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1 Introduction

The intention of this paper is to survey some extensions (the P function
method) and applications of the classical maximum principle for elliptic op-
erators.

The maximum principle is one of the most useful and best known tools
employed in the study of partial differential equations. The maximum prin-
ciple enables us to obtain information about the uniqueness, approximation,
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boundedness and symmetry of the solution, the bounds for the first eigen-
value, for quantities of physical interest (maximum stress, the torsional stiff-
ness, electrostatic capacity, charge density etc), the necessary conditions of
solvability for some boundary value problems, etc.

The first chapter specializes the maximum principle for partial differential
equations to the one variable case. We present the one dimensional classical
maximum principle and a new extension.
In chapter two, we present the classical maximum principle of Hopf for elliptic
operators and some possible extensions (the P function method (in honour
of L. Payne, see [43]) and give a number of applications.

The maximum principle occurs in so many places and in such varied
forms that is impossible to treat all topics. We treat here only the classical
maximum principle and one of its extensions, namely the P function method
for the elliptic case.

2 The one dimensional case

The one dimensional maximum principle represents a generalization of the
following simple result: Let the smooth function u satisfy the inequality u′′ ≥
0 in Ω = (α, β). Then the maximum of u in Ω occurs on ∂Ω = {α, β} (on
the boundary of Ω), i.e.,

max
Ω

u = max{u(α), u(β)}.

Theorem 1. (one dimensional weak maximum principle) Let u ∈ C2(Ω) ∩
C0(Ω) be a nonconstant function satisfying Lu ≡ u′′ + b(x)u′ ≥ 0 in Ω, with
b bounded in closed subintervals of Ω. Then,

max
Ω

u = max
∂Ω

u.

Drawing the graph of a function u satisfying u′′ ≥ 0 (u′′ 6= 0) reveals us
the interesting fact that at a point on ∂Ω (where u attains its maximum),
the slope of u is nonzero. More precisely, du/dn > 0 at such a point. Here
d/dn denotes the outward derivative on ∂Ω, i.e.,

du

dn
(α) = −u′(α),

du

dn
(β) = u′(β).
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The next theorem is an extension of this result:

Theorem 2. (one dimensional strong maximum principle) Let u ∈ C2(Ω)∩
C0(Ω) be a nonconstant function satisfying Lu ≡ u′′+b(x)u′+c(x)u ≥ 0 in Ω,
with b and c bounded in closed subintervals of Ω and c ≤ 0 in Ω. Then a
nonnegative maximum can occur only on ∂Ω, and du/dn > 0 there. If c ≡ 0
in Ω then, u takes its maximum on ∂Ω and du/dn > 0 there.

The following simple counterexample shows that we have to impose some
restrictions to c: The function u(x) = e−x sinx satisfies

Lu ≡ u′′ + 2u′ + 3u ≥ 0 in Ω = (0, π).

We see that the nonnegative u vanishes on ∂Ω and hence there can be no
maximum principle. A result can still be proven if c ≥ 0. The result is a
version of Theorem 5 on page 9 in [65].

Theorem 3. (one dimensional generalized maximum principle) Let u ∈
C2(Ω)∩C0(Ω) be a nonconstant function satisfying Lu ≡ u′′+c(x)u ≥ 0 in Ω.
Suppose that

sup
Ω
c <

π2

(diam Ω)2
. (1)

Then, the function u/wε cannot attain a nonnegative maximum in Ω unless
it is a constant. diam Ω represents the diameter of Ω and

wε = cos
π(2x− diam Ω)
2(diam Ω + ε)

cosh(εx),

where ε > 0 is small.

The proof follows from Theorem 5, page 9 in [65] and Lemma 2.1. [11].
Although our result is stated only for a particular operator L (b ≡ 0), is it
more precise than the result stated for general operators Lu ≡ u′′+ b(x)u′+
c(x)u (see Theorem 5, page 9 in [65]). The authors do not indicate when a
maximum principle is valid. They state that a maximum principle is valid
for " any sufficiently short interval Ω ".

