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Abstract

In this paper we study two concepts of exponential stability for vari-
ational nonautonomous difference equations in Banach spaces. Char-
acterizations of these concepts are given. The obtained results can be
considered as generalizations for variational nonautonomous difference
equations of some well-known theorems due to Barbashin and Datko .
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050094, Romania; West University of Timişoara, Department of Mathematics, Bd.
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1 Introduction

We start with some notations. Let N be the set of all positive integer and
let ∆ respectively T be the sets defined by

∆ =
{

(m,n) ∈ N2, withm ≥ n
}

respectively

T =
{

(m,n, p) ∈ N3, withm ≥ n ≥ p
}
.

Let (X, d) be a metric space and V a real or complex Banach space. The
norm on V and on B (V ) (the Banach algebra of all bounded linear operators
on V ) will be denoted by ‖·‖ .

Definition 1 A mapping ϕ : ∆ × X → X is called a discrete evolution
semiflow on X if the following conditions hold:
s1) ϕ (n, n, x) = x, for all (n, x) ∈ N×X;
s2) ϕ (m,n, ϕ (n, p, x)) = ϕ (m, p, x), for all (m,n, p, x) ∈ T ×X.

Example 1 Let f : R+ → R be a bounded function and for s ∈ R+ we
denote fs (t) = f (t+ s) for all t ∈ R+. Then X = {fs, s ∈ R+} is a metric
space with the metric d (x1, x2) = sup

t∈R+

|x1 (t)− x2 (t)| .

The mapping ϕ : ∆×X → X defined by ϕ (m,n, x) = xm−n is a discrete
evolution semiflow.

Given a sequence (Am)m∈N with Am : X → B (V ) and a discrete evo-
lution semiflow ϕ : ∆ ×X → X, we consider the problem of existence of a
sequence (vm)m∈N with vm : N×X → X such that

vm+1(n, x) = Am(ϕ(m,n, x))vm(n, x)

for all (m,n, x) ∈ ∆×X. We shall denote this problem with (A,ϕ) and we
say that (A,ϕ) is a variational (nonautonomous) discrete-time system.

For (m,n) ∈ ∆ we define the application Φn
m : X → B (V ) by

Φn
m(x)v =

{
Am−1 (ϕ (m− 1, n, x)) . . . An+1 (ϕ (n+ 1, n, x))An(x)v, if m > n
v, if m = n.
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Remark 1 From the definitions of vm and Φn
m it follows that:

c1) Φm
m(x)v = v, for all (m,x, v) ∈ N×X × V ;

c2) Φp
m(x) = Φn

m (ϕ(n, p, x)) Φp
n(x), for all (m,n, p, x) ∈ T ×X;

c3) vm(n, x) = Φn
m(x)vn(n, x), for all (m,n, x) ∈ ∆×X.

Definition 2 A mapping Φ : ∆×X → B (V ) is called a discrete evolution
cocycle over discrete evolution semiflow ϕ : ∆ × X → X if the following
properties hold:
c1) Φ(n, n, x) = I (the identity operator on V), for all (n, x) ∈ N×X
and
c2) Φ(m, p, x) = Φ(m,n, (ϕ(n, p, x))Φ(n, p, x), for all (m,n, p, x) ∈ T ×X.
If Φ is a discrete evolution cocycle over discrete evolution semiflow ϕ, then
the pair S = (Φ, ϕ) is called a discrete skew-evolution semiflow on X.

Remark 2 From Remark 1 it results that the mapping

Φ : ∆×X → B (V ) , Φ(m,n, x)v = Φn
m(x)v

is a discrete evolution cocycle over discrete evolution semiflow ϕ.

The concept of evolution cocycle was introduced by Megan and Stoica in
[4]. It generalizes the classical notion of linear skew-product semiflows and
evolution operators.

There are two remarkable stability criteria regarding the uniform expo-
nential stability of solutions to the linear differential equations x′ = A(t)x
on the half line, due to Barbashin ([1]) and Datko ([3]).

In this work we consider the classical concept of uniform exponential
stability and a concept of nonuniform exponential stability introduced by
Barreira and Valls ([2]) for the general case of variational nonautonomous
discrete-time systems in Banach spaces.

The main goal of the paper is to present discrete-time versions of the
Barbashin’s and Datko’s theorems for these stability concepts.

Continuous time versions of these results were obtained by Megan and
Stoica in [9] and [10].
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We remark that our proofs are not discretizations of the proofs from [9]
and [10].

Other results about uniform exponential stability of discrete evolution
semiflows were obtained by Pham Viet Hai in [6], [7] and [8].

