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Abstract

We consider a Cauchy problem for a Sturm-Liouville type differen-
tial inclusion involving a nonconvex set-valued map and we prove that
the set of selections corresponding to the solutions of the problem con-
sidered is a retract of the space of integrable functions on unbounded
interval.
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1 Introduction

In this paper we study second-order differential inclusions of the form

(p(t)x′(t))′ ∈ F (t, x(t)) a.e. [0,∞), x(0) = x0, x′(0) = x1, (1.1)

where F : [0,∞) × Rn → P(Rn) is a set-valued map, x0, x1 ∈ Rn and
p(.) : [0,∞)→ (0,∞) is continuous.
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Even if we deal with an initial value problem instead of a boundary value
problem, the differential inclusion (1.1)-(1.2) may be regarded as an exten-
sion to the set-valued framework of the classical Sturm-Liouville differential
equation. Several qualitative properties and existence results for problem
(1.1) may be found in [3-9] etc..

In [6] we proved that the solution set of problem (1.1) is arcwise connected
when the set-valued map is Lipschitz in the second variable and the problem
is defined on a bounded interval. The aim of this paper is to establish a more
general topological property of the solution set of problem (1.1). Namely,
we prove that the set of selections of the set-valued map F that correspond
to the solutions of problem (1.1) is a retract of L1

loc([0,∞),Rn). The result
is essentially based on Bressan and Colombo results ([1]) concerning the
existence of continuous selections of lower semicontinuous multifunctions
with decomposable values.

We note that in the classical case of differential inclusions several topo-
logical properties of solution set are obtained using various methods and
tools ([2, 10-14] etc.). The result in the present paper extends to Sturm-
Liouville differential inclusions the main result in [12] obtained in the case
of classical differential inclusions.

The paper is organized as follows: in Section 2 we present the notations,
definitions and the preliminary results to be used in the sequel and in Section
3 we prove our main result.

2 Preliminaries

Let T > 0, I := [0, T ] and denote by L(I) the σ-algebra of all Lebesgue
measurable subsets of I. Let X be a real separable Banach space with the
norm |.|. Denote by P(X) the family of all nonempty subsets of X and by
B(X) the family of all Borel subsets of X. If A ⊂ I then χA(.) : I → {0, 1}
denotes the characteristic function of A. For any subset A ⊂ X we denote
by cl(A) the closure of A.

The distance between a point x ∈ X and a subset A ⊂ X is defined as
usual by d(x,A) = inf{|x − a|; a ∈ A}. We recall that Pompeiu-Hausdorff
distance between the closed subsets A,B ⊂ X is defined by dH(A,B) =
max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A}.

As usual, we denote by C(I,X) the Banach space of all continuous func-
tions x : I → X endowed with the norm |x|C = supt∈I |x(t)| and by L1(I,X)
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the Banach space of all (Bochner) integrable functions x : I → X endowed
with the norm |x|1 =

∫ T
0 |x(t)|dt.

We recall first several preliminary results we shall use in the sequel.
A subset D ⊂ L1(I,X) is said to be decomposable if for any u, v ∈ D and

any subset A ∈ L(I) one has uχA + vχB ∈ D, where B = I\A.
We denote by D(I,X) the family of all decomposable closed subsets of

L1(I,X).
Next (S, d) is a separable metric space; we recall that a multifunction

G : S → P(X) is said to be lower semicontinuous (l.s.c.) if for any closed
subset C ⊂ X, the subset {s ∈ S; G(s) ⊂ C} is closed.

Lemma 2.1. ([1]) Let F ∗ : I×S → P(X) be a closed-valued L(I)⊗B(S)-
measurable multifunction such that F ∗(t, .) is l.s.c. for any t ∈ I.

Then the multifunction G : S → D(I,X) defined by

G(s) = {v ∈ L1(I,X); v(t) ∈ F ∗(t, s) a.e. (I)}

is l.s.c. with nonempty closed values if and only if there exists a continuous
mapping p : S → L1(I,X) such that

d(0, F ∗(t, s)) ≤ p(s)(t) a.e. (I), ∀s ∈ S.

Lemma 2.2. ([1]) Let G : S → D(I,X) be a l.s.c. multifunction with
closed decomposable values and let φ : S → L1(I,X), ψ : S → L1(I,R) be
continuous such that the multifunction H : S → D(I,X) defined by

H(s) = cl{v(.) ∈ G(s); |v(t)− φ(s)(t)| < ψ(s)(t) a.e. (I)}

has nonempty values.
Then H has a continuous selection, i.e. there exists a continuous map-

ping h : S → L1(I,X) such that h(s) ∈ H(s) ∀s ∈ S.