The proofs of these theorems as well as their applications (uniqueness
of the solution of the boundary value problem, approximation in boundary
value problems, the classical Sturm- Liouville theory, existence for nonlinear
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equations via monotone methods) can be found in the excellent book of
Protter and Weinberger [65].

Certain solutions of equations of higher order exhibit a maximum princi-
ple:

Theorem 4. Let 1 ≤ k ≤ n − 1, n ≥ 2 and u ∈ Cn(Ω) be a nonconstant
function satisfying Lu ≡ un ≥ 0 in Ω. Suppose that

(−1)n−ku(i)(α) ≥ 0, i = 1, . . . , k − 1 (if such i exist),

(−1)n−k+ju(j)(β) ≥ 0, j = 1, . . . , n− k − 1 (if such j exist).

Then, in the case n − k even u attains its minimum value and in case
n− k odd u attains its maximum either at α or β.

The nontrivial proof is given in [76]. For n=4, k=2, Theorem 4 generalizes
the maximum principle in [6]: Let u satisfy the inequality u(4) ≤ 0 in Ω. If
u′(α) ≤ 0, u′(β) ≥ 0, then u attains its maximum at α or β.
A maximum principle for general fourth order operators appears in [41].

3 The n dimensional case

In this section, we treat the n dimensional variants of results presented in
section 1, some possible extensions for nonlinear equations and for equations
of higher order as well as their applications.

We consider the linear operator (summation convention is assumed, i.e.,
summation from 1 to n is understood on repeated indices)

Lu = aij(x)uij + bi(x)ui + c(x)u, aij(x) = aji(x),

where x = (x1, ..., xn) ∈ Ω, Ω is a bounded domain (unless otherwise stated)
of IRn, n ≥ 1 and ui = ∂u

∂xi
, uij = ∂2u

∂xi∂xj
.

The operator L is called elliptic at a point x ∈ Ω if the matrix [aij(x)] is pos-
itive, i.e., if λ(x) and Λ(x) denote respectively the minimum and maximum
eigenvalues of [aij(x)], then

0 < λ(x)|ξ|2 ≤ aij(x)ξiξj ≤ Λ(x)|ξ|2,

for all ξ = (ξ1, ..., ξn) ∈ IRn − {0}. If λ ≥ 0, then L is called elliptic in Ω. If
Λ/λ is bounded in Ω, we shall call L uniformly elliptic in Ω.
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Theorem 5. (weak maximum principle) ([25]). Let L be elliptic in Ω. Sup-
pose that |bi|/λ < +∞ in Ω, i = 1, ..., n. If Lu ≥ 0 in Ω, c = 0 in Ω and
u ∈ C2(Ω)∩C0(Ω), then the maximum of u in Ω is achieved on ∂Ω, that is:

max
Ω

u = max
∂Ω

u. (2)

Remarks: 1). Theorem 5 holds under the weaker hypothesis: the ma-
trix [aij ] is nonnegative and the ratio |bk|/akk is locally bounded for some
k ∈ {1, ..., n}.

2). The maximum principle for subharmonic functions goes back to Gauss
(1838) ([17]). The first proof of a maximum principle for operators more gen-
eral than the Laplace operator was proved in two dimensions by Paraf in 1892
([42]).

Theorem 6. (the strong maximum principle of E. Hopf) ([30]). Let L be
uniformly elliptic, c = 0 and Lu ≥ 0 in Ω (not necessarily bounded), where
u ∈ C2(Ω). Then, if u attains its maximum in the interior of Ω, then u is
constant. If c ≤ 0 and c/λ is bounded then u cannot attain a nonnegative
maximum in the interior of Ω, unless u is constant.

