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Abstract

We consider a mathematical model which describes the quasistatic
contact between a viscoplastic body and a foundation. The contact
is frictionless and is modelled with a new and nonstandard condition
which involves both normal compliance, unilateral constraint and mem-
ory effects. We derive a variational formulation of the problem then
we prove its unique weak solvability. The proof is based on arguments
on history-dependent variational inequalities.
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1 The model

We consider a viscoplastic body which occupies the domain Ω ⊂ Rd (d =
1, 2, 3) with a Lipschitz continuous boundary Γ, divided into three measurable
parts Γ1, Γ2 and Γ3, such that meas(Γ1) > 0. We use the notation x = (xi)
for a typical point in Ω∪Γ and we denote by ν = (νi) the outward unit normal
at Γ. Here and below the indices i, j, k, l run between 1 and d and an index
that follows a comma represents the partial derivative with respect to the
corresponding component of the spatial variable, e.g. vi,j = ∂vi/∂xj . The
body is subject to the action of body forces of density f0, is fixed on Γ1, and
surface tractions of density f2 act on Γ2. On Γ3, the body is in frictionless
contact with a deformable obstacle, the so-called foundation. We assume that
the problem is quasistatic and the time interval of interest is R+ = [0,∞).
Everywhere in this paper the dot above a variable represents derivative with
respect to the time variable, Sd denotes the space of second order symmetric
tensors on Rd and r+ is the positive part of r, i.e. r+ = max {0, r}. The
classical formulation of the problem is the following.
Problem P. Find a displacement field u : Ω × R+ → Rd and a stress field
σ : Ω× R+ → Sd such that, for all t ∈ R+,

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t))) in Ω, (1)

Divσ(t) + f0(t) = 0 in Ω, (2)

u(t) = 0 on Γ1, (3)

σ(t)ν = f2(t) on Γ2, (4)

uν(t) ≤ g, σν(t) + p(uν(t)) + ξ(t) ≤ 0,

(uν(t)− g)
(
σν(t) + p(uν(t)) + ξ(t)

)
= 0,

0 ≤ ξ(t) ≤
∫ t

0
b(t− s)u+

ν (s) ds,

ξ(t) = 0 if uν(t) < 0,

ξ(t) =

∫ t

0
b(t− s)u+

ν (s) ds if uν(t) > 0


on Γ3, (5)

στ (t) = 0 on Γ3, (6)

u(0) = u0, σ(0) = σ0 in Ω. (7)
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Equation (1) represents the viscoplastic constitutive law of the material in
which ε(u) denotes the linearized stress tensor, E is the elasticity tensor and
G is a given constitutive function. Equation (2) is the equilibrium equation
in which Div denotes the divergence operator for tensor valued functions.
Conditions (3) and (4) are the displacement and traction boundary condi-
tions, respectively, and condition (5) represents the contact condition with
normal compliance, unilateral constraint and memory term, in which σν de-
notes the normal stress, uν is the normal displacement, g ≥ 0 and p, b are
given functions. In the case when b vanishes, this condition was used in [1, 3],
for instance. Condition (6) shows that the tangential stress on the contact
surface, denoted στ , vanishes. We use it here since we assume that the con-
tact process is frictionless. Finally, (7) represents the initial conditions in
which u0 and σ0 denote the initial displacement and the initial stress field,
respectively.

Quasistatic frictionless and frictional contact problems for viscoplastic
materials with a constitutive law of the form (1) have been studied in vari-
ous papers, see [2] for a survey. There, various models of contact were stated
and their variational analysis, including existence and uniqueness results,
was provided. The novelty of the current paper arises on the contact condi-
tion (5); it describes a deformable foundation which becomes rigid when the
penetration reaches the critical bound g and which develops memory effects.
Considering such condition leads to a new and nonstandard mathematical
model which, in a variational formulation, is governed by a history-dependent
variational inequality for the displacement field.

The rest of the paper is structured as follows. In Section 2 we list the
assumptions on the data and introduce the variational formulation of the
problem. Then, in Section 3 we state our main result, Theorem 1, and
provide a sketch of the proof.

2 Variational formulation

In the study of problem P we use the standard notation for Sobolev and
Lebesgue spaces associated to Ω and Γ. Also, we denote by “ · ” and ‖ · ‖ the
inner product and norm on Rd and Sd, respectively. For each Banach spaceX
we use the notation C(R+;X) for the space of continuously functions defined
on R+ with values on X and, for a subset K ⊂ X, we still use the symbol
C(R+;K) for the set of continuous functions defined on R+ with values on
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K. We also consider the spaces

V = {v ∈ H1(Ω)d : v = 0 on Γ1 }, Q = { τ = (τij) ∈ L2(Ω)d : τij = τji }.

These are Hilbert spaces together with the inner products (·, ·)V , (·, ·)Q,

(u,v)V =

∫
Ω
ε(u) · ε(v) dx, (σ, τ )Q =

∫
Ω
σ · τ dx,

and the associated norms ‖·‖V , ‖·‖Q, respectively. For an element v ∈ V we
still write v for the trace of V and we denote by vν the normal component
of v on Γ given by vν = v · ν.

We assume that the elasticity tensor E , the nonlinear constitutive function
G and the normal compliance function p satisfy the following conditions.

(a) E = (Eijkl) : Ω× Sd → Sd.
(b) Eijkl = Eklij = Ejikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.
(c) There exists mE > 0 such that
Eτ · τ ≥ mE‖τ‖2 ∀ τ ∈ Sd, a.e. in Ω.

