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Abstract

We investigate two well-known basic optimal control problems for
chemotherapeutic cancer treatment modified by introducing a time-
dependent “resistance factor”. This factor should be responsible for the
effect of the drug resistance of tumor cells on the dynamical growth
for the tumor. Both optimal control problems have common point-
wise but different integral constraints on the control. We show that in
both models the usually practised bang-bang control is optimal if the
resistance is sufficiently strong. Further, we discuss different optimal
strategies in both models for general resistance.
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1 Introduction

Optimal control problems based on mathematical models for cancer chemo-
therapy have a long history and obtained a renewed interest in the last years
∗Accepted for publication on March 13, 2011.
†Department of Mathematics, TU Darmstadt, Schloßgartenstr. 7, 64289 Darmstadt,

Germany, e-mail: krabs@mathematik.tu-darmstadt-de
‡Lothar von Wolfersdorf passed away on November 30, 2010.

332

Annals of the Academy of Romanian Scientists
Series on Mathematics and its Applications

ISSN 2066 - 6594 Volume 3, Number 2 / 2011



Two optimal control problems in cancer chemotherapy 333

(cf. [2-6, 10-26]). There are further recent papers on mathematical models
for immunotherapy and mixed immunotherapy and chemotherapy starting
with papers by A. Kuznetsov and coworkers in the nineties (cf. [19,20], for
instance) but which are not in our focus here. Instead the present paper
follows the two pioneering papers by J.M. Murray in 1990 [16,17] (see also
[24]) whose basic problems are modified in the following.

One difficulty in applying the considered optimal control problems in cancer
chemotherapy is the occurance of optimal solutions which are seldom or not
used in medical practice. A desired optimal solution by the physician is
the bang-bang control consisting of a starting interval with maximal dose
of drug followed by an interval of zero-therapy till the end of treatment
(considering one cycle of the chemotherapeutic treatment). In particular,
the therapy should theoretically end with an interval of zero-therapy to have
the required minimum of the tumor cells population also somewhat later
than at the practical end of treatment. To obtain optimal solutions of this
type often a suitable choice of the objective functions is proposed (cf. [14,
17, 19, and 24]).

The aim of the present paper is to circumvent this difficulty taking into
account the resistance of the tumor cells against drug (and further using the
size of the tumor cells population at the final time as the natural objective
function). Acquired and intrinsic resistance of the tumor cells against drug
is an important but very complex phenomen in tumor therapy (cf. [8, 12])
and related deterministic models [4, 12, 14] and stochastic ones [2, 3] in
dealing with it are developed recently. In our highly simplified model we only
consider a summarizing effect of resistance by introducing a time-dependent
“resistance factor” in front of the loss function of the tumor cells in the
deterministic differential equation for the tumor growth. In particular, we
do not distinguish between drug sensitive and resistant tumor cells like in [4,
12, 14].

Further, we deal with two basic problems where in each problem we have
two restrictions, namely the usual pointwise inequality for the control func-
tion (which is in the dose of the drug administered per unit of time) and
an integral inequality for the loss function of the normal cells in the first
problem and for the drug dose itself in the second problem. To keep the
mathematical analysis simple other restrictions like the pointwise limit for
the size of the population of the normal cells like in [15, 17, and 24] are not
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taken into consideration. There is only one dynamic equation for the growth
and suppression of the tumor cells and no one for the normal cells (but which
could be easily supplemented).

Both optimal control problems show the desired effect that for (properly
defined) “strong resistance” the above-named bang-bang control is the unique
optimal control (cp. with the results in [3, 26], for instance). With respect
to general resistance we have another picture. In the first problem in case of
“weak resistance” the optimal control is the non desired “opposite” bang-bang
control with starting interval of zero-therapy and final interval of maximal
drug dose. On the other hand, in the second problem for general resistance
an optimal control similar to the desired bang-bang control starting and
ending with a subinterval of zero-therapy is to be expected as an example
with Gompertzian growth show (cp. with other forms of optimal solutions
in [14, 17], for instance). So, especially with respect to weak resistance the
second problem seems preferable to the first problem.

The plan of the paper is as follows. After performing the mathematical mod-
elling in Section 2 we investigate the first optimal control problem in Section
3 and the second optimal control problem with the example for Gompertzian
growth in Section 4.

2 Mathematical Models

We denote the time-dependent number of cancer cells in the tumor by a
function T = T (t), t ∈ IR+, which we assume to be differentiable with
derivative Ṫ (t). The temporal development of the tumor cells population
T (t) in a given interval [0, tf ] is governed by the differential equation

Ṫ (t) = [f(T (t))− ϕ(t)L(M(t))]T (t), t ∈ [0, tf ], (2.1)

with the initial condition

T (0) = T0 > 0. (2.2)

The function f = f(t), T ≥ 0 describes the dynamics of the tumor population
F (T ) = f(T )T if there is no administration of drugs. We assume f ∈
C1(IR+) with f(T ) > 0, f ′(T ) < 0 for all relevant T ≥ 0. This is fulfilled for
many of the commonly used dynamics as Gompertz, logistic (Verhulst-Pearl)
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and other growth laws in an interval [0, θ] with maximal tumor population θ
(cf. [5, 10, 16, 22, 24]).

