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A TOPOLOGICAL PROPERTY OF
THE SOLUTION SET OF A
SECOND-ORDER DIFFERENTIAL
INCLUSION*

Aurelian Cerneal

Abstract

We consider a Cauchy problem for a Sturm-Liouville type differen-
tial inclusion involving a nonconvex set-valued map and we prove that
the set of selections corresponding to the solutions of the problem con-
sidered is a retract of the space of integrable functions on unbounded
interval.
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1 Introduction
In this paper we study second-order differential inclusions of the form
(p(t)2'(t)) € F(t,z(t)) a.e.[0,00), x(0)=umg, '(0)=m1, (1.1)

where F' : [0,00) x R" — P(R") is a set-valued map, zp,z; € R™ and
p(.) : [0,00) — (0,00) is continuous.
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Even if we deal with an initial value problem instead of a boundary value
problem, the differential inclusion (1.1)-(1.2) may be regarded as an exten-
sion to the set-valued framework of the classical Sturm-Liouville differential
equation. Several qualitative properties and existence results for problem
(1.1) may be found in [3-9] etc..

In [6] we proved that the solution set of problem (1.1) is arcwise connected
when the set-valued map is Lipschitz in the second variable and the problem
is defined on a bounded interval. The aim of this paper is to establish a more
general topological property of the solution set of problem (1.1). Namely,
we prove that the set of selections of the set-valued map F that correspond
to the solutions of problem (1.1) is a retract of L}, ([0,00), R"). The result
is essentially based on Bressan and Colombo results ([1]) concerning the
existence of continuous selections of lower semicontinuous multifunctions
with decomposable values.

We note that in the classical case of differential inclusions several topo-
logical properties of solution set are obtained using various methods and
tools (]2, 10-14] etc.). The result in the present paper extends to Sturm-
Liouville differential inclusions the main result in [12] obtained in the case
of classical differential inclusions.

The paper is organized as follows: in Section 2 we present the notations,
definitions and the preliminary results to be used in the sequel and in Section
3 we prove our main result.

2 Preliminaries

Let T > 0, I := [0,7] and denote by L£(I) the o-algebra of all Lebesgue
measurable subsets of I. Let X be a real separable Banach space with the
norm |.|. Denote by P(X) the family of all nonempty subsets of X and by
B(X) the family of all Borel subsets of X. If A C I then xa(.): I — {0,1}
denotes the characteristic function of A. For any subset A C X we denote
by ¢l(A) the closure of A.

The distance between a point z € X and a subset A C X is defined as
usual by d(z,A) = inf{|z — al;a € A}. We recall that Pompeiu-Hausdorff
distance between the closed subsets A, B C X is defined by dy(A,B) =
max{d*(A, B),d*(B,A)}, d*(A, B) = sup{d(a, B); a € A}.

As usual, we denote by C(I, X) the Banach space of all continuous func-
tions z : I — X endowed with the norm |x|c = sup,¢/|z(t)| and by L(I, X)
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the Banach space of all (Bochner) integrable functions = : I — X endowed
with the norm |z|; = fOT |z (t)|dt.

We recall first several preliminary results we shall use in the sequel.

A subset D C L'(I, X) is said to be decomposable if for any u,v € D and
any subset A € £(I) one has uxa + vxp € D, where B = I\ A.

We denote by D(I, X) the family of all decomposable closed subsets of
LM, X).

Next (S5,d) is a separable metric space; we recall that a multifunction
G : S — P(X) is said to be lower semicontinuous (l.s.c.) if for any closed
subset C' C X, the subset {s € S; G(s) C C} is closed.

Lemma 2.1. ([1]) Let F* : IxS — P(X) be a closed-valued L(I)RB(S)-
measurable multifunction such that F*(t,.) is l.s.c. for anyt € I.
Then the multifunction G : S — D(I,X) defined by

G(s)={ve LYI,X); wo(t) € F*(t,s) a.e. (1)}

s l.s.c. with nonempty closed values if and only if there exists a continuous
mapping p : S — L' (I, X) such that

d(0, F*(t,s)) < p(s)(t) a.e. (1), VseS.