2 Uniform exponential stability

Let (A,ϕ) be a discrete variational system associated to the discrete evolu-
tion semiflow ϕ : ∆ ×X → X and to the sequence of mappings A = (Am),
where Am : X → B (V ), for all m ∈ N.

Definition 3 The system (A,ϕ) is said to be uniformly exponentially stable
(and denote u.e.s.) if there are the constants N ≥ 1 and α > 0 such that:

eα(m−n) ‖Φn
m(x)v‖ ≤ N ‖v‖

for all (m,n, x, v) ∈ ∆×X × V.

Remark 3 It is easy to see that (A,ϕ) is uniformly exponentially stable if
and only if there are N ≥ 1 and α > 0 with

eα(m−n) ‖Φp
m(x)v‖ ≤ N ‖Φp

n(x)v‖

for all (m,n, p, x, v) ∈ T ×X × V.

Example 2 Let C = C (R+,R) be the metric space of all continuous func-
tions x : R+ → R, with the topology of uniform convergence on compact
subsets of R+. C is metrizable relative to the metric given in Example 1

Let f : R+ → (0,∞) be a decreasing function with the property that
there exists lim

t→∞
f (t) = α > 0. We denote by X the closure in C of the

set {ft, t ∈ R+}, where ft (s) = f (t+ s), for all s ∈ R+. The mapping
ϕ : ∆ × X → X defined by ϕ (m,n, x) = xm−n is a discrete evolution
semiflow.

Let us consider the Banach space V = R and let A : X → B (V ) defined
by

A (x) v = e
−

1∫
0

x(τ)dτ

v
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for all (x, v) ∈ X × V.
Then we obtain

Φn
m(x)v =

 e
−
m−n∫
0

x(τ)dτ

v, if m > n
v, if m = n

for all (m,n, x, v) ∈ ∆×X × V . Because x(τ) ≥ α we have that

|Φn
m(x)v| ≤ e−α(m−n) |v|

for all (m,n, x, v) ∈ ∆×X × V , and hence (A,ϕ) is u.e.s.

A characterization of the uniform exponential stability property is given
by

Lemma 1 The system (A,ϕ) is uniformly exponentially stable if and only
if there exists a decreasing sequence of real numbers (an) with an → 0 such
that:

‖Φp
m(x)v‖ ≤ am−n ‖Φp

n(x)v‖

for all (m,n, p, x, v) ∈ T ×X × V.

Proof. Necessity. It is a simple verification for an = Ne−αn, where N and
α are given by Definition 3.
Sufficiency. If an → 0 then there exists k ∈ N∗ with ak < 1. Then, for every
(m,n) ∈ ∆ there exist p ∈ N and r ∈ [0, k) such that m = n+ pk + r.
From hypothesis and Remark 1 we obtain

‖Φn
m(x)v‖ =

∥∥∥Φn+pk
n+pk+r (ϕ(n+ pk, n, x)) Φn

n+pk(x)v
∥∥∥ ≤

≤ ar
∥∥∥Φn

n+pk(x)v
∥∥∥ ≤ a0 ∥∥∥Φn+(p−1)k

n+pk (ϕ(n+ (p− 1)k, n, x)) Φn
n+(p−1)k(x)v

∥∥∥ ≤
≤ a0ak

∥∥∥Φn
n+(p−1)k(x)v

∥∥∥ ≤ . . . ≤ a0apk ‖v‖ =

= a0a
m−n−r

k
k ‖v‖ ≤ a0eαke−α(m−n) ‖v‖ ≤ Ne−α(m−n) ‖v‖

for all (m,n, x, v) ∈ ∆×X × V , where N = 1 + a0e
αk and α = − ln ak

k .
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Theorem 1 For every system (A,ϕ) the following assertions are equivalent:
(i) (A,ϕ) is uniformly exponentially stable;
(ii) there exist d > 0 and D ≥ 1 such that:

∞∑
k=n

ed(k−n) ‖Φn
k(x)v‖ ≤ D ‖v‖

for all (n, x, v) ∈ N×X × V ;
(iii) there exists D ≥ 1 such that:

∞∑
k=n

‖Φn
k(x)v‖ ≤ D ‖v‖

for all (n, x, v) ∈ N×X × V.

Proof. (i) ⇒ (ii) It is a simple verification for d ∈ (0, α) and D = N
1−ed−α ,

where N and α are given by Definition 3.
(ii)⇒ (iii) It is obvious.
(iii)⇒ (i) From (iii) it results that

‖Φn
m(x)‖ ≤ D

for all (m,n, x) ∈ ∆×X.
Moreover,

(m− n+ 1) ‖Φn
m(x)v‖ =

m∑
k=n

‖Φn
m(x)v‖ ≤

≤
m∑
k=n

∥∥∥Φk
m(ϕ(k, n, x))

∥∥∥ ‖Φn
k(x)v‖ ≤

≤ D
m∑
k=n

‖Φn
k(x)v‖ ≤ D2 ‖v‖

for all (m,n, x, v) ∈ ∆×X × V . By Lemma 1 it results that (A,ϕ) is u.e.s.