By L = L(M), M ≥ 0 we denote the destruction rate of the drug level
M . We assume that this loss function L ∈ C2(IR+) satisfies L(0) = 0 and
L′(M) > 0 for all relevant M ≥ 0. This is fulfilled, for instance, for linear
and fractional linear (“saturated”) function L (cf. [10, 16, 24]). The drug
level function M = M(t) obeys the linear differential equation

Ṁ(t) = −δM(t) + V (t), t ∈ [0, tf ], (2.3)

and the initial condition

M(0) = 0 (2.4)

with a positive drug decay rate δ where V (t) denotes the drug dose that is
administered per unit of time at time t ∈ [0, tf ]. In the following we assume
δ ≥ 0, thus including the mathematical limit case δ = 0 of no drug decay.

The drug dosis V = V (t) per unit of time is considered as the control function
in the model. We assume it to be a bounded measurable function, i.e. V ∈
L∞(0, tf ), and to satisfy the pointwise condition

0 ≤ V (t) ≤ A for a.a. t ∈ [0, tf ] (2.5)

where A > 0 is a prescribed constant, the maximum drug dosis per unit of
time. Further, below we require additionally an integral condition which we
regard as responsible for the compatibility of the treatment.

The new feature in this model is the introduction of the function ϕ = ϕ(t),
t ∈ [0, tf ], which is assumed to be in C1[0, tf ] satisfying ϕ(t) > 0 in [0, tf )
and normed by ϕ(0) = 1. The factor ϕ in Eq. (2.1) should - in a most simple
way - describe the total effect of inner influences (like drug resistance) and
other ones (like accompanying therapies) on the destruction rate of the tumor
cells by the drug during the treatment. Especially, the influence of the drug
resistance of the tumor cells will be expressed by a function ϕ ∈ C1[0, tf ]
with ϕ(0) = 1, ϕ̇(t) ≤ 0 in [0, tf ] and ϕ(t) > 0 in [0, tf ]. (We call such a
function a “resistance factor” in the following).

The integral condition in problem 1 now reads
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tf∫
0

ϕ0(t)L0(M(t))dt ≤ B (2.6)

with a prescribed constant B > 0 where L0(M) is the destruction rate of the
normal cells for which we assume the same properties as for the loss function
L(M) of the tumor cells above and ϕ0 ∈ C1[0, tf ] with ϕ0(t) > 0 in [0, tf ),
ϕ0(0) = 1 is a weight function possessing the analogous meaning for the
normal cells as ϕ for the tumor cells. In problem 2 we simply require that

tf∫
0

V (t)dt ≤ B (2.7)

with a given constant B > 0.

The aim of chemotherapeutic treatment is to make the tumor cells population
T (tf ) at the end of the treatment as small as possible. In view of Eq. (2.1)
this can be written in the usual form of the minimum condition

tf∫
0

[f(T (t))− ϕ(t)L(M(t))]T (t)dt→ min . (2.8)

We further remark that for a given V ∈ L∞(0, tf ) the solution of (2.3), (2.4)
has the form

M(t) = M [V ](t) =

t∫
0

eδ(s−t)V (s)ds, t ∈ [0, tf ]

which implies M ∈ C[0, tf ]. By our assumptions on f, ϕ, L we then have
T ∈ C1[0, tf ] for the corresponding solution T = T [V ] of Eq. (2.1).

Our optimal control problems are now defined by the minimum condition
(2.8) for the state equations (2.1) - (2.4) with the constraints (2.5), (2.6)
(problem 1 ) or (2.5), (2.7) (problem 2 ). Here the integral constraints (2.6)
and (2.7) can be taken, respectively, in the form
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Q(tf ) ≤ B or U(tf ) ≤ B (2.9)

where the additional state functions Q = Q(t) and U = U(t) are given by
the integrals

Q(t) =

t∫
0

ϕ0(s)L0(M(s)ds and U(t) =

t∫
0

V (s)ds,

respectively, or equivalently by the additional state equations

Q̇(t) = ϕ0(t)L0(M(t)), t ∈ [0, tf ] (2.10)

with Q(0) = 0 and

U̇(t) = V (t), t ∈ [0, tf ] (2.11)

with U(0) = 0, respectively.

These optimal control problems always have solutions as follows by adapting
the existence proof by J.M. Murray in [16] on the basis of Theorem 5.4.4 in
[1] (taking into account that for the admissible control V (t) = 0 in [0, tf ] the
state equation (2.1) has a continuous solution T (t) in [0, tf ] with finite T (tf )
and because of the finite interval [0, tf ] also the parameter δ = 0 in Eq. (2.3)
is possible).