Consider a set-valued map F : [0,∞)×Rn → P(Rn), x0, x1 ∈ Rn and a
continuous mapping p(.) : [0,∞) → (0,∞) that define the Cauchy problem
(1.1).

A continuous mapping x(.) ∈ C([0,∞),Rn) is called a solution of prob-
lem (1.1) if there exists a integrable function f(.) ∈ L1

loc([0,∞),Rn) such
that

f(t) ∈ F (t, x(t)) a.e. [0,∞), (2.1)
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x(t) = x0 + p(0)x1

∫ t

0

1

p(s)
ds+

∫ t

0

1

p(s)

∫ s

0
f(u)duds ∀t ∈ [0,∞). (2.2)

Note that, if we put G(t, u) :=
∫ t
u

1
p(s) , t ∈ I, then (2.2) may be rewritten

as

x(t) = x0 + p(0)x1G(t, 0) +

∫ t

0
G(t, u)f(u)du ∀t ∈ [0,∞). (2.3)

We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if (2.1) and
(2.2) are satisfied.

We shall use the following notations for the solution sets and for the
selection sets of problem (1.1).

S(x0, x1) = {x(.) ∈ C([0,∞),Rn); x(.) is a solution of (1.1)}, (2.4)

T (x0, x1) = {f(.) ∈ L1
loc([0,∞),Rn); f(t) ∈ F (t, x0 + p(0)x1G(t, 0)+

+
∫ t
0 G(t, u)f(u)du) a.e. [0,∞)}.

(2.5)

3 The main result

In order to prove our topological property of the solution set of problem
(1.1) we need the following hypotheses.

Hypothesis 3.1. i) F (., .) : [0,∞) ×Rn → P(Rn) has nonempty com-
pact values and is L([0,∞))⊗ B(Rn) measurable.

ii) There exists L ∈ L1
loc([0,∞),R) such that, for almost all t ∈ [0,∞),

F (t, .) is L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀x, y ∈ Rn.

iii) There exists p ∈ L1
loc([0,∞),Rn) such that

dH({0}, F (t, 0)) ≤ p(t) a.e. [0,∞).

In what follows I = [0, T ] and let M := supt∈I
1

p(t) . Note that |G(t, u)| ≤
Mt ∀t, u ∈ I, u ≤ t. We use the notations

ũ(t) = x0 + p(0)x1G(t, 0) +

∫ t

0
G(t, s)u(s)ds, u ∈ L1(I,Rn) (3.1)
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and

p0(u)(t) = |u(t)|+ p(t) + L(t)|ũ(t)|, t ∈ I (3.2)

Let us note that

d(u(t), F (t, ũ(t)) ≤ p0(u)(t) a.e. (I) (3.3)

and, since for any u1, u2 ∈ L1(I,Rn)

|p0(u1)− p0(u2)|1 ≤ (1 +MT

∫ T

0
L(s)ds|)|u1 − u2|1

the mapping p0 : L1(I,Rn)→ L1(I,Rn) is continuous.

Also define

TI(x0, x1) = {f ∈ L1(I,Rn); f(t) ∈ F (t, x0 + p(0)x1G(t, 0)+

+
∫ t
0 G(t, s)f(s)ds) a.e. (I)}.

Proposition 3.2. Assume that Hypothesis 3.1 is satisfied and let φ :
L1(I,Rn) → L1(I,Rn) be a continuous map such that φ(u) = u for all
u ∈ TI(x0, x1). For u ∈ L1(I,Rn), we define

Ψ(u) = {u ∈ L1(I,Rn); u(t) ∈ F (t, φ̃(u)(t)) a.e. (I)},

Φ(u) =

{
{u} if u ∈ TI(x0, x1),
Ψ(u) otherwise.

Then the multifunction Φ : L1(I,Rn)→ P(L1(I,Rn)) is lower semicon-
tinuous with closed decomposable and nonempty values.

Proof. According to (3.3), Lemma 2.1 and the continuity of p0 we obtain
that Ψ has closed decomposable and nonempty values and the same holds
for the set-valued map Φ.