Lemma 2.2. ([1]) Let G : S — D(I,X) be a l.s.c. multifunction with
closed decomposable values and let ¢ : S — L*(I,X), ¢ : S — LY(I,R) be
continuous such that the multifunction H : S — D(I,X) defined by

H(s) = cl{v(.) € G(s);  |v(t) = o(s)()] < (s)(t) a.e. ()}

has nonempty values.
Then H has a continuous selection, i.e. there exists a continuous map-

ping h: S — LY(I, X) such that h(s) € H(s) Vs ¢€ S.

Consider a set-valued map F': [0,00) x R" — P(R"), 29, z1 € R" and a
continuous mapping p(.) : [0,00) — (0, 00) that define the Cauchy problem
(1.1).

A continuous mapping z(.) € C([0,00), R™) is called a solution of prob-
lem (1.1) if there exists a integrable function f(.) € Li,.([0,00), R™) such
that

f(t) € F(t,z(t)) a.e.|0,00), (2.1)
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t ]
x(t):xo+p(0)x1/0 p(s)ds—i—/ e /f Yduds Vit € [0,00). (2.2)
1

Note that, if we put G(t,u) := [} oGy t € I, then (2.2) may be rewritten
as

x(t) = zo + p(0)z1G(t,0) + /Ot G(t,u)f(u)du ¥Vt € [0,00). (2.3)

We shall call (z(.), f(.)) a trajectory-selection pair of (1.1) if (2.1) and
(2.2) are satisfied.

We shall use the following notations for the solution sets and for the
selection sets of problem (1.1).

S(zo,z1) = {z(.) € C([0,00),R™); x(.) is a solution of (1.1)},  (2.4)
T (z0,21) = {f(.) € L},.([0,00),R™); f(t) € F(t,x0 + p(0)z1G(t,0)+
+ JEG(t,u) f(u)du)  a.e. [0,00)}.
(2.5)
3 The main result

In order to prove our topological property of the solution set of problem
(1.1) we need the following hypotheses.

Hypothesis 3.1. i) F(.,.) : [0,00) x R" — P(R"™) has nonempty com-
pact values and is L([0,00)) @ B(R™) measurable.

ii) There exists L € L}, ([0,00), R) such that, for almost all t € [0, 00),
F(t,.) is L(t)-Lipschitz in the sense that

du(F(t,2), F(t,y) < LHlx —y| Va,y € R™
iii) There exists p € L} ([0,00), R") such that

dg ({0}, F(t,0)) < p(t) a.e.[0,00).

In what follows I = [0, 7] and let M := sup,c; ( 7- Note that |G(t,u)] <
Mt Vt,u € I,u <t. We use the notations

u(t) = zo + p(0)x1G(t,0) + /Ot G(t,s)u(s)ds, u€ L'(I,R") (3.1)
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and
po(u)(t) = [u(®)| + p(t) + L(t)|a(t)], tel (3:2)

Let us note that
d(u(t), F(t,a(t)) < po(u)(t) a.e. (I) (33)

and, since for any u1,us € L'(I, R")

[po(u) — po(u)ls < (1 + MT/ s)ds|)ur — usly

the mapping po : L*(I,R") — L'(I,R") is continuous.
Also define

Ti(zg,z1) = {f € L"(I,R"™); f(t) € F(t,z0 + p(0)x1G(t,0)+
+Jy G(t,5)f(s)ds) a.e. (1)},

Proposition 3.2. Assume that Hypothesis 3.1 is satisfied and let ¢ :
LY(I,R") — LYI,R™) be a continuous map such that ¢(u) = u for all
u € Tr(xo,z1). Foru € LY(I,R"), we define

U(u) ={ue L*I,R"); u(t) € F(t,o(u)(t) ae (I)},
() :{ {u}  ifu€ Ti(zo,x1),

U(u) otherwise.

