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Abstract

In this paper, we investigate the leader-follower synchronization of
coupled second-order linear harmonic oscillators with the presence of
random noises and time delays. The interaction topology is modeled
by a weighted directed graph and the weights are perturbed by white
noise. On the basis of stability theory of stochastic differential delay
equations, algebraic graph theory and matrix theory, we show that the
coupled harmonic oscillators can be synchronized almost surely with
random perturbation and time delays. Numerical examples are pre-
sented to illustrate our theoretical results.
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1 Introduction

Synchronization, as an emergent collective phenomenon of a population of
units with oscillatory behaviors, is one of the most intriguing in nature and
plays a significant role in a variety of disciplines such as biology, sociology,
physics, chemistry and technology [2, 20, 26, 28]. One celebrated model for
synchronization is the Kuramoto model [12], which is described by a system
of structured ordinary differential equations and often used to model synchro-
nization of oscillators in different fields of physics, engineering and biology.
The original Kuramoto formulation assumes full connectivity of the network,
that is, the interaction topology is a complete graph. Recent works general-
ize the Kuramoto model to nearest neighbor interaction and the underlying
topologies may be general networks, see e.g. [1, 13, 21]. Wireless sensor net-
work is also a field where synchronization is an important problem to deal
with. Many distributed applications on wireless networks require accurate
clock synchronization, see e.g. [4, 27]. Another classical model for synchro-
nization is the harmonic oscillator network [3, 23, 29], which is the very
subject of the present paper. Recently, Ren [23] investigates synchronization
of coupled second-order linear harmonic oscillators with local interaction.
Due to the linear structure, the ultimate trajectories to which each oscilla-
tor converges over directed fixed networks are shown explicitly and milder
convergence conditions than those in the case of Kuramoto model [13] are
derived.

Since noise is ubiquitous in nature, technology, and society [26], the mo-
tion of oscillator is inevitably subject to disturbance in the environments.
In biological and communication networks, time delay is also unavoidable
due to finite communication speed [31, 32]. Although random noise and time
delay have been considered extensively in exploring synchronization and con-
sensus problems by means of theoretical and numerical methods, they have
seldom been analytically treated in synchronization of coupled harmonic os-
cillators. Motivating this idea, the objective of this paper is to deal with
leader-following synchronization conditions for coupled harmonic oscillators
over general directed topologies with the presence of noise perturbation and
communication time delays. The main tools used here are borrowed from al-
gebraic graph theory, matrix theory and stochastic differential delay equation
theory.

The synchronization of harmonic oscillator networks treated here are re-
lated to the second-order consensus dynamics, see e.g. [14, 17, 24, 30, 31, 32].
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In the literature regarding consensus problems, agents are usually considered
to be governed by first-order dynamics (see [19] and references therein). The
second-order consensus problems are more challenging and especially mean-
ingful for the implementation of coordination and control in networked sys-
tems. A continuous-time average consensus algorithm for double-integrator
dynamics over undirected network topologies is proposed in [30]. Ref. [24]
extends the results of [30] to the case of directed interaction. In [31], the
authors address a second-order consensus problem with time delays and di-
rected fixed topology. Ref. [32] derives a necessary and sufficient condition
for the second-order consensus with the communication delay, that is, the un-
derlying topology contains a directed spanning tree. Ref. [14] analyzes the
discrete-time consensus problem with nonuniform time delay and switching
topologies. With a selected Lyapunov-Razumikhim function, the authors in
[17] present sufficient consensus conditions for a locally passive multi-agent
system over a packet-switched communication network with the presence of
packet time-delay. In contrast to the above works, where the consensus equi-
librium for the velocities of agents is a constant, the positions and velocities
are synchronized to achieve oscillating motion by utilizing harmonic oscillator
schemes (c.f. Remark 4 below).

On the other hand, the leader-following consensus problem of a group of
second-order dynamics agents is one of the main research topics in agent-
based problems, as is the setup considered in this paper (see also Remark 1
below). An algorithm for distributed estimation of the active leader’s unmea-
surable state variables is introduced in [9]. By a Lyapunov-based approach,
it is shown that the followers will track the leader when the undirected inter-
agent topology is a connected graph. Ref. [10] further extends the result to
directed switching topologies. The varying-velocity leader and time-varying
delays are considered in [22]. In [8], a distributed observers design is proposed
to achieve the leader-following in an undirected switching network topology.
However, random noise issues are typically not addressed in the above works.