Let C ⊂ L1(I,Rn) be a closed subset, let {um}m∈N converges to some
u0 ∈ L1(I,Rn) and Φ(um) ⊂ C, for any m ∈ N. Let v0 ∈ Φ(u0) and for
every m ∈ N consider a measurable selection vm from the set-valued map
t→ F (t, ˜φ(um)(t)) such that vm = um if um ∈ TI(x0, x1) and

|vm(t)− v0(t)| = d(v0(t), F (t, ˜φ(um)(t)) a.e. (I)



A second-order differential inclusion 111

otherwise. One has
|vm(t)− v0(t)| ≤

≤ dH(F (t, ˜φ(um)(t)), F (t, ˜φ(u0)(t))) ≤ L(t)| ˜φ(um)(t)− ˜φ(u0)(t)|

hence

|vm − v0|1 ≤MT

∫ T

0
L(s)ds.| ˜φ(um)− ˜φ(u0)|1.

Since φ : L1(I,Rn)→ L1(I,Rn) is continuous, it follows that vm converges
to v0 in L1(I,Rn). On the other hand, vm ∈ Φ(um) ⊂ C ∀m ∈ N and
since C is closed we infer that v0 ∈ C. Hence Φ(u0) ⊂ C and Φ is lower
semicontinuous.

In what follows we shall use the following notations

Ik = [0, k], k ≥ 1, |u|1,k =

∫ k

0
|u(t)|dt, u ∈ L1(Ik,R

n).

We are able now to prove the main result of this paper.

Theorem 3.3. Assume that Hypothesis 3.1 is satisfied, there exists M :=
supt∈[0,∞)

1
p(t) and x0, x1 ∈ Rn.

Then there exists a continuous mapping G : L1
loc([0,∞),Rn)→

L1
loc([0,∞),Rn) such that

(i) G(u) ∈ T (x0, x1), ∀u ∈ L1
loc([0,∞),Rn),

(ii) G(u) = u, ∀u ∈ T (x0, x1).

Proof. We shall prove that for every k ≥ 1 there exists a continuous
mapping gk : L1(Ik,R

n)→ L1(Ik,R
n) with the following properties

(I) gk(u) = u, ∀u ∈ TIk(x0, x1)
(II) gk(u) ∈ TIk(x0, x1), ∀u ∈ L1(Ik,R

n)
(III) gk(u)(t) = gk−1(u|Ik−1

)(t), ∀t ∈ Ik−1
If the sequence {gk}k≥1 is constructed, we define G : L1

loc([0,∞),Rn)→
L1
loc([0,∞),Rn) by

G(u)(t) = gk(u|Ik)(t), ∀k ≥ 1

From (III) and the continuity of each gk(.) it follows that G(.) is well
defined and continuous. Moreover, for each u ∈ L1

loc([0,∞),Rn), according
to (II) we have

G(u)|Ik(t) = gk(u|Ik)(t) ∈ TIk(x0, x1), ∀k ≥ 1
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and thus G(u) ∈ T (x0, x1).
Fix ε > 0 and for m ≥ 0 set εm = m+1

m+2ε. For u ∈ L1(I1,R
n) and m ≥ 0

define m(t) =
∫ t
0 L(s)ds,

p10(u)(t) = |u(t)|+ p(t) + L(t)|ũ(t)|, t ∈ I1

and

p1m+1(u)(t) = Mm+1
∫ t

0
p10(u)(s)

(m(t)−m(s))m

m!
ds+Mm (m(t))m

m!
εm+1.

By the continuity of the map p10(.) = p0(.), already proved, we obtain that
p1m : L1(I1,R

n)→ L1(I1,R
n) is continuous.

We define g10(u) = u and we shall prove that for any m ≥ 1 there exists
a continuous map g1m : L1(I1,R

n)→ L1(I1,R
n) that satisfies

g1m(u) = u, ∀u ∈ TI1(x0, x1), (a1)

g1m(u)(t) ∈ F (t, ˜g1m−1(u)(t)) a.e. (I1), (b1)

|g11(u)(t)− g10(u)(t)| ≤ p10(u)(t) + ε0 a.e. (I1), (c1)

|g1m(u)(t)− g1m−1(t)| ≤ L(t)p1m−1(u)(t) a.e. (I1), m ≥ 2. (d1)

For u ∈ L1(I1,R
n), we define

Ψ1
1(u) = {v ∈ L1(I1,R

n); v(t) ∈ F (t, ũ(t)) a.e.(I1)},

Φ1
1(u) =

{
{u} if u ∈ TI1(x0, x1),
Ψ1

1(u) otherwise.

and by Proposition 3.2 (with φ(u) = u) we obtain that Φ1
1 : L1(I1,R

n) →
D(I1,R

n) is lower semicontinuous. Moreover, due to (3.3) the set

H1
1 (u) = cl{v ∈ Φ1

1(u); |v(t)− u(t)| < p10(u)(t) + ε0 a.e. (I1)}

is not empty for any u ∈ L1(I1,R
n). So applying Lemma 2.2, we find a

continuous selection g11 of H1
1 that satisfies (a1)-(c1).