Finally, we simplify the mathematical analysis for our problems slightly by
applying the usual substitution y = `nT for T > 0. Then the differential
equation (2.1) is transformed into

ẏ(t) = f(ey(t))− ϕ(t)L(M(t)), t ∈ [0, tf ] (2.12)

and the initial condition (2.2) reads

y(0) = y0 = `nT0. (2.13)

The minimum condition (2.8) takes the form
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tf∫
0

[f(ey(t))− ϕ(t)L(M(t))]dt→ Min. (2.14)

The optimal control problems to be solved are then given by the minimum
condition (2.14) for the state equations (2.12), (2.13), (2.3), (2.4), and (2.10)
or (2.11), respectively, under the constraints (2.5), (2.9).

3 Solutions of the first problem

We determine optimal solutions of problem (2.12 - 2.14), (2.5), (2.9), (2.10)
as usual with the aid of the maximum principle [9]. The Hamiltonian of the
problem is given by

H(t, y,M,Q, V, p1, p2, p3, λ0)

= (f(ey)− ϕ(t)L(M))(p1 − λ0)

+(V − δM)p2 + ϕ0(t)L0(M)p3

(3.1)

with the parameter λ0 and the adjoint state functions pk, k = 1, 2, 3. If
(ŷ, M̂ , Q̂, V̂ ) is an optimal quadruple there exist a number λ0 ≥ 0 and three
functions pk ∈ C1[0, tf ], k = 1, 2, 3 with (λ0, p1, p2, p3) 6= (0, 0, 0, 0) satisfying
the differential equations

ṗ1(t) = −f ′(eŷ(t))eŷ(t)(p1(t)− λ0) (3.2)

ṗ2(t) = ϕ(t)L′(M̂(t))(p1(t)− λ0) + δp2(t)− ϕ0(t)L′0(M̂(t))p3(t) (3.3)

ṗ3(t) = 0 (3.4)

in [0, tf ] and the transversality conditions in tf

p1(tf ) = 0, p2(tf ) = 0, and p3(tf ) ≤ 0, p3(tf )(Q̂(tf )−B) = 0 (3.5)

such that for a.a. t ∈ [0, tf ] the maximum condition
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V̂ (t)p2(t) = max
0≤V≤A

[V p2(t)] (3.6)

is valid. From (3.4) and (3.5) it follows that p3 is a nonpositive constant
which vanishes if Q̂(tf ) < B.

We define p̃1(t) = p1(t)− λ0 and

g(t) = −f ′(eŷ(t))eŷ(t) > 0, t ∈ [0, tf ]. (3.7)

Then from (3.2) we have ˙̃p1(t) = g(t)p̃1(t) which gives

p̃1(t) = p̃1(0) exp(

t∫
0

g(s)ds), t ∈ [0, tf ]. (3.8)

From p1(tf ) = 0 we obtain

p̃1(tf ) = p̃1(0) exp(

tf∫
0

g(t)dt) = −λ0 ≤ 0 (3.9)

which shows that p̃1(t) ≤ 0 for all t ∈ [0, tf ].

We further put

h(t) = ϕ(t)L′(M̂(t))p̃1(t)− ϕ0(t)L′0(M̂(t))p3. (3.10)

From (3.3) we get

ṗ2(t) = δp2(t) + h(t), t ∈ [0, tf ] (3.11)

which yields p2(t) = eδtH(t) with

H(t) = p2(0) +

t∫
0

e−δsh(s)ds, t ∈ [0, tf ]. (3.12)

In view of p2(tf ) = 0 we have
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p2(0) = −

tf∫
0

e−δth(t)dt (3.13)

which implies

p2(t) = −eδt
tf∫
t

e−δsh(s)ds, t ∈ [0, tf ]. (3.14)

Now we distinguish the two cases

B ≥ QA(tf ) ≡

tf∫
0

ϕ0(t)L0(MA(t))dt (3.15)

where
MA(t) =

A

δ
[1− e−δt] if δ > o,At if δ = 0

is the solution of (2.3), (2.4) for V (t) = A a.e. in [0, tf ], and

B < QA(tf ) ≡

tf∫
0

ϕ0(t)Lo(MA(t))dt. (3.16)

If (3.15) is fulfilled we have the optimal solution V̂ (t) = A a.e. in [0, tf ]. So
we can assume (3.16) in the following. In this case the equality

Q̂(tf ) ≡

tf∫
0

ϕ0(t)L0(M̂(t))dt = B (3.17)

for the optimal solutions must hold. We prove this by contradiction. If
Q̂(tf ) < B we have p3 = 0. In the anormal case λ0 = 0 by (3.9), (3.8)
and (3.10), (3.14) this implies p1(t) = p̃1(t) = 0 and p2(t) = 0 in [0, tf ]
which contradicts the condition (λ0, p1, p2, p3) 6= (0, 0, 0, 0). In the normal
case λ0 > 0 by (3.8) we would have p̃1(t) < 0 and hence by (3.10) also
h(t) < 0 in [0, tf ] which by (3.14) yields p2(t) > 0 in [0, tf ]. The maximum
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condition (3.6) then would give V̂ (t) = A for a. a. t ∈ [0, tf ]. This implies
QA(tf ) = Q̂(tf ) < B, a contradiction to (3.16). Therefore, (3.17) and p3 < 0
hold true.