The rest of the paper is organized as follows. In Section 2, we pro-
vide some preliminaries and present the coupled harmonic oscillator network
model. In Section 3, we analyze the synchronization stability of this model
and give sufficient conditions for almost surely convergence. Numerical ex-
amples are given in Section 4 to validate our theoretical results. Finally, the
conclusion is drawn in Section 5.
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2 Problem formulation

By convention, R represents the real number set; In is an n × n identity
matrix. For any vector x, xT denotes its transpose and ‖x‖ its Euclidean
norm. For a matrix A, denote by ‖A‖ the operator norm of A, i.e. ‖A‖ =
sup{‖Ax‖ : ‖x‖ = 1}. Re(z) denotes the real part of z ∈ C.

Throughout the paper we will use the following concepts on graph theory
(see e.g. [6]) to capture the topology of the network interactions.

Let G = (V, E ,A) be a weighted directed graph with the set of vertices
V = {1, 2, · · · , n} and the set of arcs E ⊆ V ×V. The vertex i in G represents
the ith oscillator, and a directed edge (i, j) ∈ E means that oscillator j can
directly receive information from oscillator i. The set of neighbors of vertex
i is denoted by Ni = {j ∈ V| (j, i) ∈ E}. A = (aij) ∈ Rn×n is called the
weighted adjacency matrix of G with nonnegative elements and aij > 0 if and
only if j ∈ Ni. The in-degree of vertex i is defined as di =

∑n
j=1 aij . The

Laplacian of G is defined as L = D −A, where D = diag(d1, d2, · · · , dn). A
directed graph G is called strongly connected if there is a directed path from
i to j between any two distinct vertices i, j ∈ V. If there exists a directed
path from vertex i to vertex j, then i is said to be reachable for j. If a vertex
i is reachable for every other vertex in G, then we say i is globally reachable
in G. In this case, we also say that G has a directed spanning tree with root
i.

Consider n coupled harmonic oscillators connected by dampers and each
attached to fixed supports by identical springs with spring constant k. The
resultant dynamical system can be described as

ẍi + kxi +
∑
j∈Ni

aij
(
ẋi − ẋj

)
= 0, i = 1, · · · , n (1)

where xi ∈ R denotes the position of the ith oscillator, k serves as a pos-
itive gain, and aij characterizes interaction between oscillators i and j as
mentioned before.

Here we study a leader-follower version of the above system, and more-
over, communication time delay and stochastic noises during the propagation
of information from oscillator to oscillator are introduced. In particular, we
consider the dynamical system of the form:
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ẍi(t) + kxi(t) +
∑
j∈Ni

aij
(
ẋi(t− τ)− ẋj(t− τ)

)
+ bi

(
ẋi(t− τ)− ẋ0(t− τ)

)
+
[ ∑
j∈Ni

σij
(
ẋi(t− τ)− ẋj(t− τ)

)
+ ρi

(
ẋi(t− τ)− ẋ0(t− τ)

)]
ẇi(t) = 0,

i = 1, · · · , n, (2)

ẍ0(t) + kx0(t) = 0, (3)

where τ is the time delay and x0 is the position of the virtual leader, labeled
as oscillator 0, which follows Equation (3) describing an undamped harmonic
oscillator. We thus concern another directed graph G ⊃ G associated with the
system consisting of n oscillators and one leader. Let B = diag(b1, · · · , bn) be
a diagonal matrix with nonnegative diagonal elements and bi > 0 if and only
if 0 ∈ Ni. Let W (t) := (w1(t), · · · , wn(t))T be an n-dimensional standard
Brownian motion. Hence, ẇi(t) is one-dimensional white noise. To highlight
the presence of noise, it is natural to assume that σij > 0 if j ∈ Ni, and
σij = 0 otherwise; ρi > 0 if 0 ∈ Ni, and ρi = 0 otherwise. Also let Aσ =
(σij) ∈ Rn×n and Bσ = diag(ρ1, · · · , ρn) be two matrices representing the
intensity of noise. Moreover, let σi =

∑n
j=1 σij , Dσ = diag(σ1, · · · , σn), and

Lσ = Dσ −Aσ.

Remark 1. Consensus problems of self-organized groups with leaders have
broad applications in swarms, formation control and robotic systems, etc.; see
e.g. [8, 9, 10, 16, 18, 22]. In multi-agent systems, the leaders have influence
on the followers’ behaviors but usually independent of their followers. One
therefore transfers the control of a whole system to that of a single agent,
which saves energy and simplifies network control design [5, 11]. Most of the
existing relevant literatures assume a constant state leader, while our model
serves to be an example of oscillating state leader on this stage.

Let ri = xi and vi = ẋi for i = 0, 1, · · · , n. By denoting r = (r1, · · · , rn)T
and v = (v1, · · · , vn)T , we can rewrite the system (2), (3) in a compact form
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as:

dr(t) = v(t)dt, (4)
dv(t) =

[
− kr(t)− (L+B)v(t− τ) +Bv0(t− τ)1

]
dt

+
[
− (Lσ +Bσ)v(t− τ) +Bσv0(t− τ)1

]
dW, (5)

dr0(t) = v0(t)dt, dv0(t) = −kr0(t)dt, (6)

where 1 denotes an n × 1 column vector of all ones (with some ambiguity;
however, the right meaning would be clear in the context).

