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Abstract

Using the stochastic approximations, in this paper it was studied
the convergence in distribution of the fractional parts of the sum of ran-
dom variables to the truncated exponential distribution with parameter
λ. This fact is feasible by means of the Fourier-Stieltjes sequence (FSS)
of the random variable.
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1 Introduction

The aim of this paper is to extend the results of Wilms [9] about convergence
of the fractional parts of the random variables.
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This theory was analysed by Wilms in [9], where the study of convergence
of the fractional parts of the sum of random variables it was directed towards
the uniform distribution on the interval [0, 1]. Moreover, he identifed the
necessary and sufficient conditions for the convergence of the product of the
random variables, not necessary independent and identically distributed,
towards the same uniform distribution on the interval [0, 1]. The Fourier-
Stieltjes sequence, (see Definition 1), play an important role in the study of
fractional parts of random variables. Also, Wilms obtain conditions under
which fractional parts of products of independent and identically distributed
random variables are uniform distribution on the interval [0, 1]. After a
survey of some results by Schatte in [6], Wilms extend the results of Schatte
on sums of independent and identically distributed lattice random variables.
Furthermore, Schatte in [6], gives rates for the convergence of distribution
function of the fractional parts of the sum of random variables to distribution
function of random variables with continouous uniform distribution on the
interval [0, 1].

The novelty of this paper consist in the identification of the conditions
(Theorems 4, 5, 6) when the distribution of the fractional parts of the sum
of random variables converge to the truncated exponential distribution.

2 Notations, definitions and auxiliary results

Let (Ω ,F ,P) be the probability space and a random variable X, X : Ω→ R
measurable function. The distribution of random variable X is the measure
of probability PX defined on B(R) Borel and PX(B) = P (X ∈ B). The
distribution function of the random variable X is FX(x) = P(X < x), x ∈ R,

or FX(x) =
x∫
−∞

fX(y)dy where fX represents the density of probability of

the random variable X.

Throughout the paper, for A ⊂ R, F(A) = {FX | P (X ∈ A) = 1}.
For the random variable X, the fractional part of X is defined as follows:

{X} = X − [X], where [X] represents the integer part of X.

The distribution function of the random variable {X} for any x ∈ [0, 1]
is

F{X}(x) =

∞∑
m=−∞

P(m ≤ X < m+ x) =

∞∑
m=−∞

(FX(m+ x)− FX(m)) .
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where FX is the distribution function of random variable X.
The random variable X has truncated exponential distribution of param-

eter λ (denoted by X ∼ Exp∗(λ)), if its distribution function FX ∈ F([0, 1))
and

FX(x) =


0 , x < 0

1−e−λx
1−e−λ , x ∈ [0, 1]

1 , x > 1

.

Moreover, if random variable X has the density fX , then:

F{X}(x) =
∞∑

j=−∞

j+x∫
j

fX(y)dy =
∞∑

j=−∞

x∫
0

fX(j + t)dt =

x∫
0

∞∑
j=−∞

fX(j + t)dt ,

that is h{X}(x) =
∞∑

j=−∞
fX(j + x), x ∈ [0, 1] is the density of probability of

the random variable {X}. For example, if X ∼ Exp∗(λ), then

F{X}(x) =
(

1− e−λx
)
/
(

1− e−λ
)
, x ∈ [0, 1].

So, the characteristic function of the random variable X, ϕX : R→ C is
defined by:

ϕX(t) := EeitX =

+∞∫
−∞

eitxdFX(x) , (t ∈ R) .

Definition 1. The Fourier-Stieltjes sequence (FSS) of the random variable
X is the function cX : Z→ C defined by

cX(k) := ϕX(2πk) , k ∈ Z .

Proposition 1. ([9]) For any random variable X the following relation oc-
curs:

cX(k) = c{X}(k) , ∀ k ∈ Z .

The properties that characterizes the Fourier-Stieltjes sequence, it was
presented a books [1], [3] and [5].

Theorem 1. (of continuity, [5]) Let (Fn) ∈ F([0, 1)) be a sequence of the
random variables, and let (cn) be FSS respectively.
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(i). Let F ∈ F([0, 1)) be with c FSS respectively. If Fn
n→∞→ F , then

limn→∞ cn(k) = c(k), pentru k ∈ Z.

(ii). If limn→∞ cn(k) = c(k) is for k ∈ Z, then is F ∈ F([0, 1)) so that
Fn

n→∞→ F . Then the sequence c is FSS of F .

We define the convolution F of distribution functions F1, F2 ∈ F([0, 1))
such that F ∈ F([0, 1)).

Denote by F1 ≡ F{X1}, F2 ≡ F{X2} and F ≡ F{X1+X2}.

To this end, let F1 ∗ F2 denote the convolution in the customary sense,
[2], i.e.

(F1 ∗ F2) (x) =

∞∫
−∞

F1(x− y)dF2(y) =

∞∫
−∞

F2(x− y)dF1(y),

with F1 ∗ F2 ∈ F([0, 2)) if F1, F2 ∈ F([0, 1)) and x ∈ [0, 1].