We further show because of the condition (3.17) the abnormal case λ0 = 0
cannot occur. Namely, from λ0 = 0 as before we obtain p̃1(t) = p1(t) = 0 in
[0, tf ] implying

h(t) = −ϕ0(t)L′0(M̂(t))p3 > 0, t ∈ [0, tf ]

from (3.10). By (3.14) it follows that p2(t) < 0 in [0, tf ]. Then (3.6) yields
V̂ (t) = 0 for a.a. t ∈ [0, tf ] which by (2.3), (2.4) leads to M̂(t) = 0 in [0, tf ]
and by L(0) = 0 to Q̂(tf ) = 0, a contradiction to (3.17). Summing up, in the
case (3.16) equality (3.17) is valid and we have λ0 > 0, p̃1(t) < 0 in [0, tf ]
and p3 < 0.

We introduce the functions

q(t) =
L′0(M̂(t))
L′(M̂(t))

,∆(t) = ϕ(t)p̃1(t)− ϕ0(t)q(t)p3 (3.18)

so that by (3.10) we have h(t) = L′(M̂(t))∆(t) with signh(t) = sign∆(t).
Now we make the assumption that ∆ is a strictly increasing function in [0, tf ]
which is fulfilled if

d

dt
∆(t) ≡ d

dt
[ϕ(t)p̃1(t)− ϕ0(t)q(t)p3] > 0 in (0, tf ). (3.19)

We distuingish the three cases

(i) ∆(0) ≥ 0

(ii) ∆(0) < 0,∆(tf ) ≤ 0

(iii) ∆(0) < 0,∆(tf ) > 0.

In case (i) we have ∆(t) > ∆(0) ≥ 0 in [0, tf ] implying h(t) > 0 in (0, tf ] and
p2(t) < 0 in [0, tf ) by (3.14). The condition (3.6) then yields the solution
V̂ (t) = 0 a.e. in [0, tf ] which is not possible.

In case (ii) we have ∆(t) < ∆(tf ) ≤ 0 in [0, tf ] which gives h(t) < 0 in [0, tf ]
and p2(t) > 0 in [0, tf ] by (3.14) again. In view of (3.6) then V̂ (t) = A a.e.
in [0, tf ] which is also not allowed in the case of (3.16).
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It remains the case (iii). By the strict monotonicity of ∆ there exists exactly
one t1 ∈ (0, tf ) with ∆(t1) = 0, ∆(t) < 0 in [0, t1), and ∆(t) > 0 in (t1, tf ].
This implies the analogous inequalities for h. Therefore the function H in
(3.12) is strictly decreasing from H(0) = p2(0) to H(t1) < p2(0) and then
strictly increasing from H(t1) to H(tf ) = 0. If now p2(0) ≤ 0 were true
we would get H(t) < 0 and hence p2(t) < 0 in (0, tf ). This would imply
V̂ (t) = 0 a.e. in [0, tf ] again. Therefore, it must be p2(0) > 0. Then
there exists exactly one t0 ∈ (0, t1) with H(t0) = 0, H(t) > 0 in [0, t0) and
H(t) < 0 in (t0, tf ] which implies p2(t) > 0 in [0, t0) and p2(t) < 0 in (t0, tf ].
The maximum condition (3.6) yields the unique optimal solution

V̂ (t) =

{
A for a.a. t ∈ [0, t0)

0 for a.a. t ∈ (t0, tf ]
(3.20)

where t0 ∈ (0, tf ) can be defined as the (unique) solution of the equation

tf∫
0

ϕ0(t)L0(M̂(t))dt = B (3.21)

with

M̂(t) =

{
A
δ [1− ēδt] if δ > 0, At if δ = 0 for t ∈ [0, t0]

A
δ [eδt0 − 1]ēδt if δ > 0, At0 if δ = 0 for t ∈ (t0, tf ]

following from (3.17) and (2.3), (2.4) with (3.20).

We summarize the result in

THEOREM 3.1

(i) Let (3.15)be fulfilled. Then problem 1 has the unique optimal solution
V̂ (t) = A a.e. in [0, tf ].

ii) Let (3.16) be fulfilled and the function ∆ in (3.18) strictly increasing.
Then problem 1 has the unique optimal solution (3.20) with (3.21).