Remark 2. Note that vi depends on the information from its in-neighbors
and itself. In the special case that time delay τ = 0 and Aσ = Bσ = 0,
algorithms (4)-(6) are equivalent to algorithms (12) and (13) in [23].

3 Convergence analysis

In this section, the convergence analysis of systems (4)-(6) is given and we
show that n coupled harmonic oscillators (followers) are synchronized to the
oscillating behavior of the virtual leader with probability one.

Before proceeding, we introduce an exponential stability result for the fol-
lowing n-dimensional stochastic differential delay equation (for more details,
see e.g. [7])

dx(t) = [Ex(t) + Fx(t− τ)]dt+ g(t, x(t), x(t− τ))dW (t), (7)

where E and F are n × n matrices, g : [0,∞) × Rn × Rn → Rn×m which
is locally Lipschitz continuous and satisfies the linear growth condition with
g(t, 0, 0) ≡ 0, W (t) is an m-dimensional standard Brownian motion.

Lemma 1.([15]) Assume that there exists a pair of symmetric positive def-
inite n × n matrices P and Q such that P (E + F ) + (E + F )TP = −Q.
Assume also that there exist non-negative constants α and β such that

trace[gT (t, x, y)g(t, x, y)] ≤ α‖x‖2 + β‖y‖2 (8)

for all (t, x, y) ∈ [0,∞)×Rn×Rn. Let λmin(Q) be the smallest eigenvalue of
Q. If

(α+ β)‖P‖+ 2‖PF‖
√
2τ(4τ(‖E‖2 + ‖F‖2) + α+ β) < λmin(Q),
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then the trivial solution of Equation (7) is almost surely exponentially stable.

We need the following lemma for Laplacian matrix.
Lemma 2.([25]) Let L be the Laplacian matrix associated with a directed
graph G. Then L has a simple zero eigenvalue and all its other eigenvalues
have positive real parts if and only if G has a directed spanning tree. In
addition, L1 = 0 and there exists p ∈ Rn satisfying p ≥ 0, pTL = 0 and
pT 1 = 1.

Let {
r0(t) := cos(

√
kt)r0(0) +

1
k sin(

√
kt)v0(0),

v0(t) := −
√
k sin(

√
kt)r0(0) + cos(

√
kt)v0(0).

Then it is easy to see that r0(t) and v0(t) solve (6). Let r∗ = r − r01,
v∗ = v− v01. Invoking Lemma 2, we can obtain an error dynamics of (4)-(6)
as follows

dε(t) = [Eε(t) + Fε(t− τ)]dt+Hε(t− τ)dW (t), (9)

where

ε =

(
r∗

v∗

)
, E =

(
0 In
−kIn 0

)
,

F =

(
0 0
0 −L−B

)
, H =

(
0 0
0 −Lσ −Bσ

)
and W (t) is an 2n-dimensional standard Brownian motion.

Now we present our main result as follows.
Theorem 1. Suppose that vertex 0 is globally reachable in G. If

‖H‖2‖P‖+ 2‖PF‖
√
8τ2[(k ∨ 1)2 + ‖F‖2] + 2τ‖H‖2 < λmin(Q), (10)

where k ∨ 1 := max{k, 1}, P and Q are two symmetric positive definite
matrices such that P (E+F )+(E+F )TP = −Q. Then, by using algorithms
(4)-(6), we have

r(t)− r0(t)1→ 0, v(t)− v0(t)1→ 0

almost surely, as t→∞. Here, r0 and v0 are given as above.

Proof. Clearly, it suffices to prove the trivial solution ε(t; 0) = 0 of (9) is
almost surely exponential stable.
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Let {λi : i = 1, · · · , n} be the set of eigenvalues of −L−B. Since vertex
0 is globally reachable in G, from Lemma 2 it follows that −L−B is a stable
matrix, that is, Re(λi) < 0 for all i.

