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Abstract

We consider the general model of 6-parametric elastic plates, in
which the rotation tensor field is an independent kinematic field. In
this context we show the existence of global minimizers to the mini-
mization problem of the total potential energy.
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1 Introduction

The general non-linear theory of 6-parametric elastic shells (3 parameters for
the translation and 3 parameters for the rotational degrees of freedom) has
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been established and presented in the books of Libai and Simmonds [1] and
Chróścielewski, Makowski and Pietraszkiewicz [2]. This approach to shell
theory is of great importance due to its generality and its efficiency for the
treatment of complex shell problems.

In this short note we present an existence results for the equations of
geometrically nonlinear elastic plates, in the framework of the 6-parametric
shell theory. Using the direct methods of the calculus of variations, we es-
tablish the existence of global minimizers for the corresponding minimization
problem of the total potential energy. First, we consider the case of isotropic
and homogeneous plates. Then, we extend the existence theorem to the more
general situation of composite elastic plates.

2 Geometrically nonlinear elastic plates

Consider an elastic plate which occupies in the reference (undeformed) con-
figuration the region Ω = {(x, y, z) | (x, y) ∈ ω, z ∈

[
− h

2 ,
h
2

]
} of the three-

dimensional Euclidean space. Here h > 0 is the thickness of the plate and
ω ⊂ IR2 is a bounded, open domain with Lipschitz boundary ∂ω. Relative
to an inertial frame (O, ei), with ei orthonormal vectors (i = 1, 2, 3), the
position vector r of any point of Ω can be written as

r(x, y, z) = x e1 + y e2 + z e3 , (x, y) ∈ ω, z ∈
[
− h

2
,
h

2

]
. (1)

In the deformed configuration, we denote by m : ω ⊂ IR2 → IR3 the
surface deformation mapping, so that m = m(x, y) represents the position
vector of the points of the base surface of the plate (shell). Let the vector
field u = u(x, y) designate the translations (displacements) and the proper
orthogonal tensor field R = R(x, y) denote the rotations of the shell cross-
sections. Then the deformed configuration of the plate is given by

m(x, y) = x e1 + y e2 + u(x, y), di = Rei , i = 1, 2, 3. (2)

The vectors di introduced in (2) are three orthonormal vectors (usually called
directors) attached to any point of the deformed base surface S = m(ω).
Thus, the rotation tensor field R(x, y) ∈ SO(3) can be written as

R = di ⊗ ei . (3)
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We employ the usual tensor notation and the Einstein’s convention of summa-
tion over repeated indices. The Latin indices i, j, ... take the values {1, 2, 3}
and the Greek indices α, β, ... range over the set {1, 2}. The partial derivative
with respect to x will be denoted by (·),x = ∂

∂x (·).
The local equilibrium equations for 6-parametric plates are [1, 2]:

DivsN + f = 0, DivsM + axl(NFT − FNT ) + c = 0. (4)

Here, f and c are the external surface resultant force and couple vector fields,
N and M are the internal surface stress resultant and stress couple resultant
tensors (of the first Piola–Kirchhoff stress tensor type), Divs is the surface
divergence operator, while F = Gradsm = m,x⊗e1 +m,y⊗e2 is the surface
gradient of deformation. The superscript ( ·)T denotes the transpose and
axl(·) is the axial vector of any skew-symmetric tensor.

To formulate the boundary conditions, we take a disjoint partition of the
boundary curve ∂ω = ∂ωd ∪ ∂ωf , ∂ωd ∩ ∂ωf = ∅, with length(∂ωd) > 0. We
consider the following boundary conditions [2, 3]

u− u∗ = 0, R−R∗ = 0 along ∂ωd , (5)

Nν − n∗ = 0, Mν −m∗ = 0 along ∂ωf , (6)

where n∗ andm∗ are the external boundary resultant force and couple vectors
applied along ∂ωf , and ν is the external unit normal vector to ∂ω.