REMARKS. The monotonicity assumption on ∆ in Theorem 3.1 is an im-
plicit condition on ϕ (and ϕ0) since the functions p̃1by (3.8) and q by (3.18)
in general depend on the optimal solution V̂ of the problem with the function
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ϕ in (2.1) (and ϕ0 in (2.6)). But this dependence can be well derived from
(3.20) with (3.21) and Eqs. (2.1), (2.3). Moreover, in the important partic-
ular case L = cL0 with a constant c > 0 and L0 ∈ C1(IR+) (cf. [16, 17])
we have q(t) = c and for ϕ0(t) = 1 in [0, tf ] the sufficient condition (3.19)
reduces to the simple condition

ϕ̇(t) + g(t)ϕ(t) < 0 in (0, tf ) (3.22)

with the positive function g = −f ′(T̂ )T̂ by (3.7). Further, in the special case
of Gompertzian growth f(T ) = λ`n θ

T (λ, θ > 0) we have g = λ, a constant
which is independent of the optimal solution V̂ .

Condition (3.22) is for instance satisfied, if

ϕ(t) = exp(−(

t∫
0

g(s)ds+ γt)), t ∈ [0, tf ],

for some γ > 0.

In general, it remains the dependence of ∆ on the (negative) parameter p3

or equivalently on the (positive) quotient p3/p̃1(0) which are not directly
expressed by the optimal solution V̂ . To avoid this dependence we derive a
further sufficient criterion for the optimal solution (3.20) in the sequel.

LEMMA 3.2
Under the conditions (3.16) and

d

dt
[ρ(t)p2(t)] < 0 in (0, tf ) (3.23)

with a nonnegative function ρ ∈ C1(0, tf ) the optimal solution of problem 1
is uniquely determined and has the form (3.20).

Proof. Because of (3.23) the optimal solution cannot contain singular parts
in subintervals where ṗ2(t) = p2(t) = 0 and parts of the form

V̂ (t) =

{
0 a.e. in [t1, τ)

A a.e. in (τ, t2]

with 0 ≤ t1 < τ < t2 ≤ tf where p2(t) ≤ 0 in (t1, τ), p2(τ) = 0, p2(t) ≥ 0
in (τ, t2) and ṗ2(τ) ≥ 0. Further, the solutions V̂ (t) = 0 a.e. in [0, tf ] and
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V̂ (t) = A a.e. in [0, tf ] are not possible in view of (3.16) with (3.17). This
proves the lemma.

In view of (3.11) the condition (3.23) can be written in the form

[ρ̇(t) + δg(t)]p2(t) + ρ(t)h(t) < 0 in (0, tf ) (3.24)

with h defined in (3.10). Taking

ρ(t) = exp(

t∫
0

µ(s)ds), µ ∈ C(0, tf )

and r(t) = µ(t) + δ ∈ C(0, tf ) condition (3.24) simply writes

r(t)p2(t) + h(t) < 0 in (0, tf ).

By (3.10) and (3.14) this means

∆1(t) + p3∆2(t) < 0 in (0, tf ) (3.25)

where

∆1(t) = ϕ(t)L′(M̂(t))p̃1(t)− r(t)
tf∫
t

eδ(t−s)ϕ(s)L′(M̂(s))p̃1(s)ds,

∆2(t) = r(t)
tf∫
t

eδ(t−s)ϕ0(s)L′0(M̂(s))ds− ϕ0(t)L′0(M̂(t)).

We now choose r ∈ C(0, tf ) such that ∆2(t) = 0 in (0, tf ), i.e.

r(t) =
e−δtϕ0(t)L′0(M̂(t))

tf∫
t

e−δsϕ0(s)L′0(M̂(s))ds

.

Then (3.25) simplifies to the condition ∆1(t) < 0 in (0, tf ) or defining further
the quotient

q1(t) =
p̃1(t)
p̃1(0)

= exp(−
t∫

0

f ′(T̂ (s))T̂ (s)ds) > 0 (3.26)



Two optimal control problems in cancer chemotherapy 345

by (3.7), (3.8) to the integral inequality

q1(t)ϕ(t)
tf∫
t

e−δsϕ0(s)L′0(M̂(s))ds

> q(t)ϕ0(t)
tf∫
t

e−δsϕ(s)L′(M̂(s))q1(s)ds
(3.27)

in (0, tf ) where q is defined in (3.18). A sufficient condition for (3.27) is the
differential condition

d
dt [q1(t)ϕ(t)]

tf∫
t

e−δsϕ0(s)L′0(M̂(s))ds

< d
dt [q(t)ϕ0(t)]

tf∫
t

e−δsϕ(s)L′(M̂(s))q1(s)ds in 0, (tf ).
(3.28)

Summing up we obtain

THEOREM 3.2

i) Let (3.16) and (3.27) with (3.18), (3.26) be fulfilled. Then problem 1
has the unique optimal solution (3.20) with (3.21).

ii) The integral condition (3.27) is satisfied if the differential condition
(3.28) is valid.

