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Abstract

We establish Filippov existence theorems for solutions of certain
boundary value problems associated to some higher order differential
inclusions.
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1 Introduction

This paper is concerned with differential inclusions of the form

Dx ∈ F (t, x), (1.1)

where D is a differential operator and F (., .) : [0, 1] × R → P(R) is a set-
valued map.

In the last years we observe a remarkable amount of interest in the study
of existence of solutions of several boundary value problems associated to
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problem (1.1). Most of these existence results are obtained using fixed point
techniques and are based on an integral form of the right inverse to the
operator D. This means that for every f the unique solution y of the equation
Dy = f can be written in the form y = Rf , when the operator R has
nonnegative Green’s function.

For a first order differential inclusion defined by a lipschitzian set-valued
map with nonconvex values, Filippov’s theorem ([7]) consists in proving the
existence of a solution starting from a given almost solution. Moreover, the
result provides an estimate between the starting almost solution and the
solution of the differential inclusion.

The aim of this note is to show that Filippov’s ideas can be suitably
adapted in order to obtain the existence of solutions for the following prob-
lems

x(n) − λx ∈ F (t, x), a.e. (I) (1.2)

with boundary conditions of the form

x(i)(0)− x(i)(T ) = µi, i = 0, 1, ..., n− 1, (1.3)

and

(p(t)x′(t))′ ∈ F (t, x(t)) a.e. (I), (1.4)

with boundary conditions of the form

αx(0)− β lim
t→0+

p(t)x′(t) = 0, γx(T ) + δ lim
t→T−

p(t)x′(t) = 0, (1.5)

where I = [0, T ], λ ∈ R, µi ∈ R, i = 0, 1, ..., n − 1, F : I ×R → P(R) is a
set-valued map, p(.) : I → (0,∞) is a continuous function and α, β, γ, δ are
nonnegative reals with αδ + βγ + γα

∫ T
0

dt
p(t) 6= 0.

Existence results obtained using fixed point techniques for problem (1.2)-
(1.3) may be found in [2,3] and for problem (1.4)-(1.5) may be found in
[4,5,9,10]. The results in the present paper are improvements of previous
existence theorems from our papers [3] respectively, [4].

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main results.
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2 Preliminaries

Let (X, d) be a metric space. We recall that the Pompeiu-Hausdorff distance
of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).
In what follows C(I,R) is the Banach space of all continuous functions

from I to R with the norm ||x(.)||C = supt∈I |x(t)|, ACi(I,R) is the space
of i-times differentiable functions x : I → R whose i-th derivative x(i)(.)
is absolutely continuous, AC1

p(I,R) is the space of continuous functions x :
I → R such that p(.)x′(.) is absolutely continuous and L1(I,R) is the Banach
space of integrable functions u(.) : I → R endowed with the norm ||u(.)||1 =∫ T
0 |u(t)|dt.

A function x(.) ∈ ACn−1(I,R) is called a solution of problem (1.2)-(1.3)
if there exists a function v(.) ∈ L1(I,R) with v(t) ∈ F (t, x(t)), a.e. (I) such
that x(n)(t)− λx(t) = v(t), a.e. (I) and x(.) satisfies conditions (1.3).

We consider the Green function G(., .) : I × I → R associated to the
periodic boundary problem

x(n) − λx = 0, x(i)(0)− x(i)(T ) = 0, i = 0, 1, ..., n− 1.

For the properties of G(., .) we refer to [2].
The next result is well known.

Lemma 2.1. ([2]) If v(.) : [0, T ]→ R is an integrable function then the
problem

x(n)(t)− λx(t) = v(t) a.e. (I)
x(i)(0)− x(i)(T ) = µi, i = 0, 1, ..., n− 1.

has a unique solution x(.) ∈ ACn−1(I,R) given by

x(t) = Pµ(t) +
∫ T

0
G(t, s)v(s)ds,

where

Pµ(t) =
n−1∑
i=0

∂i

∂ti
G(t, 0)µn−1−i. (2.1)
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A function x(.) ∈ AC1
p(I,R) is called a solution of problem (1.4)-(1.5) if

there exists a function v(.) ∈ L1(I,R) with v(t) ∈ F (t, x(t)), a.e. (I) such
that (p(t)x′(t))′ = v(t), a.e. (I) and conditions (1.5) are satisfied.

