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Abstract

We consider the obstacle problem in Sobolev spaces, of order strictly
greater then the dimension of the domain. The aim is to propose an
algorithm to find the solution of the obstacle problem, based on the
solution of the dual approximating problem, which is, in fact, a finite
dimensional quadratic minimization problem.
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1 Introduction

The obstacle problem has been studied by many authors due to its applica-
bility in many fields, such as the study of fluid filtration in porous media,
constrained heating, elasto-plasticity, optimal control, and financial mathe-
matics (C. Baiocchi. [3] and G. Duvaut, J.-L. Lions [6]).

We find the obstacle problem in recent works as well, for example in M.
Burger, N. Matevosyan, M.T Wolfram, [5], in which an obstacle problem is
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formulated as a shape optimization problem. Other references are R. Griesse,
K. Kunisch, [7], C. M. Murea, D. Tiba [9]. Moreover, certain authors test
their algorithms by applying them to the obstacle problem, for instance the
work of L. Badea, [2], in which the one- and two-level domain decomposition
methods are tested on a two obstacle problem.

In his book, R. Glowinski, [8], analyzes the obstacle problem on H1
0 (Ω).

He treats this problem from the numerical point of view, by finite element
methods, and gives some theoretical results of the existence and uniqueness
of the solution, subject to the properties of the obstacle and the input data.

In their book, V. Barbu and Th. Precupanu, [4], studied the obstacle
problem in H1

0 (Ω) from the duality point of view. They apply the Fenchel
duality theorem for the following problem

min
{

1
2

∫
Ω
|∇u|2 −

∫
Ω
fu : u ∈ K

}
(1)

where f ∈ L2(Ω) and K = {u ∈ H1
0 (Ω) : u ≥ 0 a.e. on Ω}. They end up

formulating the dual problem associated to (1) as follows

max
{
−1

2
‖p∗ + h‖2H−1(Ω) : p∗ ∈ H−1(Ω), p∗ ≥ 0

}

Interpreting this problem, using Theorem 2.4, page 188, [4], they restate the
(1) as boundary value problem of unilateral type.

Keeping in mind this argument, we have started our study considering
an approximating problem for the obstacle problem in W 1,p(Ω) for p >
dim Ω. Using the dual of the approximating problem we came upon a finite
dimensional problem which is, in fact, a quadratic minimization problem,
and thus, its solution can be computed much easier then the solution of an
obstacle problem. Thus using the duality mapping we can construct the
solution of the obstacle problem solving only a finite dimensional quadratic
minimization problem.

The algorithm presented here was successfully tested from the numeric
point of view.
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2 Statement of the direct and
approximating problem

We consider the following obstacle problem

min
y∈W 1,p

0 (Ω)+

{
1
2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω
fy

}
(2)

where f ∈ L1(Ω), p > d = dim Ω, and W 1,p
0 (Ω)+ = {y ∈ W 1,p

0 (Ω) : y ≥ 0}.
We consider that Ω is a bounded open set with a strong local Lipschitz
property.

It can be easily proved that (2) has a unique solution ȳ ∈ W 1,p(Ω), by
using the compact imbedding W 1,p(Ω) → L∞(Ω), which follows from the
Rellich-Kondrachov Theorem (R. Adams [1], Theorem 6.2, Part II, page
144).

Also, knowing that, by Sobolev Imbedding Theorem, we have W 1,p(Ω)→
C(Ω), it makes sense to consider the following problem

min
{

1
2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω
fy : y ∈W 1,p

0 (Ω); y(xi) ≥ 0, i = 1, 2, . . . , k
}

(3)

where {xi}i∈N ⊆ Ω is a dense set in Ω. For each k ∈ N, we denote

Ck = {y ∈W 1,p
0 (Ω) : y(xi) ≥ 0, i = 1, 2, . . . , k}

the closed convex cone.
We can prove that (3) has also an unique solution ȳk ∈ Ck by using

the same argument as in the proof of the existence and uniqueness for the
solution of problem (2).

Moreover, we can prove the following result

Theorem 1 The sequence {ȳk}k constructed from the solutions of problems
(3), for k ∈ N, is a strongly convergent sequence in W 1,p(Ω) to the unique
solution ȳ of the problem (2).

As a consequence of Proposition 1, we can state that problem (3) is an
approximating problem for (2).

In the following section we shall use the dual of problem (3) to solve
problem (2).
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3 The dual problem and the analysis of its solution

We will use Fenchel duality Theorem to state the dual problems associated
to problems (2) and (3). For this purpose we consider the functional

F (y) =
1
2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω
fy, y ∈W 1,p

0 (Ω)

Using the definition of the convex conjugate and the fact that the duality
mapping J : W 1.p

0 (Ω) → W−1,q(Ω) is single-valued and bijective operator,
we get that the convex conjugate of F is

F ∗(y∗) =
1
2
‖f + y∗‖2W−1,q(Ω)

Considering now the functional g = −I
W 1,p

0 (Ω)+
and using the concave con-

jugate definition we get that

g•(y∗) =
{

0, y∗ ∈ (W 1,p
0 (Ω)+)∗

−∞, y∗ 6∈ (W 1,p
0 (Ω)+)∗

with (W 1,p
0 (Ω)+)∗ = {y∗ ∈ W−1,q(Ω) : (y, y∗) ≥ 0,∀y ∈ W 1,p

0 (Ω)+} =
W−1,q(Ω)+.