REMARKS. The conditions (3.27) and (3.28) do not contain the unknown
parameters p3 and p̃1(0). In the particular case L = cL0 with ϕ0(t) = 1 from
(3.28) we get the condition (3.22) again.

Finally, we briefly deal with the cases where in Theorem 3.1 the function
∆ is strictly decreasing and the inequalities (3.19) and (3.27) in Theorems
3.1 and 3.2, respectively, are fulfilled with the opposite signs. In particular,
this is the case if L = cL0 and ϕ(t) = ϕ0(t) = 1 on [0, tf ]. Then the above
analysis shows that the unique optimal solution of problem 1 is

V̂ (t) =
{

0 for a.a.t ∈ [0, t∗)
A for a.a.t ∈ (t∗, tf ]

(3.29)
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where t ∈ (0, tf ) is the (unique) solution of the equation

tf∫
t∗

ϕ0(t)L0(M̂(t))dt = B

with M̂(t) = 0 for t ∈ [0, t∗] and

M̂(t) =
A

δ
[dδ(t∗−t − 1] if δ > 0, A(t− t∗) if δ = 0

for t ∈ [t∗, tf ] following from (3.17) and (2.3), (2.4) with (3.29) again.

In case of the conditions (3.19) or (3.27), (3.28) for a resistance factor ϕ (with
some associated ϕ0) we say that we have strong resistance of the tumor cells
against the drug, and in case of these conditions with the opposite sign weak
resistance.

4 Solutions of the second problem

Problem (2.12 - 2.14), (2.5), (2.9), (2.11) possesses the Hamiltonian

H(t, y,M,U, V, p1, p2, p3, λ0)

= (f(ey)− ϕ(t)L(M))(p1 − λ0) + (V − δM)p2 + V p3

(4.1)

with the parameter λ0 and the adjoint state functions pk, k = 1, 2, 3. If
(ŷ, M̂ , Û , V̂ ) is an optimal quadruple, by the maximum principle [9], there
exist a number λ0 ≥ 0 and three functions pk ∈ C1[0, tf ], k = 1, 2, 3 with
(λ0, p1, p2, p3) 6= (0, 0, 0, 0) satisfying the differential equations

ṗ1(t) = −f ′(eŷ(t))eŷ(t)(p1(t)− λ0) (4.2)

ṗ2(t) = ϕ(t)L′(M̂(t))(p1(t)− λ0) + δp2(t) (4.3)

ṗ3(t) = 0 (4.4)

in [0, tf ] and the transversality conditions in tf
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p1(tf ) = 0, p2(tf ) = 0, and p3(tf ) ≤ 0, p3(tf )(Û(tf )−B) = 0 (4.5)

such that for a.a. t ∈ [0, tf ] the maximum condition

V̂ (t)(p3(t) + p3) = max
0≤V≤A

[V (p2(t) + p3)] (4.6)

holds. By (4.4), (4.5) p3 is a nonpositive constant which vanishes if
Û(tf ) < B.

We remark that in the limit case δ = 0 in view of (2.3), (2.4) and (2.11) the
quantities U and M coincide. Hence U , p3 could be omitted and formally
p2(t) + p3 replaced by a new p2(t).

We define the functions p̃1 and g as in problem 1 with the relations (3.7) -
(3.9). Further we have the relations (3.11) - (3.14) for p2 if we replace the
function h in (3.10) by

h0(t) = ϕ(t)L′(M̂(t), p̃1(t), t ∈ [0, tf ]. (4.7)

Discussing the optimal solutions of problem 2 we distinguish the two cases
B ≥ tfA and B < tfA. For B ≥ TfA the obvious solution is V̂ (t) = A for
a.a. t ∈ [0, tf ]. For B < tfA we have the equality

Û(tf ) =

tf∫
0

V̂ (t)dt = B (4.8)

and the inequalities p3 < 0, λ0 > 0, and p̃1(t) < 0 in [0, tf ] which can be
shown as above in problem 1. By (4.7) this implies h0(t) < 0 in [0, tf ] which
by (3.11) and (3.14) gives

ṗ2(t)− δp2(t) < 0, p2(t) > 0 in [0, tf ). (4.9)

If additionally ϕ(tf ) > 0 then also h0(tf ) < 0 and consequently ṗ2(tf ) < 0.

From (4.9) we obtain a first result about the form of the optimal solutions
in the case B < tfA.

LEMMA 4.1
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For B < tfA the optimal solutions of problem 2 do not contain a solution
part of the form

V̂ (t) = Aa.e. for t ∈ [τ, tf ], τ ∈ [0, tf ) (4.10)

and if ϕ(tf ) > 0 they do not contain singular parts in intervals of the form
[τ, tf ] with τ ∈ [0, tf ).