Lemma 2.2. ([9]) If v(.) : [0, T ]→ R is an integrable function then the
problem

(p(t)x′(t))′ = v(t) a.e. (I),

αx(0)− β lim
t→0+

p(t)x′(t) = 0, γx(T ) + δ lim
t→T−

p(t)x′(t) = 0

has a unique solution x(.) ∈ AC1
p(I,R) given by

x(t) =
∫ T

0
G1(t, s)v(s)ds,

where

G1(t, s) :=
1
ρ

{
(β + α

∫ s
0

du
p(u))(δ + γ

∫ T
t

du
p(u)) if 0 ≤ s < t ≤ T

(β + α
∫ t
0

du
p(u))(δ + γ

∫ T
s

du
p(u)) if 0 ≤ t < s ≤ T

and ρ := αδ + βγ + γα
∫ T
0

dt
p(t) 6= 0.

Finally, we recall a selection result which is a version of the celebrated
Kuratowski and Ryll-Nardzewski selection theorem ([8]).

Lemma 2.3. ([1]) Consider X a separable Banach space, B is the closed
unit ball in X, H : I → P(X) is a set-valued map with nonempty closed
values and g : I → X,L : I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e.(I),

then the set-valued map t→ H(t)∩(g(t)+L(t)B) has a measurable selection.

In the sequel we assume the following conditions on F .

Hypothesis 2.4. (i) F (., .) : I ×R→ P(R) has nonempty closed values
and for every x ∈ R F (., x) is measurable.

(ii) There exists L(.) ∈ L1(I,R) such that for almost all t ∈ I, F (t, ·) is
L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ R.



Higher order differential inclusions 379

3 The main results

We are now ready to prove the main result of this paper.
Denote L0 :=

∫ T
0 L(s)ds and M0 := supt,s∈I |G(t, s)|.

Theorem 3.1. Assume that Hypothesis 2.4 is satisfied and M0L0 <
1. Let y(.) ∈ ACn−1(I,R) be such that there exists q(.) ∈ L1(I,R) with
d(y(n)(t) − λy(t), F (t, y(t))) ≤ q(t), a.e. (I). Denote µ̃i = y(i)(0) − y(i)(T ),
i = 0, 1, ..., n− 1.

Then there exists x(.) : I → R a solution of (1.2)-(1.3) satisfying for all
t ∈ I

|x(t)− y(t)| ≤ 1
1−M0L0

sup
t∈I
|Pµ(t)− Pµ̃(t)|+

M0

1−M0L0

∫ T

0
q(t)dt,

where Pµ(t) is defined in (2.1).

Proof. The set-valued map t→ F (t, y(t)) is measurable with closed values
and

F (t, y(t)) ∩ {y(n)(t)− λy(t) + q(t)[−1, 1]} 6= ∅ a.e. (I).

From Lemma 2.3 it follows that there exists a measurable selection f1(t) ∈
F (t, y(t)) a.e. (I) such that

|f1(t)− y(n)(t) + λy(t)| ≤ q(t) a.e. (I) (3.2)

Define x1(t) = Pµ(t) +
∫ T
0 G(t, s)f1(s)ds and one has

|x1(t)− y(t)| ≤ sup
t∈I
|Pµ(t)− Pµ̃(t)|+M0||q||1.

We claim that it is enough to construct the sequences xn(.) ∈ C(I,R),
fn(.) ∈ L1(I,R), n ≥ 1 with the following properties

xn(t) = Pµ(t) +
∫ T

0
G(t, s)fn(s)ds, t ∈ I, (3.3)

fn(t) ∈ F (t, xn−1(t)) a.e. (I), n ≥ 1, (3.4)

|fn+1(t)− fn(t)| ≤ L(t)|xn(t)− xn−1(t)| a.e. (I), n ≥ 1. (3.5)
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If this construction is realized then from (3.2)-(3.5) we have for almost
all t ∈ I

|xn+1(t)− xn(t)| ≤
∫ T

0
|G(t, t1)|.|fn+1(t1)− fn(t1)|dt1 ≤

M0

∫ T

0
L(t1)|xn(t1)− xn−1(t1)|dt1 ≤M0

∫ T

0
L(t1)

∫ T

0
|G(t1, t2)|.

|fn(t2)− fn−1(t2)|dt2 ≤M2
0

∫ T

0
L(t1)

∫ T

0
L(t2)|xn−1(t2)− xn−2(t2)|dt2dt1

≤Mn
0

∫ T

0
L(t1)

∫ T

0
L(t2)...

∫ T

0
L(tn)|x1(tn)− y(tn)|dtn...dt1 ≤

≤ (M0L0)n(sup
t∈I
|Pµ(t)− Pµ̃(t)|+M0||q||1).

Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I,R), hence
converging uniformly to some x(.) ∈ C(I,R). Therefore, by (3.5), for almost
all t ∈ I, the sequence {fn(t)} is Cauchy in R. Let f(.) be the pointwise
limit of fn(.).

Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
∑n−1

i=1 |xi+1(t)− xi(t)| ≤ supt∈I |Pµ(t)−
Pµ̃(t)|+M0||q||1 +

∑n−1
i=1 (supt∈I |Pµ(t)− Pµ̃(t)|+M0||q||1)(M0L0)i ≤

supt∈I |Pµ(t)−Pµ̃(t)|+M0||q||1
1−M0L0

.

(3.6)
On the other hand, from (3.2), (3.5) and (3.6) we obtain for almost all

t ∈ I

|fn(t)− y(n)(t) + λy(t)| ≤
∑n−1

i=1 |fi+1(t)− fi(t)|+ |f1(t)− y(n)(t)+
λy(t)| ≤ L(t) supt∈I |Pµ(t)−Pµ̃(t)|+M0||q||1

1−M0L0
+ q(t).

Hence the sequence fn(.) is integrably bounded and therefore f(.) ∈
L1(I,R).

Using Lebesgue’s dominated convergence theorem and taking the limit
in (3.3), (3.4) we deduce that x(.) is a solution of (1.1). Finally, passing to
the limit in (3.6) we obtained the desired estimate on x(.).

It remains to construct the sequences xn(.), fn(.) with the properties in
(3.3)-(3.5). The construction will be done by induction.
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Since the first step is already realized, assume that for some N ≥ 1 we
already constructed xn(.) ∈ C(I,R) and fn(.) ∈ L1(I,R), n = 1, 2, ...N
satisfying (3.3),(3.5) for n = 1, 2, ...N and (3.4) for n = 1, 2, ...N − 1. The
set-valued map t → F (t, xN (t)) is measurable. Moreover, the map t →
L(t)|xN (t)−xN−1(t)| is measurable. By the lipschitzianity of F (t, .) we have
that for almost all t ∈ I

F (t, xN (t)) ∩ {fN (t) + L(t)|xN (t)− xN−1(t)|[−1, 1]} 6= ∅.

From Lemma 2.3 we obtain that there exists a measurable selection fN+1(.)
of F (., xN (.)) such that

|fN+1(t)− fN (t)| ≤ L(t)|xN (t)− xN−1(t)| a.e. (I).

We define xN+1(.) as in (3.3) with n = N + 1. Thus fN+1(.) satisfies
(3.4) and (3.5) and the proof is complete.

Remark 3.2. In [3], using Covitz-Nadler set-valued contraction principle
([6]) one obtains another Filippov type existence result for problem (1.2)-
(1.3). More exactly, according to Theorem 3.1 in [3], for any ε > 0 there
exists xε(.) a solution of problem (1.2)-(1.3) satisfying for all t ∈ I

|xε(t)−y(t)| ≤
1

1−M0L0
sup
t∈I
|Pµ(t)−Pµ̃(t)|+

M0

1−M0L0

∫ T

0
q(t)dt+ε (3.7)

Obviously, the estimate in (3.1) is better than the one in (3.7). Moreover,
in [3] it is required that the set-valued map F (., .) satisfy an additional hy-
pothesis, namely d(0, F (t, 0)) ≤ L(t) a.e. (I).

We are concerned now with the boundary value problem (1.4)-(1.5).
Set M1 := maxt,s∈I |G1(t, s)|.

Theorem 3.3. Assume that Hypothesis 2.4 is satisfied and M1L0 <
1. Let y(.) ∈ AC1

p(I,R) be such that there exists q(.) ∈ L1(I,R) with
d((p(t)y(t))′, F (t, y(t))) ≤ q(t), a.e. (I), αy(0) − β limt→0+ p(t)y′(t) = 0,
γy(T ) + δ limt→T− p(t)y′(t) = 0.

Then there exists x(.) : I → R a solution of (1.1)-(1.2) satisfying for all
t ∈ I

|x(t)− y(t)| ≤ M1

1−M1L0

∫ T

0
q(t)dt. (3.8)
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The proof of Theorem 3.3 is similar to the one of Theorem 3.1.

Remark 3.4. In [4], using Covitz-Nadler set-valued contraction principle
one obtains another Filippov type existence result for problem (1.4)-(1.5).
More precisely, according to Theorem 3.1 in [4], for any ε > 0 there exists
xε(.) a solution of problem (1.4)-(1.5) satisfying for all t ∈ I

|xε(t)− y(t)| ≤
M1

1−M1L0

∫ T

0
q(t)dt+ ε. (3.9)

Obviously, the estimate in (3.8) is better than the one in (3.9).
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