Let µ be an eigenvalue of matrix E + F and ϕ = (ϕT1 , ϕ
T
2 )
T be an asso-

ciated eigenvector. We thus have(
0 In
−kIn −L−B

)(
ϕ1

ϕ2

)
= µ

(
ϕ1

ϕ2

)
,

which yields (−L − B)ϕ1 = µ2+k
µ ϕ1 and ϕ1 6= 0. Hence µ satisfies µ2 −

λiµ + k = 0. The 2n eigenvalues of E + F are shown to be given by

µi± =
λi±
√
λ2i−4k
2 for i = 1, · · · , n. Since Re(λi) < 0, we get Re(µi−) =

Re
(λi−√λ2i−4k

2

)
< 0 for i = 1, · · · , n. From µi+µi− = k it follows that µi+

and µi− are symmetric with respect to the real axis in the complex plane.
Accordingly, Re(µi+) < 0 for i = 1, · · · , n; furthermore, E + F is a stable
matrix. By Lyapunov theorem, for all symmetric positive definite matrix Q
there exists a unique symmetric positive definite matrix P such that

P (E + F ) + (E + F )TP = −Q. (11)

On the other hand, we have trace(εTHTHε) ≤ ‖H‖2‖ε‖2. Therefore, (8)
holds with α = 0 and β = ‖H‖2. Note that ‖E‖ = k ∨ 1. We then complete
our proof by employing Lemma 1. 2
Remark 3. Note that the result of Theorem 1 is dependent of the choice
of matrices P and Q. From computational points of view, the solution to
Lyapunov matrix equation (11) may be expressed by using Kronecker product;
‖H‖ = ‖Lσ +Bσ‖ and ‖F‖ = ‖L+B‖ hold.
Remark 4. The algorithms (4)-(6) can also be applied to synchronized mo-
tion coordination of multi-agent systems, as indicated in [23] (Section 5).

When deviations between oscillator states exist, we may exploit the fol-
lowing algorithm to take the place of Equation (5):

dv(t) =
[
− k(r(t)− δ)− (L+B)v(t− τ) +Bv0(t− τ)1

]
dt

+
[
− (Lσ +Bσ)v(t− τ) +Bσv0(t− τ)1

]
dW, (12)

where δ = (δ1, · · · , δn)T is a constant vector denoting the deviations. Simi-
larly, we obtain the following result.
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Corollary 1. Suppose that vertex 0 is globally reachable in G, and condition
(10) holds, then by using algorithms (4), (6) and (12), we have

r(t)− δ − r0(t)1→ 0, v(t)− v0(t)1→ 0

almost surely, as t→∞. Here, r0 and v0 are defined as in Theorem 1.

4 Numerical examples

In this section, we provide numerical simulations to illustrate our results.

We consider a network G consisting of five coupled harmonic oscillators
including one leader indexed by 0 and four followers as shown in Fig. 1.
We assume that aij = 1 if j ∈ Ni and aij = 0 otherwise; bi = 1 if 0 ∈ Ni
and bi = 0 otherwise. Note that vertex 0 is globally reachable in G. For
simplicity, we take the noise intensity matrices Lσ = 0.1L and Bσ = 0.1B.
We take Q = I8 with λmin(Q) = 1. By straightforward calculation, it is
obtained that ‖H‖ = 0.2466 and ‖F‖ = 2.4656. Two different gains k are
explored as follows:

Firstly, we take k = 0.6 such that ‖E‖ = 1 > k. We solve P from Equa-
tion (11) and get ‖P‖ = 8.0944 and ‖PF‖ = 4.1688. Hence the condition
(10) in Theorem 1 is satisfied by taking time delay τ = 0.002. Thus, the
oscillator states are synchronized successfully as shown in Fig. 2 and Fig. 3
with initial values given by ε(0) = (−5, 1, 4,−3,−8, 2,−1.5, 3)T .

Secondly, we take k = 2 such that ‖E‖ = k > 1. In this case we
obtain ‖P‖ = 8.3720, ‖PF‖ = 7.5996 and the condition (10) is satisfied by
taking time delay τ = 0.001. Thereby the oscillator states are synchronized
successfully as shown in Fig. 4 and Fig. 5 with the same initial values given
as above.

We see that the value of k not only has an effect on the magnitude and
frequency of the synchronized states (as implied in Theorem 1), but also
affects the shapes of synchronization error curves ‖r∗‖ and ‖v∗‖.
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Figure 1: Directed network G for five coupled harmonic oscillators involving
one leader. G has 0− 1 weights.

5 Conclusion

This paper is concerned with synchronization of coupled harmonic oscillators
with stochastic perturbation and time delays. Based on the stability theory
of stochastic differential delay equations, we have shown that the coupled
second-order linear harmonic oscillators are synchronized (i.e. follow the
leader) with probability one provided the leader is globally reachable and
the time delay is less than a certain critical value. Numerical simulations are
presented to illustrate our theoretical results. Since we only investigate the
case when the time delay is constant and the network topology is fixed, how
to consider the time-varying delay and topology is our future research.
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Figure 2: Synchronization error ‖r∗‖ for k = 0.6 and τ = 0.002.

Figure 3: Synchronization error ‖v∗‖ for k = 0.6 and τ = 0.002.
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Figure 4: Synchronization error ‖r∗‖ for k = 2 and τ = 0.001.

Figure 5: Synchronization error ‖v∗‖ for k = 2 and τ = 0.001.
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