Definition 2. Let F, F1, F2 ∈ F([0, 1)). The function

(F1 ⊗ F2) (x) =
(F1 ∗ F2) (x)

(F1 ∗ F2) (1)− (F1 ∗ F2) (0)
, x ∈ [0, 1]

is said to be the truncated convolution.

In particular, if F1, F2 ∈ F([0, 1)) is the distribution functions of random
variables X1 and X2 independent and identically exponential distributed,
then the distribution function of the sum of random variables X1 and X2

in fractional part is F (x) = (F1∗F2)(x)
(F1∗F2)(1)−(F1∗F2)(0)

= 1−(1+λx)e−λx
1−(1+λ)e−λ , with F ∈

F([0, 1)), ∀ x ∈ [0, 1].

Theorem 2. (of convolution, [9]) Let F, F1, F2 ∈ F([0, 1)) be with FSS
c, c1, c2. Then

c = c1c2 ⇐⇒ F = F1 ⊗ F2 .

Corollary 1. ([9]) Let X and Y be two independent random variables with
FX , FY ∈ F([0, 1)). Then

c{X+Y } = cXcY .
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The next result characterizes FSS with the help of the repartition func-
tion FX .

Proposition 2. ([9]) Let FX ∈ F([0, 1)) be. Then

cF (k) = 1− 2πik

1∫
0

FX(x)e2πikxdx , k ∈ Z .

The next theorem characterizes the convergence in distribution (denoted

by ”
d→ ”) by means of FSS.

Theorem 3. ([9]) Let (Xm) be a sequence of independent random variables

and Sn :=
n∑

m=1
Xm, n ∈ N. Let S be the random variable with FS ∈ F([0, 1)).

Then {Sn}
d→ S if and only if

n∏
m=1

c{Xm}(k)→ cS(k) if n→∞ for any k ∈ Z.

There are a couple of intermediate results.

Proposition 3. ([7]) Let (an) be a sequence of real numbers, an > 0, for all

n ∈ N. Then
∞∏
n=0

an is convergent if and only if
∞∑
n=0

(1− an) is convergent.

Proposition 4. ([8]) Let Xn be a sequence of independent random variables.

We assume that
∞∑
m=1

V arXm is finite.

(i). Then
n∑

m=1
(Xm − EXm) converges almost certainly for n→∞ .

(ii). If
∞∑
m=1

EXm is convergent, then
n∑

m=1
Xm converges almost certainly if

n→∞ .

3 The convergence in the distribution of the frac-
tional part

In this section we shall give sufficient conditions for the fractional parts of
the independent and identically distributed random variables. In Theorem
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4, supposing that
n∑

m=1
V arXm is convergent, we show that the existence

of limit lim
n→∞

{
n∑

m=1
EXm

}
is necessary and sufficient for the convergence of

the distribution of

{
n∑

m=1
EXm

}
if n → ∞. Theorem 5 states necessary

and sufficient conditions, using FSS for the convergence

{
n∑

m=1
Xm

}
to the

distribution Exp∗(λ) if n → ∞. We also neet conditions of convergence in
Teorema 6.

The Fourier-Stieltjes sequence of the random variable X, X ∼ Exp∗(λ),
is presented in the following theoretical result:

Proposition 5. If X ∼ Exp∗(λ) and the distribution function FX ∈ F([0, 1)),
then

cExp∗(λ)(k) =
λ

2πik − λ

(
e2πikλ − 1

)
, ∀ k ∈ Z0.

Proof. According to the definition FSS,

cExp∗(λ)(k) =

1∫
0

e2πikxd
(

1− e−λx
)

= λ

1∫
0

e(2πik−λ)xdx

=
λ

2πik − λ

(
e2πik−λ − 1

)
.

Next, we shall present the original results that inform us under what cir-

cumstances the sum

{
n∑

m=1
Xm

}
converges in distribution towards truncated

exponential distribution.

Theorem 4. Let (Xm) be a sequence of independent and identically dis-

tributed random variables, so that
∞∑
m=1

V arXm is finite and X1 ∼ Exp∗(λ).

Then

{
n∑

m=1
Xm

}
converges in distribution if and only if limn→∞

{
n∑

m=1
EXm

}
exists.
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Proof. First, we shall proof sufficiency. Since X1 ∼ Exp∗(λ), it results that
EXm = 1

λ .

On the other hand,

{
n∑

m=1
Xm

}
=

{
n∑

m=1

(
Xm − 1

λ

)
+

{
n∑

m=1

1
λ

}}
. Ac-

cording to Proposition 4,
n∑

m=1

(
Xm − 1

λ

) a.s→ X, for n→∞. Then

{
n∑

m=1
Xm

}
d→{

X + 1
λ

}
.

As a necessity, let

{
n∑

m=1
Xm

}
be shall converge for n → ∞. Simi-

larly, we have

{
n∑

m=1

1
λ

}
=

{
n∑

m=1

(
1
λ −Xm

)
+

{
n∑

m=1
Xm

}}
. From Propo-

sition 4,
n∑

m=1

(
1
λ −Xm

)
converges almost certainly when n→∞. Therefore,{

n∑
m=1

1
λ

}
exists.

