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Abstract

In this paper, Liapunov-type integral inequalities has been obtained
for an even order dynamic equations on time scales. As an applications,
an estimate for the number of zeros of an oscillatory solution and a cri-
terion for disconjugacy of an even order dynamic equation is obtained
in an interval [a, σ(b)]T.
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1 Introduction

The theory of time scales, which has recently received a lot of attention,
was introduced by Hilger [12] in his Ph. D. thesis in 1988 in order to unify
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continuous and discrete analysis. Several authors have expounded on various
aspects of this new theory; see the survey paper of Agarwal et. al. [1]
and references cited therein and a book on the subject of time scales by
Bohner and Peterson [2]. A time scale T is an arbitrary closed subset of
the reals, and the cases when this time scale is equal to the reals or to
the integers represents the classical theories of differential equations and
difference equations respectively.

In [13], Russian mathematician Liapunov proved that If y(t) is a non-
trivial solution of

y′′ + p(t)y = 0 (1.1)

with y(a) = 0 = y(b), where a, b ∈ R with a < b and y(t) 6= 0 for t ∈ (a, b),
then ∫ b

a
|p(t)|dt > 4

b− a
(1.2)

holds, where p ∈ L1
loc.

This result has found applications in differential and difference equations
in the study of various properties of solutions of (1.1) and it is useful tools
in oscillation theory, disconjugacy and eigenvalue problems (see [ 4 - 14]).

Bohner et al. [2] extended the Liapunov inequality (1.2) on time scale T
for the dynamic equation

y∆∆(t) + p(t)yσ(t) = 0, (1.3)

where p(t) is a positive rd-continious function defined on T. They proved,
by using the quadratic functional equation

F (y) =

∫ b

a
[(y∆(t))2 − p(t)(yσ)2]∆t = 0,

that if y(t) is a nontrivial solution of (1.3) with y(a) = 0 = y(b)(a < b), then∫ b

a
p(t)∆t >

(b− a)

f(d)
,

where f : T → R is defined by f(t) = (t − a)(t − b) and d ∈ T such that
f(d) = max{f(t) : t ∈ [a, b]}. In particular, using the fact that, a < c < b
and

1

c− a
+

1

b− c
=

(a+ b− 2c)2

(b− a)(c− a)(b− c)
+

4

b− a
>

4

b− a
,
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they obtained ∫ b

a
p(t)∆t >

4

b− a
.

Consider the 2n-order dynamic equation

y∆2n
+ p(t)yσ = 0, (1.4)

on an arbitrary time scales T, where p is a real rd-continuous function defined
on [0,∞)T = [0,∞) ∩ T and σ(t) is the forward jump operator defined by
σ(t) = inf{s ∈ T : s > t}.

The main objective of this paper is to determine (i) the lower bound for
the distance between consecutive zeros of the solutions, (ii) the number of
zeros of solutions of (1.4) over an interval [0, T ]T, and (ii) establish some
sufficient condition for the disconjugacy of (1.4) on an interval [a, σ(b)]T.

Note that (1.4) in its general form involves some different types of dif-
ferential and difference equations depending on the choice of time scales T.
For example, when T = R, (1.4) becomes a even order differential equation.
When T = Z, (1.4) is an even order difference equation. When T = hZ, then
(1.4) becomes a generalized difference equation and when T = qN, then (1.4)
becomes a quantum difference equation. Note also that results in this paper
can be applied on the time scales T = N2 = {t2 : t ∈ N}, T2 = {

√
n : n ∈ N0},

T3 = { 3
√
n : n ∈ N0} and when T = Tn = {tn : n ∈ N0}, where {tn} is a set

of harmonic numbers.
Let T is bounded below and t0 = minT. We say that a solution y of (1.4)

has a zero at t in case y(t) = 0. We say that y(t) has a generalized zero in
(t, σ(t)), if t is right-scattered and y(t)y(σ(t)) < 0. We say that t = t0 is a
generalized zero (GZ) of order greater than k of y if

y∆j
(t0) = 0, j = 0, 1, ..., k − 1.

We say (1.4) is disconjugate on IT = [a, σ(b)]T = [a, σ(b)] ∩ T, if there is no
nontrivial solution of (1.4) with 2n (or more) generalized zero in IT.

A nontrivial solution of (1.4) is called oscillatory if it has infinitely many
(isolated) generalized zeros in [t0,∞)T; otherwise it is called nonoscillatory.