Then the multifunction ® : L'(I, R™) — P(L*(I,R™)) is lower semicon-
tinuous with closed decomposable and nonempty values.

Proof. According to (3.3), Lemma 2.1 and the continuity of py we obtain
that ¥ has closed decomposable and nonempty values and the same holds
for the set-valued map ®.

Let C C LY(I,R™) be a closed subset, let {u,, }men converges to some
ug € LY(I,R") and ®(u,,) C C, for any m € N. Let vy € ®(up) and for
every m € N consider a measurable selection vy, from the set-valued map
t — F(t,¢(um)(t)) such that vy, = up, if u, € Tr(xg, 1) and

[om () — vo(t)] = d(vo(t), F(t, (um) (1)) a.e. (I)
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otherwise. One has
[Um (t) —vo(t)| <

< dar(F (1,91 (1)), F(t 6(u0) (1)) < L0 (6) = $(u0) 1)
hence . - -
o = voly < MT | L(s)ds.|o(n) = S(uo).

Since ¢ : LY(I,R™) — L(I,R") is continuous, it follows that v, converges
to vg in L'(I,R™). On the other hand, v,, € ®(u,) C C Vm € N and
since C' is closed we infer that vg € C. Hence ®(ug) C C and & is lower
semicontinuous.

In what follows we shall use the following notations

k
=0k, k=1, [|uls :/ u(®)dt, we L' (InR™).
0
We are able now to prove the main result of this paper.

Theorem 3.3. Assume that Hypothesis 3.1 is satisfied, there exists M :=
SUP;e[0,00) ﬁ and xg, 1 € R™.
Then there exists a continuous mapping G : Li,.([0,00), R") —
([0,00),R™) such that
(i) G(u) € T(zo,z1), Yu € L}.([0,00),R"),
(i) G(u) =u, Yue T (zo,x1).

Ll

loc

Proof. We shall prove that for every k > 1 there exists a continuous
mapping g* : L*(I, R") — L'(I;, R™) with the following properties

M) gF(u) =u, Yu € T (20,71)

(I1) g*(u) € Ty, (w0, 71), Vu € L(I;,R™)

(1) g (u)(t) = " (uls,_)(0), VEE iy

If the sequence {g"},>1 is constructed, we define G : L}, ([0,00), R") —
Llloc([o’ OO), Rn) by

Gu)(t) = g"(ulg)(1), Vk>1

From (III) and the continuity of each g*(.) it follows that G(.) is well
defined and continuous. Moreover, for each u € L},.([0,0), R™), according
to (II) we have

G(w)lr, (t) = ¢ (ulr ) (t) € Ty, (z0. 1), Yk 21
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and thus G(u) € T (xg, z1).
Fix € > 0 and for m > 0 set &, = ®te. For u € L'(I;,R™) and m > 0

m+2
define m(t) = [{ L(s)ds

po(w)(t) = |u(t)| +p(t) + L(H)|a(t)], te L

and

Phaa()(®) = M7 [ by P gy g (O

By the continuity of the map p§(.) = po(.), already proved, we obtain that
pL, o LY(I,R™) — LY(I;,R™) is continuous.

We define gi(u) = u and we shall prove that for any m > 1 there exists
a continuous map g, : L'(I1, R") — L'(I;,R") that satisfies

grln(u) =u, Vu € 7}1 (:COvml)a (al)
I (W)(t) € F(t, gg, 1(“)(75)) e. (I1), (b1)
|91 (w)(£) — go (W) (1)] < po(w)(t) + 0 a.e. (I), (c1)

|9 (W) () = g1 (8)] < L(t )pm_1(u)(t) ae (I), m=2 (d)
For u € L'(I;,R"), we define

Ul(u) = {v e LY(I;,R™); w(t) € F(t,u(t) a.e.(I)},

1, ) Au}  ifwe Ty (2o, 21),
1(u) = { Ul(u) otherwise.
and by Proposition 3.2 (with ¢(u) = u) we obtain that ®1 : L'(I;,R") —
D(I;,R"™) is lower semicontinuous. Moreover, due to (3.3) the set

Hi(u) = cl{v € @1(u);  |o(t) — u(t)| < p(u)(t) + 0 ae. (L)}

is not empty for any u € L'(I;,R™). So applying Lemma 2.2, we find a
continuous selection gi of Hi that satisfies (a1)-(c1).