The proof is a consequence of the following useful result known as Hopf’s
lemma [30]:

Lemma 1. Suppose that L is uniformly elliptic in Ω, c = 0 in Ω and Lu ≥ 0
in Ω. Let x0 ∈ ∂Ω be such that
i) u is continuous at x0,
ii) u(x0) > u(x) for all x ∈ Ω,
iii) ∂Ω satisfies an interior sphere condition at x0 (i.e., there exists a ball
B ⊂ Ω with x0 ∈ ∂B).
Then the outer normal derivative of u at x0, if it exists, satisfies the strict
inequality

∂u

∂n
(x0) > 0. (3)

If c ≤ 0 and c/λ is bounded in Ω, then the same conclusion holds provided
u(x0) ≥ 0, and if u(x0) = 0 then, the same conclusion holds irrespective of
the sign of c.

We now restrict ourselves to the case bi ≡ 0 and prove Danet, [11]:
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Theorem 7. (generalized maximum principle) Let u ∈ C2(Ω)∩C0(Ω) satisfy
the inequality Lu ≡ ∆u+ c(x)u ≥ 0, where c ≥ 0 in Ω. Suppose that

sup
Ω
c < C1 =

4n+ 4
(diam Ω)2

. (4)

Then, the function u/w1 cannot attain a nonnegative maximum in Ω,
unless it is a constant.

Similarly, if Ω lies in a slab of width d and

sup
Ω
c < C2 =

π2

d2
, (5)

we obtain a similar result for u/w2. Here

w1(x) = 1− (sup
Ω
c/2n)(x2

1 + · · ·+ x2
n)

and

w2 = cos
π(2xi − d)
2(d+ ε)

n∏
j=1

cosh(εxj),

for some i ∈ {1, . . . , n}, where ε > 0 is small.

Comments
1. A broad class of domains satisfy Ω ⊂ BdiamΩ/2. For these domains C1

may be replaced by C3 = 8n/(diamΩ)2.
2. We may improve the constant C3 (i.e., choose a larger constant) if

Ω = {x ∈ IRn | 0 < R <| x |< R + ε}, where ε > 0 is sufficiently small. A
maximum principle holds if

sup
Ω
c < C4 =

2(n− 1)
(ε+ δ)diamΩ

. (6)

For sufficiently small ε we have C4 > C3.
3. A similar result was given in [65], Theorem 10, p.73. for general

operators. The authors proved that if

sup
Ω
γ <

4
d2e2

, (7)

then a similar maximum principle is valid. Here Lu ≡ ∆u+ c(x)u, c ≥ 0 in
Ω and Ω is supposed to lie in a strip of width d. Of course, Theorem 7 (valid
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only for the case bi ≡ 0, c > 0) is sharper that their result, but does not hold
for general operators.

4. We have to impose some restrictions to c. Otherwise, as the following
example shows, the maximum principle (Theorem 7) is false. The function
u(x, y) = sinx sin y satisfies u = 0 on ∂Ω and is solution of the equation
∆u+ 2u = 0 in Ω = (0, π)× (0, π). Of course, (4) does not hold.

The maximum principles that we have presented above are valid only for
the class C2(Ω)∩C0(Ω), i.e., the results are valid for classical solutions. We
may consider operators L of the divergence form

Lu ≡ (aij(x)ju+ bi(x)u)i + ci(x)ui + d(x)u,

whose coefficients aij , bi, ci, d, i, j = 1, 2, ..., n are assumed to be measur-
able functions on a domain Ω ⊂ IRn.

The divergence form has the advantage that the operator L may be de-
fined for a significant broader class of functions than the class C2(Ω).

Assume that u is weakly differentiable and that aijDju + biu and that
ciDiu + du, i = 1, 2, ..., n are locally integrable. Then u satisfies in a weak
sense Lu = 0 (≥ 0, ≤ 0) in Ω if :

L(u, ϕ) =
∫

Ω

[
(aijuj + biu)ϕi − (ciui + du)ϕ

]
dx = 0 (≤ 0, ≥ 0),

for all non-negative ϕ ≥∈ C1
0 (Ω).