Since F şi −g are convex and proper functionals on W 1,p(Ω), the domain
of g is D(g) = W 1,p

0 (Ω)+, and F is continous everywhere on W 1,p
0 (Ω)+ we

are able to apply Fenchel duality Theorem (V. Barbu, Th. Precupanu, [4],
Theorem 2.5, page 189) and obtain

min
{

1
2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω
fy : y ∈W 1,p

0 (Ω)+

}
= max

{
−1

2
‖f + y∗‖2W−1,q(Ω) : y∗ ∈W−1,q(Ω)+

}
So the dual problem associated to problem (2) is

max
{
−1

2
‖f + y∗‖2W−1,q(Ω) : y∗ ∈W−1,q(Ω)+

}
For the approximating problem (3) we only need the concave conjugated

of gk = −ICk
due to the fact that we minimize the same functional F over

another cone. Thus, the concave conjugate is

g•k(y
∗) = inf {(y, y∗)− g(y) : y ∈ Ck} =

{
0, y∗ ∈ C∗k
−∞, y∗ 6∈ C∗k
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where C∗k = {y∗ ∈W−1,q(Ω) : (y∗, y) ≥ 0,∀y ∈ Ck}.

Lemma 1 The polar cone of Ck is

C∗k =

{
u =

k∑
i=1

αiδxi : αi ≥ 0

}

where δxi are the Dirac distributions concentrated in xi ∈ Ω, i.e. δxi(y) =
y(xi), y ∈W 1,p

0 (Ω).

Since the domain of gk is D(gk) = Ck and the functional F is still conti-
nous on the closed convex cone Ck the hypothesis of Fenchel duality Theorem
are satisfied once again. This implies that

min
{

1
2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω
fy : y ∈ Ck

}
= max

{
−1

2
‖y∗ + f‖2W−1,q(Ω) : y∗ ∈ C∗k

}
So we obtain the dual approximating problem associated to problem (3)

max
{
−1

2
‖y∗ + f‖2W−1,q(Ω) : y∗ ∈ C∗k

}
(4)

Denoting yk and y∗k as the solution of problems (3) and its dual (4), we
apply Theorem 2.4 (page 188, V. Barbu, Th. Precupanu, [4]) and obtain the
system

y∗k ∈ ∂F (yk), −y∗k ∈ ∂ICk
(yk)

From y∗k ∈ ∂F (yk) yields that y∗k + f ∈ J(yk), where J : W 1,p(Ω) →
W−1,q(Ω) is the duality mapping. So, we conclude that

y∗k = J(yk)− f (5)

From −y∗k ∈ ∂ICk
(yk) we obtain

k∑
i=1

α∗i yk(xi) = 0

which means that
α∗i yk(xi) = 0, ∀i = 1, k



214 Diana Merluşcă

Then, the Lagrange multipliers α∗i are zero if yk(xi) > 0 and they are
non-zero only if the constraint is active, i.e. yk(xi) = 0.

With the above arguments, we can state the main result as follows:

Theorem 2 To compute the solution y∗k of the dual approximating problem
it is sufficient to compute the coefficients α∗i , due to the formula

y∗k =
k∑
i=1

α∗i δxi

. Moreover, the solution of the approximating problem yk is computed using
yk = J−1(y∗k + f) and α∗i yk(xi) = 0, ∀i = 1, k.

Example 1 Let Ω ⊂ R and p = 2. Then the duality mapping J : H1
0 (Ω)→

H−1(Ω) is, in this case, a linear operator and is define as J(y) = −y′′. Let
us denote J−1(δxi) = di and J−1(f) = yf .

We obtain that the dual approximating problem formulated for dimension
1

min
y∗∈C∗k

{1
2
‖y∗ + f‖2H−1(Ω)}

is, in fact, equivalent to the problem

min
α∈Rk

+

{
1
2
αTAα+ bTα

}
(6)

where A is the matrix of elements aij =
∫

Ω d
′
id
′
jdx for all i, j = 1, 2, . . . , k,

and the elements of b are bi =
∫

Ω d
′
iy
′
fdx, for all i = 1, 2, . . . , k.

Thus, solving problem (6) we find α∗i , for i = 1, 2, . . . , k, we compute the
solution of the approximating problem using the formula

yk =
k∑
i=1

α∗i di + yf

taking into account the complementarity condition that αiyk(xi) = 0 for all
i = 1, 2, . . . , k.
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