Suppose we have already constructed g}(.), i = 1,...m satisfying (a;)-
(dq). Then from (b1), (d1) and Hypothesis 3.1 we get

d(gp, (u)(t), F(t, gm(U)(t)) < L(t)(!gm L)1) = gh(w)(#)] <
L(t) Jy ML(s)py,(u)(s)ds = L(t) (P, 1 (u)(t) - Tl m(t)) < L(t )p}nH(U)((?Z)
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where 7} (t) := M™ (m(®)™ (Emt1 —€m) > 0.

m m!
For u € L'(I;,R"), we define

Upir(uw) = {ve LN, RY); o(t) € F(t,gh(u)(t)  ae. ()},

(I)1ln+1(u) = { {U} if ue 7-11 (-TO,.ZU1>,

Uy . 1(u) otherwise.

We apply Proposition 3.2 (with ¢(u) = g} (u)) and obtain that ®% (.)
is lower semicontinuous with closed decomposable and nonempty values.
Moreover, by (3.4), the set

Hy,1(w) = cl{v € @y, (w); [0(t) = gyr (0) ()] < L(E)pr g1 (W) (1) ace. (11)}

is nonempty for any u € L'(I;,R"). With Lemma 2.2, we find a continuous
selection g}, ., of H} ., satisfying (a1)-(d1).
Therefore we obtain that

() — gyl < D by 42

and this implies that the sequence {g} (u)}men is a Cauchy sequence in the
Banach space L'(I1,R"). Let g*(u) € L'(I;,R") be its limit. The function
s — |p§(u)|1,1 is continuous, hence it is locally bounded and the Cauchy
condition is satisfied by {gl (u)}men locally uniformly with respect to u.
Hence the mapping ¢'(.) : L'(I;, R") — L'(I;,R™) is continuous.

From (aq) it follows that g'(u) = u, Yu € T, (20, 21) and from (b;) and
the fact that F' has closed values we obtain that

gl(u)(t) € F(t,g'(u)(t)), ae. (1) Yue Ll(Il,R").

In the next step of the proof we suppose that we have already constructed
the mappings ¢°(.) : L'(I;, R") — L'(I;,R"), i = 2, ...,k — 1 with the prop-
erties (I)-(IIT) and we shall construct a continuous map ¢*(.) : L'(I, R"*) —
LY (I, R™) satisfying (I)-(I1I).

Let gf : L'(Ix,R™) — L'(I},R™) be defined by

g6 (W) (1) = ¢ (ulr_ ) @) x, +ul®)xpaz, (1) (3.5)

Let us note, first, that g§(.) is continuous. Indeed, if ug,u € L' (I, R™) one
has

k
196 () = g6 (wo) e < 19"~ (ulr ) =" (wolr,_ )1k +/k_1 |u(t) —uo(t)|dt
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So, using the continuity of g¥=1(.) we get the continuity of g§(.).
On the other hand, since ¢*~!(u) = u, Yu € T, (w0, 71) from (3.5) it
follows that
go(u) =u, Yu€ T (20, 71).

For u € L'(I;,R™), we define

Ui(u) = {w e LI, R"); - w(t) = ¢" " (ulr, ) (6)xp,_, (B)+
U(t)XIk\kal(t% U(t) €F t?Qé(“’) )) a.e. ([k - 17k])}7

koo ) {u} if u € Tr, (20, 1),
P1(u) = { U (u) otherwise.