We shall assume that L is strictly elliptic in Ω and that L has bounded
coefficients, i.e. there exists some constants Λ and ν ≥ 0 such that:∑

i,j

|aij |2 ≤ Λ, λ−2
∑
i

(
|bi|2 + |ci|2

)
+ λ−1|d| ≤ ν2. (8)

is valid in Ω.
We state now the weak maximum principle for weak solutions.

Theorem 8. ([4], [25]) Let u ∈W 1,2(Ω) ∩ C0(Ω) satisfy Lu ≥ 0 in Ω. If∫
Ω

(dϕ− biϕi)dx ≤ 0, ∀ ϕ ≥ 0, ϕ ∈ C1
0 (Ω) (9)
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then,
sup

Ω
u ≤ sup

∂Ω
u+.

Here u+ = max{u, 0}.

Extensions and application of this result are presented in the book of
Gilbarg and Trudinger [25].

We now deal with a possible extension of the maximum principle, namely
the P function method. The method consists in determining a function
P = P(x, u,∇u, . . . ), satisfying a maximum principle, i.e.,

max
Ω

P = max
∂Ω

P,

where u is a solution of the studied equation (boundary value problem). This
powerful method has many applications of interest and represents the core
of the paper.

I. The second order case
1. The St.-Venant problem. (the torsion problem)
First, we examine one of the simplest cases, the problem of the torsional

rigidity of a beam {
∆u = −2 in Ω
u = 0 on ∂Ω.

(10)

Theorem 9. The function P1 = |∇u|2 + 4u takes its maximum value either
at a critical point of u or at some point on the boundary, unless P1 is a
constant. If Ω is convex and smooth (∂Ω ∈ C2+ε), then P1 cannot take its
maximum value on ∂Ω. Moreover, if Ω degenerates to an infinite strip, then
P1 ≡ const. Similarly the function P2 = |∇u|2 attains its maximum on ∂Ω.

The proof is due to L.E.Payne, [43] and follows from the differential
inequality

∆P1 +
1
|∇u|2

{4∇P1 · ∇u+
1
2
|∇P1|2} ≥ 0 in Ω,

and the maximum principle.
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Theorem 10. ([83])
The function P3 = |∇u|2 + (4/n)u takes its maximum value at some

point on the boundary, unless P3 is a constant. Moreover, P3 is identically
constant in Ω if and only if Ω is a n dimensional ball.

Remarks. 1. The simplest P function is P = u (the classical maximum
principle).
2. There are no general methods to determine P functions. Sometimes we
can check the one dimensional case in order to get an idea of what types of P
functions we have to look in the n dimensional case. For example considering
the one dimensional equation

u′′ + 2 = 0 inΩ = (0, α)

and multiplying it by u′ and then integrating it we get that

P = (u′)2 + 4u ≡ const. inΩ.

This function is the one dimensional version of P1.
Applications
a). Upper bound for the stress function u, if Ω is convex.
Let M be the unique critical point of u and Q a point on ∂Ω, nearest to

P. Let r measure the distance from M along the ray connecting M and Q.
Hence

−du
dr
≤ |∇u| in Ω. (11)

From Theorem 9 we have |∇u|2 ≤ 4(uM − u(x)) in Ω, where uM = supΩ u.
Using (11) we get ∫ uM

0

du

2
√
uM − u

≤
∫ M

Q
dr = |MQ|.

Hence √
uM ≤ |MQ| ≤ ρ,

where ρ is the radius of the largest ball contained in Ω.
Note that the following bound was also obtained using similar methods

([15])

uM ≤
α

β

[
1

cos(ρ
√
β)
− 1
]
,
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where α ≥ 1 +
√

2 and 0 < β < π2/4ρ2.
A lower bound for uM was given in [54] (in the case Ω convex and bidi-

mensional). Further isoperimetric inequalities as well as bounds in terms of
the stress function for the curvature of the level curves u=const are presented
in [54].