(8)



(a) G : Ω× Sd × Sd → Sd.
(b) There exists LG > 0 such that
‖G(x,σ1, ε1)− G(x,σ2, ε2)‖ ≤ LG (‖σ1 − σ2‖+ ‖ε1 − ε2‖)
∀σ1,σ2, ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ G(x,σ, ε) is measurable on Ω,
for any σ, ε ∈ Sd.

(d) The mapping x 7→ G(x,0,0) belongs to Q.

(9)



(a) p : Γ3 × R→ R+.
(b) There existsLp > 0 such that
|p(x, r1)− p(x, r2)| ≤ Lp |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) (p(x, r1)− p(x, r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.
(d) The mapping x 7→ p(x, r) is measurable on Γ3,

for any r ∈ R.
(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(10)

Moreover, the densities of body forces and surface tractions, the memory
function and the initial data are such that

f0 ∈ C(R+;L2(Ω)d), f2 ∈ C(R+;L2(Γ2)d), (11)
b ∈ C(R+;L∞(Γ3)), b(t,x) ≥ 0 a.e. x ∈ Γ3, (12)
u0 ∈ V, σ0 ∈ Q. (13)
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Consider now the subset U ⊂ V , the operators P : V → V , B :
C(R+;V )→ C(R+;L2(Γ3)) and the function f : R+ → V defined by

U = {v ∈ V : vν ≤ g on Γ3 }, (14)

(Pu,v)V =

∫
Γ3

p(uν)vν da ∀u, v ∈ V, (15)

(Bu(t), ξ)L2(Γ3) =
(∫ t

0
b(t− s)u+

ν (s) ds, ξ
)
L2(Γ3)

(16)

∀u ∈ C(R+;V ), ξ ∈ L2(Γ3), t ∈ R+,

(f(t),v)V =

∫
Ω
f0(t) · v dx+

∫
Γ2

f2(t) · v da ∀v ∈ V, t ∈ R+. (17)

Then, the variational formulation of Problem P is the following.

Problem PV . Find a displacement field u : R+ → U and a stress field
σ : R+ → Q such that, for all t ∈ R+,

σ(t) = Eε(u(t)) +

∫ t

0
G(σ(s), ε(u(s))) ds+ σ0 − Eε(u0), (18)

(σ(t), ε(v)− ε(u(t)))Q + (Pu(t),v − u(t))V (19)
+(Bu(t), v+

ν − u+
ν (t))L2(Γ3) ≥ (f(t),v − u(t))V ∀v ∈ U.

Note that (18) is a consequence of (1) and (7), while (19) can be easily
obtained by using integrations by parts, (2)–(6) and notation (14)–(17).

3 Existence and uniqueness

The unique solvability of Problem PV is given by the following result.

Theorem 1 Assume that (8)–(13) hold. Then Problem PV has a unique
solution, which satisfies u ∈ C(R+;U) and σ ∈ C(R+;Q).

Proof. The proof is carried out in several steps which we describe below.
(i) We use the Banach fixed point argument to prove that for each func-

tion u ∈ C(R+;V ) there exists a unique function Su ∈ C(R+;Q) such that

Su(t) =

∫ t

0
G(Su(s) + Eε(u(s)), ε(u(s))) ds+ σ0 − Eε(u0) ∀ t ∈ R+.
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(ii) Next, we note that (u,σ) is a solution of Problem PV iff

σ(t) = Eε(u(t)) + Su(t) ∀ t ∈ R+, (20)

(Eε(u(t)), ε(v)− ε(u(t)))Q + (Su(t), ε(v)− ε(u(t)))Q (21)
+(Bu(t), v+

ν − u+
ν (t))L2(Γ3) + (Pu(t),v − u(t))V

≥ (f(t),v − u(t))V ∀v ∈ U, ∀ t ∈ R+.

(iii) Let A : V → V and ϕ : Q×L2(Γ3)×V → R be defined by equalities

(Au,v)V = (Eε(u), ε(v))Q + (Pu,v)V ,

ϕ(x,v) = (σ, ε(v))Q + (ξ, v+
ν )L2(Γ3)

for all u, v ∈ V , x = (σ, ξ) ∈ Q × L2(Γ3). We prove that A : V → V is a
strongly monotone and Lipschitz continuous operator and there exists β ≥ 0
such that

ϕ(x1,u2)− ϕ(x1,u1) + ϕ(x2,u1)− ϕ(x2,u2)

≤ β ‖x1 − x2‖Q×L2(Γ3) ‖u1 − u2‖V ∀x1, x2 ∈ Q× L2(Γ3), u1, u2 ∈ V.

Moreover, we prove that for every n ∈ N there exists sn > 0 such that

‖Su1(t)− Su2(t)‖Q + ‖Bu1(t)− Bu2(t)‖L2(Γ3)

≤ sn
∫ t

0
‖u1(s)− u2(s)‖V ds ∀u1, u2 ∈ C(R+;V ), ∀ t ∈ [0, n].

These properties allow to use Theorem 2 in [3]. In this way we prove the
existence of a unique function u ∈ C(R+;U) which satisfies the history-
dependent variational inequality (21), for all t ∈ R+.

(iv) Let σ be the function given by (20); then, the couple (u,σ) satisfies
(20)–(21) for all t ∈ R+ and, moreover, it has the regularity u ∈ C(R+;U),
σ ∈ C(R+;Q). This concludes the existence part in Theorem 1. The unique-
ness part follows from the uniqueness of the solution of the inequality (21),
guaranteed by Theorem 2 in [3]. �
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