Proof: The assertion (4.10) for τ = 0 follows from (4.14). For τ > 0 we have
p2(t) + p3 ≥ 0 in (τ, tf ] and p2(τ) + p3 = 0 implying ṗ2(τ) ≥ 0, but since
p2(τ) = −[p2(tf ) + p3] ≤ 0 by (4.9) it must be ṗ2(τ) < δp2(τ) and ṗ2 < 0.

The proof for the singular parts is a consequence of the condition ṗ2(t) = 0
in [τ, tf ] which leads to a contradiction to ṗ2(tf ) < 0 from (4.9).

Lemma 4.1 shows that the optimal solutions of problem 2 end with an interval
of zero-therapy if ϕ(tf ) > 0.

We now give a sufficient condition for the optimal solutions being of the (in
practice desired) bang-bang control type.

LEMMA 4.2
Under the conditions B < tfA and

ṗ2(t) < 0 in (0, tf ) (4.11)

the optimal solution of problem 2 is uniquely determined and has the form

V̂ (t) =
{
A for a.a. t ∈ [0, t0)
0 for a.a. t ∈ (t0, tf ]

(4.12)

where t0 = B/A ∈ (0, tf ).

Proof. Since ṗ2(t) 6= 0 in (0, tf ) the optimal solution does not contain singular
parts. Further, it does not contain parts of the forms

V̂ (t) = 0 for a.a. t ∈ [0, τ ], τ ∈ (0, tf ]

and

V̂ (t) =
{

0 for a.a. t ∈ (t1, τ)
A for a.a. t ∈ (τ, t2)

(0 ≤ t1 < τ < t2 ≤ tf )
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The first one is impossible for τ = tf because of (4.8) and for τ < tf since
we could have p2(t) + p3 ≤ 0 in (0, τ) and p2(τ) + p3 ≥ 0 implying ṗ2(τ) ≥ 0.
For the second one we obtain p2(t) + p3 ≤ 0 in (t1, τ) and p2(t) + p3 ≥ 0 in
(τ, t2) yielding ṗ2(τ) ≥ 0 again. This proves the form (4.12) of the optimal
solution V̂ with unique value t0 following from (4.8).

The proof can also be given directly by using the fact that (4.11) implies
p2(t) > 0 for all t ∈ [0, tf ) and discussing the two cases p2(0) + p2 ≤ 0 and
p2(0) + p3 > 0.

By equations (3.11) and (4.7) the condition (4.11) is equivalent to

δp2(t) < φ(t) in (0, tf )

where

φ(t) = −h0(t) = −ϕ(t)L′(M̂(t)p̃1(t) > 0 in [0, tf ) (4.13)

with φ(tf ) ≥ 0 and by (3.14) equivalent to the integral inequality

ψ(t) ≡ φ(t)− δ

tf∫
t

eδ(t−s)φ(s)ds > 0 in (0, tf ). (4.14)

If (4.14) holds the optimal solution is given by (4.12). In particular, this is
fulfilled for all positive functions ϕ in the limit case δ = 0 suggesting that
(4.14) is not a too strong condition on ϕ for sufficiently small δ > 0.

This can be underlined in the simple case of Gompertz growth (cf. [7, 10,
17, 23 - 25]) where

f(T ) = λ`n
θ

T
, T > 0, (λ > 0, θ > 0)

and a linear loss function

L(M) = kM,M ≥ 0, (k > 0).

In this case we find that

g(t) = −f ′(eŷ(t))eŷ(t) = λ, h0(t) = kϕ(t)p̃1(0)eλt, t ∈ [0, tf ],

and (4.14) turns out to be equivalent with
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ϕ(t)e(λ−δ)t − δ

tf∫
t

ϕ(s)e(λ−δ)sds > 0 for all t ∈ (0, tf ). (4.15)

If we put
ϕ(t) = e−(λ−δ)t, t ∈ [0, tf ],

and assume that λ > δ, then it follows that ϕ ∈ C1[0, tf ],

ϕ(0) = 1, ϕ̇(t) < 0 and ϕ(t) > 0 for all t ∈ [0, tf ].

Further (4.15) turns out to be equivalent to

(1− δ(tf − t) > 0 for all t ∈ (0, tf ))⇐⇒ δt1 < 0.

This shows that (4.15) can be satisfied for sufficiently small δ > 0 and a
suitable choice of ϕ.