Suppose we have already constructed g1i (.), i = 1, . . .m satisfying (a1)-
(d1). Then from (b1), (d1) and Hypothesis 3.1 we get

d(g1m(u)(t), F (t, ˜g1m(u)(t)) ≤ L(t)(| ˜g1m−1(u)(t)− ˜g1m(u)(t)| ≤
L(t)

∫ T
0 ML(s)p1m(u)(s)ds = L(t)(p1m+1(u)(t)− r1m(t)) < L(t)p1m+1(u)(t),

(3.4)
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where r1m(t) := Mm (m(t))m

m! (εm+1 − εm) > 0.
For u ∈ L1(I1,R

n), we define

Ψ1
m+1(u) = {v ∈ L1(I1,R

n); v(t) ∈ F (t, ˜g1m(u)(t)) a.e. (I1)},

Φ1
m+1(u) =

{
{u} if u ∈ TI1(x0, x1),
Ψ1

m+1(u) otherwise.

We apply Proposition 3.2 (with φ(u) = g1m(u)) and obtain that Φ1
m+1(.)

is lower semicontinuous with closed decomposable and nonempty values.
Moreover, by (3.4), the set

H1
m+1(u) = cl{v ∈ Φ1

m+1(u); |v(t)− g1m+1(u)(t)| < L(t)p1m+1(u)(t) a.e. (I1)}

is nonempty for any u ∈ L1(I1,R
n). With Lemma 2.2, we find a continuous

selection g1m+1 of H1
m+1, satisfying (a1)-(d1).

Therefore we obtain that

|g1m+1(u)− g1m(u)|1,1 ≤
(Mm(1))m

m!
(M |p10(u)|1,1 + ε)

and this implies that the sequence {g1m(u)}m∈N is a Cauchy sequence in the
Banach space L1(I1,R

n). Let g1(u) ∈ L1(I1,R
n) be its limit. The function

s → |p10(u)|1,1 is continuous, hence it is locally bounded and the Cauchy
condition is satisfied by {g1m(u)}m∈N locally uniformly with respect to u.
Hence the mapping g1(.) : L1(I1,R

n)→ L1(I1,R
n) is continuous.

From (a1) it follows that g1(u) = u, ∀u ∈ TI1(x0, x1) and from (b1) and
the fact that F has closed values we obtain that

g1(u)(t) ∈ F (t, ˜g1(u)(t)), a.e. (I1) ∀u ∈ L1(I1,R
n).

In the next step of the proof we suppose that we have already constructed
the mappings gi(.) : L1(Ii,R

n)→ L1(Ii,R
n), i = 2, ..., k − 1 with the prop-

erties (I)-(III) and we shall construct a continuous map gk(.) : L1(Ik,R
n)→

L1(Ik,R
n) satisfying (I)-(III).

Let gk0 : L1(Ik,R
n)→ L1(Ik,R

n) be defined by

gk0 (u)(t) = gk−1(u|Ik−1
)(t)χIk−1

+ u(t)χIk\Ik−1
(t) (3.5)

Let us note, first, that gk0 (.) is continuous. Indeed, if u0, u ∈ L1(Ik,R
n) one

has

|gk0 (u)−gk0 (u0)|1,k ≤ |gk−1(u|Ik−1
)−gk−1(u0|Ik−1

)|1,k−1+

∫ k

k−1
|u(t)−u0(t)|dt
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So, using the continuity of gk−1(.) we get the continuity of gk0 (.).
On the other hand, since gk−1(u) = u, ∀u ∈ TIk−1

(x0, x1) from (3.5) it
follows that

gk0 (u) = u, ∀u ∈ TIk(x0, x1).

For u ∈ L1(Ik,R
n), we define

Ψk
1(u) = {w ∈ L1(Ik,R

n); w(t) = gk−1(u|Ik−1
)(t)χIk−1

(t)+

v(t)χIk\Ik−1
(t), v(t) ∈ F (t, ˜gk0 (u)(t)) a.e. ([k − 1, k])},

Φk
1(u) =

{
{u} if u ∈ TIk(x0, x1),
Ψk

1(u) otherwise.

We apply Proposition 3.2 (with φ(u) = gk0 (u)) and we obtain that Φk
1(.) :

L1(Ik,R
n) → D(Ik,R

n) is lower semicontinuous. Moreover, for any u ∈
L1(Ik,R

n) one has

d(gk0 (t), F (t, ˜gk0 (u)(t)) = d(u(t), F (t, ˜gk0 (u)(t))χIk\Ik−1
≤ pk0(u)(t) a.e.(Ik),

(3.6)
where

pk0(u)(t) = |u(t)|+ p(t) + L(t)| ˜gk0 (u)(t)|.