We apply Proposition 3.2 (with ¢(u) = gf(u)) and we obtain that ®¥(.) :

L'(I;,R™) — D(I;,R") is lower semicontinuous. Moreover, for any u €

L'(I,,R™) one has

d(g5(t), F(t, g (u) (1)) = d(u(t), F(¢, g§ () (£))xr1,_, < PH(u)()  ae.(n),
(3.6)

where

PEu)(t) = [u(t)] + p(t) + L(D)]g§ () (1))

Obviously, pf : L*(Ix, R™) — L*(Ij, R") is continuous. For m > 0 set

)™ s+ (Mk)mWEmH.

Phoa() = 0k [ phy ) O

m!

and by the continuity of pf(.) we infer that p¥, : L' (I, R") — L'(I}, R") is
continuous.

We shall prove, next, that for any m > 1 there exists a continuous map
gk LY (I, R™) — L' (I, R™) such that

Im(W)(t) = g" Hulg,_, ) () V€ Ly, (ar)

gk (w) =u Vu € Ty, (z0,21),

( (
g, (u)(1) € F(t, g5 1 (u)()) ae. (Iy), (
|9 (w)(t) = g5 (W) (1)] < p5(u)(t) + 20 ae. (L), (di
l9m (W) (1) = gm (W (@) < L1 (w)(t)  ace. (Ix), m=2.
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Define

Hf(u) = cl{v € DF(u);  [o(t) = g5(u)(t)] < pG(w)(t) +eo  a.e. (L)}

From (3.6), Hf(u) # ® Yu € L'(I;,R"). Using the continuity of gf,p§
and Lemma 2.2, we obtain a continuous selection g¥ of HF that satisfies
(a)-(d).-

Assume we have constructed gF(.), i = 1,...m satisfying (az)-(ex). Then
from (ey) we have

d(gp, (u)(t), (t?g’rkn( () < L) ([gp—1 (w)(t) — g (u)(®)] < L(t)-

Jo MEL(s)pk, (u)(s)ds = L(t)(pl 41 (u) (1) — 7f, (1)) < L(t)pﬁﬁl(U)(t)(,g .
where 7, (1) == (Mk)™ ™ (0 —e) > 0. |

For v € L'(I;,R™), we define

\IllrgnJrl (u) = {w S Ll(Ikv Rn) w(t) = gkil(u‘lk—l)(t)xlk—l(t)—i_
V() Xran (8, v(t) € F(t, gk (u)(1))  ae. ((k — 1,K])},

o (u) = { {u} if u € Tr, (20, 1),

m+11% Uk 1 (u) otherwise.

With Proposition 3.2 we infer that ®%,_,(.) : L*(I, R") — P(L'(I;,R")) is
lower semicontinuous with closed decomposable and nonempty values. By
(3.7) the set

Hy, 1 (u) = lfv € @5 (w); [o(t) = gy (W) ()] < Ly (w)() ae. (I)}

is nonempty for any u € L'(I, R"™). So, applying Lemma 2.2, we deduce a
continuous selection g, of HF . satisfying (ay)-(ex).
By (eg) one has

e D o)1+ .

gk 1 (u) = gh(u)

Therefore, with a similar proof as in the case k = 1, we find that the sequence
{gF (u)}men converges to some g¥(u) € L'(I;,R") and the mapping ¢g*(.) :
LY(Ix,R™) — L' (I, R") is continuous.

By (ax) we have that

g (W) (t) = ¢" Hulp,_)(t) V€ Ly,
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by (b) ¢*(v) =u, Yu € Tr, (20, 21) and from (cx) and the fact that F has
closed values we obtain that

g (u)(t) € F(t,gk(u)(t)), a.e. (Iy) VYuec L*(I;,R™).
Therefore g*(.) satisfies the properties (I), (II) and (III).

Remark 3.4. We recall that if Y is a Hausdorff topological space, a
subspace X of Y is called retract of Y if there is a continuous map h: ¥ — X
such that h(z) =z, Va € X.

Therefore, by Theorem 3.3, for any zo,z1 € R", the set T (zo,z1) of
selections that correspond to solutions of (1.1) is a retract of the Banach
space L} ([0,00), R").

loc
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