The organizations of the paper is as follows. Section 2 will give some
preliminaries on time scales. In Section 3, Liapunov- type integral inequality
has been derived for even order dynamic equations. As an application, a
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criterion for disconjugacy is obtained in an interval [a, σ(b)]T and an estimate
for the number of zeros of an oscillatory solutions of (1.4) on an interval
[0, T ]T.

2 Preliminaries on Time Scales

A time scale T is an arbitrary nonempty closed subset of real numbers IR.
On any time scale we define the “forward and backward jump operators” by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}.

We make the convention:

inf φ = supT, supφ = inf T.

A point t ∈ T is said to be left dense if ρ(t) = t, right dense if σ(t) = t,
left scattered if ρ(t) < t, right scattered if σ(t) > t. The points that are
simultaneously right-dense and left-dense are called dense.

The mappings µ, ν : T→ [0,+∞) defined by

µ(t) = σ(t)− t

and

ν(t) = t− ρ(t)

are called, respectively, the forward and backward graininess functions.
If T has a right- scattered minimum m, then define Tk = T \ {m};

otherwise Tk = T. If T has left-scattered maximum M , then define Tk =
T \ {M}; otherwise Tk = T. Finally, put Tkk = Tk ∩ Tk. For a function
f : T→ R, t ∈ Tk the delta derivative is defined by

f∆(t) =
f(σ(t))− f(t)

σ(t)− t
,

if f is continuous at t and t is right-scattered. If t is right-dense, then
derivative is defined by

f∆(t) = lim
s→t+

f(σ(t))− f(s)

t− s
= lim

s→t+
f(t)− f(s)

t− s
,
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provided this limit exists.

A function f : T → IR is said to be rd-continuous if it is continuous at
each right dense point and if there exists a finite left limit at all left dense
points. The set of rd-continuous functions is denoted by Crd(T, IR). The
derivative and the shift operator σ are related by the formula

fσ = f + µf∆, where fσ = f ◦ σ.

Let f be a real-valued function defined on an interval [a, b]. We say
that f is increasing, decreasing, nonincreasing, and nondecreasing on [a, b]
if t1, t2 ∈ [a, b] and t2 > t1 imply f(t2) > f(t1), f(t2) < f(t1), f(t2) ≤
f(t1), f(t2) ≥ f(t1), respectively. Let f be a differentiable function on [a, b].
Then f is increasing, decreasing, nonincreasing, and nondecreasing on [a, b]
if f∆(t) > 0, f∆(t) < 0, f∆(t) ≤ 0, f∆(t) ≥ 0, for all t ∈ [a, b), respectively.

We will make use of the following product and quotient rules for the
derivative of the product fg and the quotient f/g of two differentiable func-
tions f and g:

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)),

and (
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.

For a, b ∈ T and a differentiable function f , the Cauchy integral of f∆ is
defined by ∫ b

a
f∆(t)∆t = f(b)− f(a).

The integration by parts formula read as∫ b

a
f∆(t)g(t)∆t = f(b)g(b)− f(a)g(a) +

∫ b

a
fσ(t)g∆(t)∆t,

and infinite integrals are defined as∫ ∞
a

f(s)∆s = lim
t→∞

∫ t

a
f(s)∆s.
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A function f → R is called convex on IT, if

f(λt+ (1− λ)s) ≤ λf(t) + (1− λ)f(s), (2.1)

for all t, s ∈ IT and λ ∈ [0, 1] such that λt+ (1− λ)s ∈ IT. The function f is
strictly convex on IT if the inequality (2.1) is strict for distinct t, s ∈ IT and
λ ∈ (0, 1).

The function f is concave (respectively, strictly concave) on IT, if −f is
convex (respectively, strictly convex).

A function that is both convex and concave on IT is called affine on IT.

Theorem 2.1. Let f : IT → R be a delta differentiable function on IkT. If
f∆ is nondecreasing (nonincreasing) on IkT, then f is convex (concave) on
IT.

Theorem 2.2. (Rolle’s Theorem [2]) Let y(t) be a continuous on [t1, t2],
and assume that y∆ is continuous on (t1, t2). If y(t1) = 0 and y has a GZ
at t2, then there exists c ∈ (t1, t2) such that y∆ has GZ at c.

Theorem 2.3. (Holder’s Inequality ) Let a, b ∈ T. For rd- continuous
f, g : [a, b]→ IR we have∫ b

a
|f(t)g(t)|∆t ≤

{∫ b

a
|f(t)|p∆t

} 1
p
{∫ b

a
|g(t)|q∆t

} 1
q

,

where p > 1 and q = p/(p− 1).