The following theorems provide the necessary and sufficient conditions
for the fractional parts of the sums of the independent random variables
identically towards the truncated exponential distribution of parameter λ.

Theorem 5. Let (Xm) be a sequence of independent and identically random

variables with (cm), the corresponding FSS , and also Sn =
n∑

m=1
Xm, n ∈ N.

(i). {Sn}
d→ Exp∗(λ)⇐⇒

n∏
m=1

cm(k)→ λ
2πik−λ

(
e2πik−λ − 1

)
, n→∞,

(ii). We suppose cm(k) 6= 0, ∀ k ∈ Z0, m ∈ N, {Sn} does not converge to
Exp∗(λ) is equivalent to

∞∑
m=1

(1− |cm(k)|) is divergent, ∀ k ∈ Z0 .

Proof. [i]. Based on the Theorem 3,

{Sn}
d→ Exp∗(λ)⇐⇒ c{Sn}(k)

n→∞→ cExp∗(λ)(k)
Proposition 5⇐⇒

⇐⇒
n∏

m=1

cm(k)→ λ

2πik − λ

(
e2πik−λ − 1

)
, n→∞ .
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[ii]. According to Proposition 3,
∞∑
m=1

(1− |cm(k)|) divergent ⇐⇒
∞∏
m=1

cm(k) is divergent, that is {Sn}
d→ F, with F 6= Exp∗(λ).

Corollary 2. If the sequence (cm), of the random variables sequence (Xm)

meets the condition of
∞∑
m=1

(1− |cm(k)|) to be convergent, ∀ k ∈ Z0, then

{Sn}
d→ Exp∗(λ), where Sn =

n∑
m=1

Xm, n ∈ N.

Theorem 6. Let (Xm) be a sequence of independent and identically dis-
tributed random variables with the characteristic function ϕ, X1 ∼ Exp∗(λ),
and 0 < V arX1 < ∞. Let (am) be a sequence of real numbers so that

limm→∞ am = 0. We define Vn :=
n∑

m=1
amXm, n ∈ N.

(i). If
∞∑
m=1

a2m is convergent, then {Vn}
d→ Exp∗(λ).

(ii). We suppose that there is k ∈ Z0, ϕ(2πkam) 6= 0. If
∞∑
m=1

a2m is diver-

gent, then {Vn} don’t converge to Exp∗(λ).

Proof. [i]. Let k ∈ Z0 be fixed. By Corollary 2, it is sufficient to show that
∞∑
m=1

(1− |ϕ(2πkam)|) is convergent.

It is known that if X ∼ Exp∗(λ), then ϕX(t) = λ/ (λ− it), from where

|ϕX(t)| = λ√
λ2 + t2

=

(
1 +

(
t

λ

)2
)− 1

2

.

If we consider the development in binomial series (1 + x)−
1
2 = 1 − x

2 +

3
8x

2 + ..., then we obtain
(

1 +
(
t
λ

)2)− 1
2

= 1− 1
2λ t

2 + o(t2), from where the

following 1
4λ t

2 < 1− |ϕX(t)| < 1
λ t

2.
Then

∞∑
m=1

(1− |ϕ(2πkam)|) <
∞∑
m=1

1

λ
4π2k2a2m =

4π2k2

λ

∞∑
m=1

a2m.
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As
∞∑
m=1

a2m is convergent, it means that
∞∑
m=1

(1− |ϕ(2πkam)|) is conver-

gent.

[ii]. Since 1−|ϕX(t)| > t2

4λ , we have
∞∑
m=1

(1− |ϕ(2πkam)|) > π2k2

λ

∞∑
m=1

a2m.

Results that
∞∑
m=1

(1− |ϕ(2πkam)|) is divergent because
∞∑
m=1

a2m is diver-

gent. Next Theorem 5(ii) is taken into account .

Example

Let (Xm) be a sequence of independent and identically distributed random

variables, X1 ∼ Exp∗(λ) and am = m−b, b > 0;
∞∑
m=1

a2m =
∞∑
m=1

1
m2b ={

=∞ , b ≤ 1
2

<∞ , b > 1
2

. We have the following situations for the sequence Vn =

n∑
m=1

1
mb
Xm:

(1) b ≤ 1
2 ,

∞∑
m=1

a2m =∞ Theorem 6
=⇒ {Vn} does not converge to Exp∗(λ).

(2) 1
2 < b ≤ 1 ,

∞∑
m=1

a2m <∞ Theorem 6
=⇒ {Vn}

d→ Exp∗(λ) or{
1

1b
X1 +

1

2b
X2 + ...+

1

nb
Xn

}
n→∞→ Exp∗(λ)

(3) b > 1, according to Theorem 4, limn→∞
n∑

m=1
EXm = limn→∞

n
λ = ∞,

that is {Vn}
d→ F , with F 6= Exp∗(λ).
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