In the general resultant theory of shells, the strain measures are the strain
tensor E and the bending tensor K, given by [2, 4]

E = RT
[

(m,x − d1)⊗ e1 + (m,y − d2)⊗ e2
]
, (7)

K = RT
[

axl(R,xR
T )⊗ e1 + axl(R,yR

T )⊗ e2
]
. (8)

One can prove that the following relation holds for any rotation tensor
Q ∈ SO(3) and any second order skew-symmetric tensor A ∈ so(3)

axl(QAQT ) = Q axl(A). (9)

If we write this relation for Q = R and A = RTR,x we obtain

RT axl(R,xR
T ) = axl(RTR,x) . (10)

By (8) and (10), the bending tensor K can be expressed in the simpler form

K = axl(RTR,x)⊗ e1 + axl(RTR,y)⊗ e2 . (11)
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In the case of plates, the strain tensor E and the bending tensor K can
be written in component form relative to the tensor basis {ei ⊗ ej} as

E = Eiαei ⊗ eα = (m,x · di − δi1)ei ⊗ e1 + (m,y · di − δi2)ei ⊗ e2 , (12)

K = Kiαei ⊗ eα = (d2,x ·d3)e1⊗ e1 + (d3,x ·d1)e2⊗ e1 + (d1,x ·d2)e3⊗ e1
+(d2,y ·d3)e1 ⊗ e2 + (d3,y ·d1)e2 ⊗ e2 + (d1,y ·d2)e3 ⊗ e2 ,

(13)
where δij is the Kronecker symbol.

Let W = W (E,K) be the strain energy density of the elastic plate.
According to the hyperelasticity assumption, the constitutive equations are

N = R
∂ W

∂E
, M = R

∂ W

∂K
. (14)

The strain energy density for physically linear isotropic plates is [5]

W (E,K) = Wmb(E) +Wbend(K),

2Wmb(E) = α1tr
2E‖ + α2trE

2
‖ + α3tr(E

T
‖E‖) + α4e3EETe3,

2Wbend(K) = β1tr
2K‖ + β2trK

2
‖ + β3tr(K

T
‖K‖) + β4e3KKTe3,

(15)

where the coefficients αk , βk are constant material parameters, and we use
the notations E‖ = E− (e3 ⊗ e3)E and K‖ = K− (e3 ⊗ e3)K.

3 Existence of minimizers

Let us define the admissible set A by

A =
{

(m,R) ∈ H1(ω, IR3)×H1(ω, SO(3))
∣∣ m∣∣∂ωd

= m∗, R∣∣∂ωd
= R∗

}
.

(16)
The boundary conditions in (16) are to be understood in the sense of traces.
We assume the existence of a function Λ(u,R) representing the potential of
the external surface loads f , c, and boundary loads n∗,m∗ [4].

Consider the two-field minimization problem associated to the deforma-
tion of elastic plates: find the pair (m̂, R̂) ∈ A which realizes the minimum
of the functional

I(m,R) =

∫
ω
W (E,K) dω − Λ(u,R) for (m,R) ∈ A. (17)
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Here the strain tensor E and the bending tensor K are expressed in terms of
(m,R) by the relations (2)2, (7) and (8).

The external loading potential Λ(u,R) is decomposed additively

Λ(u,R) = Λω(u,R) + Λ∂ωf
(u,R), (18)

where Λω(u,R) is the potential of the external surface loads f , c, while
Λ∂ωf

(u,R) is the potential of the external boundary loads n∗,m∗

Λω(u,R) =

∫
ω
f · udω + Πω(R), Λ∂ωf

(u,R) =

∫
∂ωf

n∗ · uds+ Π∂ωf
(R).

(19)
The load potentials Πω : L2(ω, SO(3)) → IR and Π∂ωf

: L2(ω, SO(3)) → IR
are assumed to be continuous and bounded operators. Let us present next
the main existence result corresponding to isotropic elastic plates.

Theorem 1 Assume that the external loads and the boundary data satisfy
the regularity conditions

f ∈ L2(ω, IR3), n∗ ∈ L2(∂ωf , IR
3), m∗ ∈ H1(ω, IR3), R∗ ∈ H1(ω, SO(3)).

(20)
Consider the minimization problem (16), (17) for isotropic plates, i.e. when
the strain energy density W is given by the relations (15). If the constitutive
coefficients satisfy the conditions

2α1 + α2 + α3 > 0, α2 + α3 > 0, α3 − α2 > 0, α4 > 0,
2β1 + β2 + β3 > 0, β2 + β3 > 0, β3 − β2 > 0, β4 > 0,

(21)

then the problem (16), (17) admits at least one minimizing solution pair
(m̂, R̂) ∈ A.

For the proof, we apply the direct methods of the calculus of variations
and we follow the same steps as in the proof of Theorem 4.1 from [6].