The special case p = q = 2 reduces to the Cauchy-Schwarz Inequality.

Theorem 2.4. Let a, b ∈ T. For rd- continuous f, g : [a, b]→ IR, we have∫ b

a
|f(t)g(t)|∆t ≤

{∫ b

a
|f(t)|2∆t

} 1
2
{∫ b

a
|g(t)|2∆t

} 1
2

.

3 Main Results

In this work, we establish the Liapunov-type inequality for an even order
dynamic equation of the form

y∆2n
+ p(t)yσ = 0, (3.1)

where p ∈ Crd([0,∞)T,R).
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Theorem 3.1. Let y(t) be a solution of (3.1) on IT satisfying y∆2i
(a) = 0 =

y∆2i
(σ(b)), i = 0, 1, 2, ..., n− 1 and y(t) 6= 0 for t ∈ (a, σ(b)), then∫ σ(b)

a
|p(t)|∆t > 22n

(σ(b)− a)2n−1
. (3.2)

Proof. Since y(t) is a nontrivial solution of (3.1), we deduce that M is
defined (note that y(t) is continuous by Theorem 1.16(i) in [2]) and M =
|y(τ)| = max{y(t)| : t ∈ IT}.

First we prove for i = 0, 1, ..., n− 1,

|y∆2i
(t)| ≤

(
σ(b)− a

4

)∫ σ(b)

a
|y∆2i+2

(s)|∆s. (3.3)

Infact,

|y∆2i
(t)| =

∣∣∣∣ ∫ σ(t)

a
y∆2i+1

(s)∆s

∣∣∣∣ ≤ ∫ t

a
|y∆2i+1

(s)|∆s

and

|y∆2i
(t)| = | − y∆2i

(t)| ≤
∫ σ(b)

t
|y∆2i+1

(s)|∆s.

Therefore

|y∆2i
(t)| ≤ 1

2

∫ t

a
|y∆2i+1(s)

(s)|∆s. (3.4)

Since y∆2i
(a) = y∆2i

(σ(b)) = 0, then there exists τi ∈ (a, σ(b))T such that

y∆2i+1
(τi) = 0, for i = 0, 1, ..., n− 1 and hence

|y∆2i+1
(t)| =

∣∣∣∣ ∫ t

τi

y∆2i+2
(s)∆s

∣∣∣∣ ≤ ∫ t

τi

|y∆2i+2
(s)|∆s ≤

∫ σ(b)

τi

|y∆2i+2
(s)|∆s

and

|y∆2i+1
(t)| =

∣∣∣∣− y∆2i+1
(t)

∣∣∣∣ ≤ ∫ τi

t
|y∆2i+2

(s)|∆s ≤
∫ τi

a
|y∆2i+2

(s)|∆s.

Therefore again summing up these last two inequalities, we obtain

|y∆2i+1
(t)| ≤ 1

2

∫ σ(b)

a
|y∆2i+2

(s)|∆s. (3.5)
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Thus substituting (3.5) in (3.4), we obtain

|y∆2i
(t)| ≤ 1

2

∫ σ(b)

a
|y∆2i+1

(s)|∆s ≤ 1

2

∫ σ(b)

a

(
1

2

∫ σ(b)

a
|y∆2i+2

(ξ)|∆ξ
)

∆s

=

(
σ(b)− a

4

)∫ σ(b)

a
|y∆2i+2

(s)|∆s.

Hence Eq.(3.3) is proved.

From (3.3),

0 < |y(τ)| ≤
(
σ(b)− a

4

)∫ σ(b)

a
|y∆2

(s)|∆s

=

(
σ(b)− a

4

)∫ σ(b)

a

[(
σ(b)− a

4

)∫ σ(b)

a
|y∆6

(ξ)|∆ξ
]
∆s

=
(σ(b)− a)3

24

∫ σ(b)

a
|y∆4

(s)|∆s

≤ (σ(b)− a)3

24

∫ σ(b)

a

[(
σ(b)− a

4

)∫ σ(b)

a
|y∆6

(ξ)|∆ξ
]
∆s

=
(σ(b)− a)5

26

∫ σ(b)

a
|y∆6

(s)|∆s

≤ ... ≤ (σ(b)− a)2n−1

22n

∫ σ(b)

a
|y∆2n

(s)|∆s

≤ (σ(b)− a)2n−1

22n

∫ σ(b)

a
| − p(s)yσ(s)|∆s

≤ (σ(b)− a)2n−1

22n
|y(τ)|

(∫ σ(b)

a
|p(s)|∆s

)
,

which yields (3.2). Hence proof of the Theorem 3.1 is complete.