b). Upper bound for the maximum stress.
An important quantity is the maximum stress σ = max∂Ω |∇u|. Since P2

and P3 attain their maximum value on the boundary of Ω and using standard
calculations (see [78]) we get,

|∇u|2 ≤ σ ≤ 2
nK(P )

≤ 2
nKmin

, (12)

where Kmin = min∂ΩK, K represents the average curvature of ∂Ω (the
curvature if n = 2) and P is a point on the boundary where P2 assumes its
maximum.

c). Upper bound for the average curvature of ∂Ω.
Integrating (12) over Ω we obtain

K(P ) ≤ |∂Ω|
n|Ω|

, (13)

where P is defined above, |∂Ω| stands for the n−1 dimensional measure and
|Ω| stands for the n dimensional measure.

Equation (13) tells us that at a point of maximum stress, the boundary
must be sufficiently flat.

d). Upper bound for the torsional rigidity.
The torsional rigidity of Ω is T = 2

∫
Ω udx =

∫
Ω |∇u|

2dx. We have the
following bound:

T ≤ 4
3
|Ω|uM ≤

4
3
|Ω|ρ2.

e). An overdetermined St. - Venant problem.
We consider the problem (10) overdedermined by the boundary condition

K|∇u|3 = const. > 0 on ∂Ω, (14)

where Ω is a simply connected domain in IR2 and K the curvature of ∂Ω.
Makar-Limanov ([34]) introduced the function

P4 = uijuiuj − |∇u|2∆u+ u((∆u)2 − uijuij),
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(u is a solution of St. - Venant problem (10)) and showed that it satisfies
a maximum principle. A consequence is the convexity of level lines {u =
const.}. Moreover, we have P = K|∇u|3 ≥ 0 on ∂Ω. and P4 is constant in Ω
if and only if Ω is an ellipse. The next theorem (Henrot and Philippin, [32])
tells us that ellipses are the only domains for which condition (14) holds.

Theorem 11. The over determined problem (10), (14) is solvable only if Ω
is an ellipse.

The proof follows from the implication:

P4 = const. on ∂Ω⇒ P4 = const. inΩ.

Standard methods of investigation for overdetermined problems may not
work (Serrin’s moving plane method). In this case, we can take advantage
of the P function method.

2. The membrane problem.
We are concerned now with eigenvalues of elastically supported membrane

problem: {
∆u+ λu = 0 in Ω ⊂ IR2

∂u/∂n+ αu = 0 on ∂Ω,
(15)

where ∂/∂n is the outward normal derivative operator, α is a positive con-
stant and is Ω simply connected, smooth and convex .

If α is large, Payne and Schaefer [53] derived a lower bound for the first
eigenvalue λ1

λ1 > ρ−2(tan−1(α/
√

Λ1))2, (16)

using that the P function P5 = |∇u1|2 + λ1u
2
1 takes its maximum either

on ∂Ω or at an interior point at which ∇u = 0. Here u1 represents the first
eigenfunction and ρ the radius of the largest inscribed disc. We see that the
bound (16) involves Λ1, the first eigenvalue for the problem,{

∆v + Λv = 0 in Ω
v = 0 on ∂Ω.

(17)

If necessary, we can use upper bounds for Λ1. A known bound for convex
regions was given by Hersch [28]
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Λ1 ≥
π2

4ρ2
. (18)

On the other hand if α is small we have

λ1 > ρ−2(tan−1(αA/L)1/2)2, (19)

where L is the perimeter of Ω and A its area.
Bounds for eigenvalue of (15) have been previously obtained by Sperb

[77], [78], [79], Payne and Weinberger [55].
Bounds for the first positive eigenvalue in the free membrane problem{

∆u+ µu = 0 in Ω ⊂ IR2

∂u
∂n = 0 on ∂Ω,

are discussed in the book of Sperb [78].
3). A classical problem of electrostatics.
We consider the exterior Dirichlet problem

∆u = 0 in Ω∗ ≡ IR3 − Ω
u = 1 on ∂Ω
u = O(1

r ) as r →∞.
(20)

u is the electrostatic potential of the conductor and r measures the distance
from some origin inside Ω.