4 Composite plates

The modeling of composite shells in the nonlinear 6-parametric general theory
of shells has been presented in [7]. In this case, the strain energy density can
be written using the matrix notation in the following way [7]

W (E,K) =
1

2
vTCv , (22)
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where C is a 12× 12 matrix containing the constitutive coefficients, and v
is a 12× 1 column vector of the forms

C12×12 =


A4×4 04×2 B4×4 04×2
02×4 S2×2 02×4 02×2
B4×4 04×2 D4×4 04×2
02×4 02×2 02×4 G2×2

 , v 12×1 =


e 4×1
ε 2×1
k 4×1
κ 2×1

 . (23)

Here we have denoted by e, ε, k and κ the following column vectors of
components of the strain and bending tensors for plates

e =


E11

E22

E21

E12

 =


m,x · d1 − 1
m,y · d2 − 1
m,x · d2

m,y · d1

 , k =


K21

−K12

−K11

K22

 =


d3,x · d1

d3,y · d2

d3,x · d2

d3,y · d1

 ,
ε =

[
E31

E32

]
=

[
m,x · d3

m,y · d3

]
, κ =

[
K31

K32

]
=

[
d1,x · d2

d1,y · d2

]
.

(24)
In view of the above notations, the expression of the strain energy density
(22) becomes

2W (E,K) = eTAe + eTBk + kTBe + kTDk + εTS ε+ κTGκ. (25)

In the above relation we can observe the multiplicative coupling of the strain
tensor E with the bending tensor K for composite plates. The matrices
A,B,D,S,G containing the constitutive coefficients for elastic (orthotropic)
composite multilayered shells and plates have been determined in [7] in terms
of the material/geometrical parameters of the layers.

We can prove the existence of minimizers also for composite plates under
the assumption of coercivity and convexity on the strain energy density. More
precisely, the following theorem holds.

Theorem 2 (Composite, anisotropic plates) Consider the minimiza-
tion problem (16), (17) associated to the deformation of composite plates,
and assume that the external loads and boundary data satisfy the conditions
(20). Assume that the strain energy density W (E,K) is a quadratic convex
function in (E,K), and moreover W is coercive, i.e.

W (E,K) ≥ c
(
‖E‖2 + ‖K‖2

)
, ∀E = Eiαei ⊗ eα, K = Kiαei ⊗ eα, (26)

for some constant c > 0. Then, the minimization problem (16), (17) admits
at least one minimizing solution pair (ŷ, Q̂) ∈ A.
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Finally, we mention that the model of 6-parametric plates has many sim-
ilarities with the Cosserat plate model proposed and investigated by the
second author in [6, 8]. Although this Cosserat model for plates has been
obtained independently by a derivation approach, the strain measures of the
two models essentially coincide. Moreover, the expressions of the elastic
strain energies become identical for isotropic plates, provided one makes a
suitable identification of constitutive coefficients in the two approaches.

Acknowledgements. The first author (M.B.) is supported by the german
state grant: “Programm des Bundes und der Länder für bessere Studienbe-
dingungen und mehr Qualität in der Lehre”.

References

[1] A. Libai, J.G. Simmonds. The Nonlinear Theory of Elastic Shells. Cam-
bridge University Press, Cambridge, 2nd edition, 1998.

[2] J. Chróścielewski, J. Makowski, W. Pietraszkiewicz. Statics and Dynam-
ics of Multifold Shells: Nonlinear Theory and Finite Element Method (in
Polish). Wydawnictwo IPPT PAN, Warsaw, 2004.

[3] W. Pietraszkiewicz. Refined resultant thermomechanics of shells. Int. J.
Engng. Science 49:1112-1124, 2011.

[4] V.A. Eremeyev, W. Pietraszkiewicz. The nonlinear theory of elastic
shells with phase transitions. J. Elasticity 74:67-86, 2004.

[5] V.A. Eremeyev, W. Pietraszkiewicz. Local symmetry group in the gen-
eral theory of elastic shells. J. Elasticity 85:125-152, 2006.

[6] P. Neff. A geometrically exact Cosserat-shell model including size effects,
avoiding degeneracy in the thin shell limit. Part I: Formal dimensional
reduction for elastic plates and existence of minimizers for positive Cos-
serat couple modulus. Cont. Mech. Thermodynamics 16:577-628, 2004.

[7] J. Chróścielewski, I. Kreja, A. Sabik, W. Witkowski. Modeling of com-
posite shells in 6-parameter nonlinear theory with drilling degree of free-
dom. Mechanics of Advanced Materials and Structures 18:403-419, 2011.

[8] P. Neff. A geometrically exact planar Cosserat shell-model with mi-
crostructure: Existence of minimizers for zero Cosserat couple modulus.
Math. Models Methods Appl. Sci. 17:363-392, 2007.