Remark 4 The preceding theorem can be viewed as a Datko-type theorem for
the property of uniform exponential stability for discrete evolution semiflows.

A Barbashin-type theorem for uniform exponential stability of discrete
evolution semiflows is given by
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Theorem 2 The following statements are equivalent:
(i) the system (A,ϕ) is uniformly exponentially stable;
(ii) there are b > 0 and B ≥ 1 such that:

m∑
k=n

eb(m−k)
∥∥∥Φk

m(ϕ(k, n, x))
∥∥∥ ≤ B

for all (m,n, x) ∈ ∆×X;
(iii) there exist b > 0 and B ≥ 1 with:

m∑
k=n

∥∥∥Φk
m(ϕ(k, n, x))

∥∥∥ ≤ B
for all (m,n, x) ∈ ∆×X.

Proof. (i) ⇒ (ii) If (A,ϕ) is u.e.s. then there are N ≥ 1 and α > 0 such
that for every b ∈ (0, α) we have

m∑
k=n

eb(m−k)
∥∥∥Φk

m(ϕ(k, n, x))
∥∥∥ ≤ N m∑

k=n

e(b−α)(m−k) ≤ B

for all (m,n, x) ∈ ∆×X, where B = Neα−b

eα−b−1 .
(ii)⇒ (iii) It is obvious.
(iii)⇒ (i) From (iii) it results

‖Φn
m(x)‖ ≤ B

for all (m,n, x) ∈ ∆×X. Then

(m− n+ 1) ‖Φn
m(x)v‖ =

m∑
k=n

‖Φn
m(x)v‖ ≤

≤
m∑
k=n

∥∥∥Φk
m(ϕ(k, n, x))

∥∥∥ ‖Φn
k(x)‖ ‖v‖ ≤ B2 ‖v‖

for all (m,n, x, v) ∈ ∆×X×V . According to Lemma 1, it results that (A,ϕ)
is u.e.s.

Open problem. If (A,ϕ) is u.e.s. then there exist B ≥ 1 such that

m∑
k=n

∥∥∥Φk
m(ϕ(k, n, x))v

∥∥∥ ≤ B ‖v‖
for all (m,n, x, v) ∈ ∆×X × V. The converse implication is valid?
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3 Nonuniform exponential stability

Let (A,ϕ) be a discrete variational system associated to the discrete evolu-
tion semiflow ϕ : ∆ ×X → X and to the sequence of mappings A = (Am),
where Am : X → B (V ), for all m ∈ N.

Definition 4 The system (A,ϕ) is said to be (nonuniformly) exponentially
stable (and denote e.s.) if there are three constants N ≥ 1, α > 0 and β ≥ 0
such that:

eα(m−n) ‖Φn
m(x)v‖ ≤ Neβn ‖v‖

for all (m,n, x, v) ∈ ∆×X × V.

Remark 5 This concept of nonuniform exponential stability has been intro-
duced in the works of Barreira and Valls (see for example [2]).

Remark 6 Using the property (c2) from Remark 1 it is easy to see that
(A,ϕ) is exponentially stable if and only if there are N ≥ 1, α > 0 and
β ≥ 0 with

eα(m−n) ‖Φp
m(x)v‖ ≤ Neβn ‖Φp

n(x)v‖

for all (m,n, p, x, v) ∈ T ×X × V.

Remark 7 It is obvious that

u.e.s.⇒ e.s.

The following example shows that the converse implication is not valid.

Example 3 Let (X, d) be the metric space, V the Banach space and ϕ the
evolution semiflow given as in Example 2.

We define the sequence of mapings Am : X → B (V ) by

Am(x)v =
u(m)

u(m+ 1)
e
−

1∫
0

x(τ)dτ

v

for all (m,x, v) ∈ N × X × V , where the sequence u : N → R is given by
u(m) = emπ(1−cos

mπ
2

).



28 Mihail Megan, Traian Ceauşu, Mihaela Aurelia Tomescu

We have, according to the definition of discrete evolution cocycle,

Φn
m(x)v =

 u(n)
u(m) e

−
m−n∫
0

x(τ)dτ

v, if m > n

v, if m = n.

We observe that

|Φn
m(x)v| = enπ(1−cos

nπ
2
)−mπ(1−cos mπ

2
)e
−
m−n∫
0

x(τ)dτ

|v| ≤

≤ e2nπe−α(m−n) |v|

for all (m,n, x, v) ∈ ∆×X × V , which prove that (A,ϕ) is e.s.