The inequality (4.14) is fulfilled if we have

φ̇(t) < 0 in (0, tf ), (4.15)

since integration by parts of the integral in (4.14) yields

ψ(t) = eδt[e−δtfφ(tf )−

tf∫
t

e−δsφ̇(s)ds] > 0 in (0, tf )

due to φ(tf ) ≥ 0 and (4.15). Differentiating (4.13) and using ˙̃p1 = gp̃1 we
further have

φ̇(t) = −p̃1(t)L′(M̂(t))[ϕ̇(t) + {g(t) +m(t)}ϕ(t)]

where

m(t) =
1

L′(M̂(u)
d

dt
[L′(M̂(t))] =

L′′(M̂(u) ˙̂
M(t)

L′(M̂(t))
. (4.16)

Therefore, in view of p̃1(t) < 0 in [0, tf ] and L′(M) > 0, condition (4.15) is
equivalent to the differential inequality
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ϕ̇(t) + [g(t) +m(t)]ϕ(t) < 0 in (0, tf ) (4.17)

where m = m(t) is given by (4.16) and g = g(T̂ ) by (3.17), i.e.

g(t) = −f ′(T̂ (t))T̂ (t) < 0, t ∈ [0, tf ]. (4.18)

Condition (4.17) has the same form as condition (3.22) and is like this in
general an implicit condition on ϕ.

Summing up, by Lemma 4.2 and (4.14) - (4.18) we obtain

THEOREM 4.3

(i) Under the conditions B < tfA and (4.14) the optimal solution of prob-
lem 2 is uniquely determined and has the form (4.12).

ii) Asumption (4.14) is satisfied if the condition (4.17) with (4.18) and
(4.16) holds true.

REMARKS. For a linear loss function L we have m(t) = 0 in [0, tf ] and the
condition (4.17) reduces to (3.22). As for problem 1 we say in case of (4.14)
for a resistance factor ϕ that there is a strong resistance of the tumor cells
against the drug.

We conclude the paper working out the simple case of Gompertz growth (cf.
[7, 10, 17, 23 - 25])

f(T ) = λ`n
θ

T
(λ > 0, θ > 0) (4.19)

with a linear loss function L(M) = kM (k > 0) as an example for what can
happen for general resistance.

In this case we have for y = `nT the explicit expression

y(t) = `nT0 · e−λt + λ`nθ[1− e−λt]

− k
t∫
0

e−λ(t−s)ϕ(s)M(s)ds



352 Werner Krabs, Lothar von Wolfersdorf

and the minimum condition for y(tf ) leads to the maximum condition

tf∫
0

eλsϕ(s)M(s)ds −→ max

which can be written in the form

tf∫
0

p(t)V (t)dt −→ max (4.20)

where

p(t) = eδt

tf∫
0

e(λ−δ)sϕ(s)ds. (4.21)

The maximum problem (4.20) where V ∈ L∞(0, tf ) satisfies the restrictions
(2.5) and (2.7) is a linear problem of the form of the Neyman-Pearson lemma
and can be solved in explicit form. Let be B < tfA. For (4.19) the condition
(4.17) is equivalent to the inequality

d

dt
[eλtϕ(t)] < 0 in (0, tf ).

If this is fulfilled the problem has the solution (4.12). We consider further
the opposite case that

d

dt
[eλtϕ(t)] > 0 in (0, tf ) (4.22)

incorporating the limit case of non-resistance that ϕ(t) ≡ 1 on [0, tf ]. For
δ > 0 the function (4.21) has the derivative

ṗ(t) = eδt[F (t)− C], t ∈ [0, tf ]

where

C = e(λ−δ)tfϕ(tf ), F (t) =

tf∫
t

e−δs
d

ds
[eλsϕ(s)]ds.
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Under the assumption (4.22) the function F is strictly decreasing in [0, tf ]
from the value

F (0) =

tf∫
0

e−δs
d

ds
[eλsϕ(s)]ds > 0

to F (tf ) = 0. Hence we have two cases (i) F (0) ≤ C where ṗ(t) < 0 in (0, tf )
so that p(t) is strictly decreasing in [0, tf ] and (ii) F (0) > C where there
exists a unique t0 ∈ (0, tf ) such that p(t) is strictly increasing in [0, t0] and
strictly decreasing in [t0, tf ] till p(tf ) = 0. In case (i) the optimal solution is
given by (4.12). In case (ii) the optimal solution has the form

V̂ (t) =
{

0 a.e. in [0, t1) and (t2, tf ]
A a.e. in (t1, t2)

(4.23)

where t1, t2 with 0 < t1 < t0 < t2 < tf are uniquely determined by the
equations

A(t2 − t1) = B, p(t1) = p(t2).

In the particular case ϕ(t) = 1 on [0, tf ] we have

p(t) =


(e(λ−δ)tf − e(λ−δ)t)eδt if λ > δ
(tf − t)eδt if λ = δ

(e(λ−δ)t − e(λ−δ)tf )eδt if λ < δ

and

C = e(λ−δ)tf , F (0) =
{

λ
λ−δ [e(λ−δ)tf − 1] if λ 6= δ

λtf if λ = δ.

Therefore, case (i) occurs if λtf ≤ 1 for λ = δ, δe(λ−δ)tf ≤ λ for λ > δ, and
λe(δ−λ)tf ≤ δ for λ < δ, and case (ii) under the opposite inequalities.

We remark hat the optimal solution (4.23) in case (ii) starts and ends with
an interval of zero-therapy.
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