(r)

∫ t

0
(t− s)r−1|f2(s)− f1(s)|ds ≤ M

Γ(r)

∫ t

0
(t− s)r−1[ε0+

l(s)|x1(s)− x0(s)|]ds ≤ MT r

Γ(r + 1)
ε0 +

M

Γ(r)

∫ t

0
(t− s)r−1l(s)|x1(s)− x0(s)|ds

≤ MT r

Γ(r + 1)
ε0 +

M2

(Γ(r))2

∫ t

0
(t− s)r−1l(s)(

∫ s

0
(s− u)r−1|f1(u)− f0(u)|du)ds

≤ MT r

Γ(r + 1)
ε0 +

M2

(Γ(r))2

∫ t

0
(t− s)r−1l(s)(

∫ s

0
(s− u)r−1[p0(u) + ε1]du)ds
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≤ MT r

Γ(r + 1)
ε0 +M2Lk,

i.e, (3.4) is verified for n = 2.
Using again (3.3) and (3.4) we have

|xn+1(t)− xn(t)| ≤ M

Γ(r)

∫ t

0
(t− s)r−1|fn+1(s)− fn(s)|ds ≤

≤ M

Γ(r)

∫ t

0
[εn−1 + l(s)|xn(s)− xn−1(s)|]ds ≤ MT r

Γ(r + 1)
εn−1+

M

Γ(r)

∫ t

0
(t− s)r−1l(s)|xn(s)− xn−1(s)|ds ≤ MT r

Γ(r + 1)
εn−1+

M

Γ(r)

∫ t

0
(t− s)r−1l(s)[

T r

Γ(r + 1)

n−2∑
j=0

εn−2−jM
j+1Lj +MnLn−1k]ds

≤ MT r

Γ(r + 1)
εn−1 +

T r

Γ(r + 1)

n−2∑
j=0

εn−2−jM
j+2Lj+1 +Mn+1Lnk

=
T r

Γ(r + 1)

n−1∑
j=0

εn−2−jM
j+1Lj +Mn+1Lnk

and the statement (3.4) is true for n+ 1.
From (3.4) it follows that, for n ≥ 2 and t ∈ I one has

|xn(t)− xn−1(t)| ≤ an, (3.5)

where

an =
T r

Γ(r + 1)

n−2∑
j=0

εn−2−jM
j+1Lj +MnLn−1(Q+ML|x0|+

T r

Γ(r + 1)
ε).

Obviously, the series whose n-th term is an is convergent. So, from
(3.5) we have that xn(.) converges uniformly on I to a continuous function,
x(.) : I → X.

On the other hand, in view of (3.3) we have

|fn(t)− fn−1(t)| ≤ εn−2 + l(t)an−1, t ∈ I, n ≥ 3
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which implies that the sequence fn(.) converges to a Lusin measurable func-
tion f(.) : I → X.

One may write successively,

|
∫ t

0
(t− s)r−1S2(t− s)fn(s)ds−

∫ t

0
(t− s)r−1S2(t− s)f(s)ds| ≤

M

Γ(r)

∫ t

0
(t− s)r−1|fn(s)− f(s)|ds ≤ M

Γ(r)

∫ t

0
(t− s)r−1l(s)|xn−1(s)

−x(s)|ds ≤ M

Γ(r)
L|xn−1(.)− x(.)|C .

So, passing with n→∞ in (3.1) we obtain

x(t) = S1(t)x0 +
∫ t

0
(t− u)r−1S2(t− u)f(u)du ∀t ∈ I.

On the other hand, from (3.2) we get

fn(t) ∈ F (t, xn(t)) + εnB, t ∈ I, n ≥ 1

and letting n→∞ we have

f(t) ∈ F (t, x(t)), t ∈ I.

and the proof is complete.
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[5] M. Caputo. Elasticità e Dissipazione. Zanichelli, Bologna, 1969.

[6] C. Castaing, M. Valadier. Convex Analysis and Measurable Multifunc-
tions. Springer, Berlin, 1977.

[7] A. Cernea. On the existence of solutions for fractional differential in-
clusions with boundary conditions. Fract. Calc. Appl. Anal. 12:433-442,
2009.

[8] A. Cernea. Variational inclusions for fractional differential inclusions.
Commun. Appl. Nonlinear Anal. 16:85-92, 2009.

[9] A. Cernea. Continuous version of Filippov’s theorem for fractional dif-
ferential inclusions. Nonlinear Anal. 72:204-208, 2010.

[10] A. Cernea. On the existence of solutions for nonconvex fractional hy-
perbolic differential inclusions. Commun. Math. Anal. 9:109-120, 2010.

[11] A. Cernea. Some remarks on a fractional differential inclusion with non-
separated boundary conditions. Electronic J. Qual. Theory Diff. Equa-
tions 2011,45:1-14, 2011.

[12] A. Cernea. On the existence of mild solutions for nonconvex fractional
semilinear differential inclusions. Electronic J. Qual. Theory Diff. Equa-
tions 2012,64:1-15, 2012.

[13] Y.K. Chang, J.J. Nieto. Some new existence results for fractional differ-
ential inclusions with boundary conditions. Mathematical and Computer
Modelling 49:605-609, 2009.

[14] L. Chen, Z. Fan. On mild solutions to fractional differential equations
with nonlocal conditions. Electronic J. Qual. Theory Diff. Equations
2011,53:1-13, 2011.

[15] F. S. De Blasi, G. Pianigiani. Evolution inclusions in non separable
Banach spaces. Comment. Math. Univ. Carolinae 40:227-250, 1999.

[16] M.M. El-Borai. Some probability densities and fundamental solutions
of fractional evolution equations. Chaos Solitons Fractals 14:433-440,
2002.



A fractional differential inclusion 45

[17] A.M.A. El-Sayed, A.G. Ibrahim. Multivalued fractional differential
equations of arbitrary orders. Appl. Math. Comput. 68:15-25, 1995.

[18] A. F. Filippov. Classical solutions of differential equations with multi-
valued right hand side. SIAM J. Control 5:609-621, 1967.

[19] E. Hernandez, D. O’Regan, K. Balachandran. On recent developments
in the theory of abstract differential equations with fractional deriva-
tives. Nonlinear Anal. 70:3462-3471, 2010.

[20] A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of
Fractional Differential Equations. Elsevier, Amsterdam, 2006.

[21] K. Kuratowski, C. Ryll-Nardzewski. A general theorem on selectors.
Bull. Acad. Pol. Sci. Math. Astron. Phys. 13:397-403, 1965.

[22] K. Miller, B. Ross. An Introduction to the Fractional Calculus and Dif-
ferential Equations. John Wiley, New York, 1993.

[23] A. Ouahab. Some results for fractional boundary value problem of dif-
ferential inclusions. Nonlinear Anal. 69:3871-3896, 2009.

[24] I. Podlubny. Fractional Differential Equations. Academic Press, San
Diego, 1999.

[25] J. Wang, Y. Zhou. A class of fractional evolution equations and optimal
controls. Nonlinear Anal. Real World Appl. 12:262-272, 2011.

[26] J. Wang, Y. Zhou. Existence and controllability results for fractional
semilinear differential inclusions. Nonlinear Anal. Real World Appl.
12:3642-3653, 2011.

[27] Y. Zhou, F. Jiao. Existence of mild solutions for fractional neutral evo-
lution equations. Comput. Math. Appl. 59:1063-1077, 2010.

[28] Y. Zhou, F. Jiao. Nonlocal Cauchy problem for fractional evolution
equations. Nonlinear Anal. Real World Appl. 11:4465-4475, 2010.