Obviously, pk0 : L1(Ik,R
n)→ L1(Ik,R

n) is continuous. For m ≥ 0 set

pkm+1(u) = (Mk)m+1
∫ t

0
pk0(u)(s)

(m(t)−m(s))m

m!
ds+ (Mk)m

(m(t))m

m!
εm+1.

and by the continuity of pk0(.) we infer that pkm : L1(Ik,R
n)→ L1(Ik,R

n) is
continuous.

We shall prove, next, that for any m ≥ 1 there exists a continuous map
gkm : L1(Ik,R

n)→ L1(Ik,R
n) such that

gkm(u)(t) = gk−1(u|Ik−1
)(t) ∀t ∈ Ik−1, (ak)

gkm(u) = u ∀u ∈ TIk(x0, x1), (bk)

gkm(u)(t) ∈ F (t, ˜gkm−1(u)(t)) a.e. (Ik), (ck)

|gk1 (u)(t)− gk0 (u)(t)| ≤ pk0(u)(t) + ε0 a.e. (Ik), (dk)

|gkm(u)(t)− gkm−1(u)(t)| ≤ L(t)pkm−1(u)(t) a.e. (Ik), m ≥ 2. (ek)
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Define

Hk
1 (u) = cl{v ∈ Φk

1(u); |v(t)− gk0 (u)(t)| < pk0(u)(t) + ε0 a.e. (Ik)}.

From (3.6), Hk
1 (u) 6= ∅ ∀u ∈ L1(I1,R

n). Using the continuity of gk0 , p
k
0

and Lemma 2.2, we obtain a continuous selection gk1 of Hk
1 that satisfies

(ak)-(dk).
Assume we have constructed gki (.), i = 1, . . .m satisfying (ak)-(ek). Then

from (ek) we have

d(gkm(u)(t), F (t, ˜gkm(u)(t)) ≤ L(t)(| ˜gkm−1(u)(t)− ˜gkm(u)(t)| ≤ L(t)·∫ T
0 MkL(s)pkm(u)(s)ds = L(t)(pkm+1(u)(t)− rkm(t)) < L(t)pkm+1(u)(t),

(3.7)

where rkm(t) := (Mk)m (m(t))m

m! (εm+1 − εm) > 0.
For u ∈ L1(Ik,R

n), we define

Ψk
m+1(u) = {w ∈ L1(Ik,R

n); w(t) = gk−1(u|Ik−1
)(t)χIk−1

(t)+

v(t)χIk\Ik−1
(t), v(t) ∈ F (t, ˜gkm(u)(t)) a.e. ([k − 1, k])},

Φk
m+1(u) =

{
{u} if u ∈ TIk(x0, x1),
Ψk

m+1(u) otherwise.

With Proposition 3.2 we infer that Φk
m+1(.) : L1(Ik,R

n)→ P(L1(Ik,R
n)) is

lower semicontinuous with closed decomposable and nonempty values. By
(3.7) the set

Hk
m+1(u) = cl{v ∈ Φk

m+1(u); |v(t)− gkm+1(u)(t)| < L(t)pkm+1(u)(t) a.e. (Ik)}

is nonempty for any u ∈ L1(Ik,R
n). So, applying Lemma 2.2, we deduce a

continuous selection gkm+1 of Hk
m+1, satisfying (ak)-(ek).

By (ek) one has

|gkm+1(u)− gkm(u)|1,k ≤
(Mkm(k))m

m!
(Mk|pk0(u)|1,1 + ε].

Therefore, with a similar proof as in the case k = 1, we find that the sequence
{gkm(u)}m∈N converges to some gk(u) ∈ L1(Ik,R

n) and the mapping gk(.) :
L1(Ik,R

n)→ L1(Ik,R
n) is continuous.

By (ak) we have that

gk(u)(t) = gk−1(u|Ik−1
)(t) ∀t ∈ Ik−1,
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by (bk) gk(u) = u, ∀u ∈ TIk(x0, x1) and from (ck) and the fact that F has
closed values we obtain that

gk(u)(t) ∈ F (t, ˜gk(u)(t)), a.e. (Ik) ∀u ∈ L1(Ik,R
n).

Therefore gk(.) satisfies the properties (I), (II) and (III).

Remark 3.4. We recall that if Y is a Hausdorff topological space, a
subspace X of Y is called retract of Y if there is a continuous map h : Y → X
such that h(x) = x, ∀x ∈ X.

Therefore, by Theorem 3.3, for any x0, x1 ∈ Rn, the set T (x0, x1) of
selections that correspond to solutions of (1.1) is a retract of the Banach
space L1

loc([0,∞),Rn).
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