Let us suppose now that the system (A,ϕ) is u.e.s. Accordind to Remark
3, there exist N ≥ 1 and ν > 0 such that

nπ(1− cos
nπ

2
)−mπ(1− cos

mπ

2
)−

m−n∫
0

x(τ)dτ ≤ lnN − ν(m− n)

for all (m,n, x) ∈ ∆×X. If we consider n = 4k+ 2 and m = 4k+ 4, k ∈ N
we have that

8kπ + 4π ≤ lnN + 2x(0)− 2ν

which, for k → ∞, leads to a contradiction. This proves that (A,ϕ) is not
u.e.s.

A Datko-type theorem for nonuniform exponential stability of variational
nonautonomous discrete-time equations is given by

Theorem 3 The system (A,ϕ) is exponentially stable if and only if there
are c ≥ 0, d > 0 and D ≥ 1 such that:

∞∑
k=n

ed(k−n) ‖Φn
k(x)v‖ ≤ Decn ‖v‖

for all (n, x, v) ∈ N×X × V.
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Proof. Necessity. If (A,ϕ) is e.s. then there are N ≥ 1, α > 0 and β ≥ 0
such that for d ∈ (0, α) we have that

∞∑
k=n

ed(k−n) ‖Φn
k(x)v‖ ≤ Neβn

∞∑
k=n

e(d−α)(k−n) ‖v‖ = Decn ‖v‖

for all (n, x, v) ∈ N×X × V , where c = β and D = N
1−ed−α .

Sufficiency. We observe that from hypothesis it results that

ed(m−n) ‖Φn
m(x)v‖ ≤ Decn ‖v‖

for all (m,n, x, v) ∈ ∆×X × V , which shows that (A,ϕ) is e.s.

Another characterization of nonuniform exponential stability of varia-
tional nonautonomous discrete-time equations is given by

Lemma 2 The system (A,ϕ) is exponentially stable if and only if there are
b > c ≥ 0 and N ≥ 1 such that:

eb(m−n) ‖Φn
m(x)v‖ ≤ Necm ‖v‖

for all (m,n, x, v) ∈ ∆×X × V.

Proof. Necessity. If (A,ϕ) is e.s. then there are N ≥ 1, α > 0 and β ≥ 0
such that:

eb(m−n) ‖Φn
m(x)v‖ = e(α+β)(m−n) ‖Φn

m(x)v‖ ≤

≤ Neβneβ(m−n) ‖v‖ = Neβm ‖v‖ = Necm ‖v‖

for all (m,n, x, v) ∈ ∆×X × V , where b = α+ β > β = c.
Sufficiency. From hypothesis it results that

‖Φn
m(x)v‖ ≤ Necme−b(m−n) ‖v‖ =

= Necne−(b−c)(m−n) ‖v‖

for all (m,n, x, v) ∈ ∆×X × V.
Finally, we obtain that (A,ϕ) is e.s.

A Barbashin-type theorem for nonuniform exponential stability of vari-
ational nonautonomous discrete-time equations is given by
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Theorem 4 The the system (A,ϕ) is exponentially stable if and only if there
are b > c ≥ 0 and B ≥ 1 such that:

m∑
k=n

eb(m−k)
∥∥∥Φk

m(ϕ(k, n, x))
∥∥∥ ≤ Becm

for all (m,n, x) ∈ ∆×X.

Proof. Necessity. If (A,ϕ) is e.s. then by Definition 4 it follows that there
are N ≥ 1, α > 0 and β ≥ 0 such that for every b ∈ (β, α+ β) we have

m∑
k=n

eb(m−k)
∥∥∥Φk

m(ϕ(k, n, x))
∥∥∥ ≤ Ne(b−α)m m∑

k=n

e(α+β−b)k ≤ Becm

for all (m,n, x) ∈ ∆×X, where c = β and B = N eα+β−b

eα+β−b−1 .
Sufficiency. By hypothesis it follows that there exist B ≥ 1 and b > c ≥ 0
such that

eb(m−n) ‖Φn
m(x)‖ ≤ Becm

for all (m,n, x) ∈ ∆×X. By Lemma 2 it follows that (A,ϕ) is e.s.

Open problem. If (A,ϕ) is e.s. then there exist B ≥ 1 and b > c ≥ 0 such
that

m∑
k=n

eb(m−k)
∥∥∥Φk

m(ϕ(k, n, x))v
∥∥∥ ≤ Becm ‖v‖

for all (m,n, x, v) ∈ ∆×X × V. The converse implication is true?
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