Remark 3.2. It is easy to see that the Theorem 3.1 holds for the dynamic
equation

y∆2n
+ (−1)kp(t)yσ = 0,

where k ∈ Z.
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Remark 3.3. If n = 1, then the above equation (3.1) reduces to

y∆2
+ p(t)yσ = 0. (3.6)

If y(t) is a solution of (3.6) satisfying y(a) = 0 = y(σ(b)) (a < σ(b)) and
y(t) 6= 0 for t ∈ (a, σ(b)), then∫ σ(b)

a
|p(t)|∆t > 4

(σ(b)− a)
.

This is same as obtained by [2].

Remark 3.4. If n = 1 and T = R, then the inequality (3.2) reduces to the
Liapunov inequality (1.2).

In the following we obtain an estimate for the number of zeros of an
oscillatory solution of (3.1) on an interval [0, T ]T.

Theorem 3.5. If y(t) is a solution of (3.1), which has N zeros {tk}Nk=1 in
the interval [0, T ], where 0 < a ≤ t1 < t2 < .... < tN ≤ σ(b) ≤ T, then

T 2n−1

∫ T

o
|p(t)|∆t > 22n(N − 12n). (3.7)

Proof. From Theorem 3.1 it follows that∫ tk+1

tk

|p(t)|∆t > 22n

(tk+1 − tk)2n−1

for k = 1, 2, ..., N − 1. Hence,∫ T

0
|p(t)|∆t ≤

N−1∑
k=1

∫ tk+1

tk

|p(t)|∆t > 22n
N−1∑
k=1

1

(tk+1 − tk)2n−1
. (3.8)

Since f(u) = u−2n+1 is convex for u > 0, we have for xk = tk+1− tk > 0, k =
1, 2, ..., N − 1,

N−1∑
k=1

f(xk) > (N − 1)f

(∑N−1
k=1 xk
N − 1

)
,

that is,

N−1∑
k=1

1

(tk+1 − tk)2n−1
> (N − 1)f

(
tN − t1
N − 1

)
=

(N − 1)2n

(tN − t1)2n−1
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≥ (N − 1)2n

T 2n−1
. (3.9)

Hence (3.7) follows from (3.8) and (3.9).

Theorem 3.6. If ∫ σ(b)

a
|p(t)|∆t < 22n

(σ(b)− a)2n−1
,

then Eq.(3.1) is disconjugate on [a, σ(b)]T.

Proof. Suppose, on the contrary, that Eq.(3.1) is not disconjugate on
[a, σ(b)]T. By defination, there exists a nontrivial solution of Eq.(3.1), which
has at least 2n - generalized zeros (counting multiplicities) in [a, σ(b)]T.

Case I. One of the generalized zeros (counting multiplicities of order n
) is at the left end point a, that is,

y∆2i
(a) = 0 : i = 0, 1, ..., n− 1,

the other is at σ(b0) ∈ (a, σ(b)), that is

y∆2i
(σ(b0)) = 0 : i = 0, 1, ..., n− 1.

Therefore, by using Theorem 3.1, we obtain∫ σ(b0)

a
|p(t)|∆t > 22n

(σ(b0)− a)2n−1
,

which is a contradiction to (3.1).
Case II. None of the generalized zero at the left end point a. Then y

has two generalized zeros (counting multiplicities of order n) both at σ(a0)
and σ(b0) with σ(a0) < σ(b0) in (a, σ(b)), then∫ σ(b0)

σ(a0)
|p(t)|∆t > 22n

(σ(b0)− σ(a0))2n−1
,

that is, ∫ σ(b)

a
|p(t)|∆t > 22n

(σ(b)− a)2n−1
,

which is a contradiction to (3.1). Hence the proof of the theorem is complete.
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Theorem 3.7. If y(t) is a solution of

y∆2n ± λp(t)y = 0,

with y∆2i
(a) = 0 = y∆2i

(σ(b)); i = 0, 1, ..., n − 1, and y(t) 6= 0 for t ∈
[a, σ(t)]T, where p ∈ Crd([0,∞)T,R) and λ ∈ R be an eigenvalue, then

|λ| ≥ 22n(∫ σ(b)
a |p(t)|∆t

)
(σ(t)− a)2n−1

.

The proof of the Theorem 3.7 follows from the Theorem 3.1.
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