The following useful result was proven by Payne and Philippin [49].

Theorem 12. Let H and h be harmonic functions in Ω, where H ∈ C1(Ω),
h ∈ C0(Ω) and let f(h) be a positive C2 function. Assume that f satisfies

[fn−2/2(n−1)]′′ ≤ 0, if n ≥ 3,

[log f ]′′ ≤ 0, if n = 2.

Then the function

P6 =
∇H · ∇H
f(h)

,

assumes its maximum on ∂Ω.
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Theorem 12 tells that the function

P6 =
∇u · ∇u
u4

, x ∈ Ω∗

satisfies

P6 ≤ max
∂Ω

P6, (21)

with equality if Ω is a sphere. Moreover

C−2 ≤ max
∂Ω

P6, (22)

with equality if Ω is a sphere where, C is the capacity C =
∫

Ω∗ |∇u|
2dx.

At the point P0 ∈ ∂Ω, where P6 assumes its maximum it follows from
Hopf’s lemma (lemma 1) that either Ω is a sphere or

∂P6

∂n
= 2

∂u

∂n

∂2u

∂n2
− 4
(∂u
∂n

)2
> 0.

For a smooth hypersurface S in IRn we have on S the relation (see [78],
p.62)

∆u = ∆su+ (n− 1)K
∂u

∂n
+
∂2u

∂n2
, (23)

where ∆su is the Laplacian in the induced metric of S and K the mean
curvature (the curvature if n = 2).

From (23) we obtain on ∂Ω

∂2u

∂n2
= 2K

∂u

∂n
.

Now it follows that

∂u(P0)
∂n

< K(P0).

Since P6 and ∂u
∂n take their maximum at the same point on the boundary

it follows that either Ω is a sphere or

max
∂Ω

∂u

∂n
< K(P0) < max

∂Ω
K ≡ K0. (24)



286 Cristian-Paul Danet

A bound for the capacity C follows now from (22) and (24)

C ≥ K−1
0 , (25)

where the equality sign holds if Ω is a sphere.
An upper bound for the capacity is also given in [49]:

C ≤ 3|Ω|K2
0

4π
, (26)

where the equality sign holds if Ω is a sphere (|Ω| = vol(Ω)).
Bounds for the derivatives of Green’s function are also a consequence of

Theorem 12. See for details [49].
4). Estimates for capillary free surfaces without gravity.
In the paper [36], Ma studied (using the P function method) the influence

of boundary geometry and constant contact angle θ0, 0 ≤ θ0 < π/2 (against
the wall of the tube) on the size and shape for the capillary free surface
without gravity.

Let Ω be a bounded, smooth and convex domain in IR2 and let K =
cos θ0|∂Ω|/2|Ω| be a given constant.

Consider the problem:{ (
ui√

1+|∇u|2

)
i

= 2K in Ω

∂u/∂n = cos θ0

√
1 + |∇u|2 on ∂Ω,

(27)

where ∂u/∂n denoted the directional derivative of u along the outer unit
normal.

The graph of solution u of (27) describes a capillary free surface (having
the nonparametric form x3 = u(x1, x2), (x1, x2) ∈ Ω) without gravity over
the cross section Ω. We have the following result (Xi- Nan Ma)

Theorem 13. If u ∈ C3(Ω) is a solution of (27), then

u(A)− u(C) ≤ 1− sin θ0

K
, k(A) ≤ K

cos θ0
(28)

u(B)− u(C) ≥ 1− sin θ0

K
, k(B) ≥ K

cos θ0
. (29)

If the equality sign holds in (28) and (29), then Ω is a disk of radius
cos θ0/K.
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Here A ∈ ∂Ω is a point that corresponds to the minimum boundary value
of u, B ∈ ∂Ω is a point that corresponds to the maximum boundary value of
u and C ∈ Ω is the unique critical point of u.

If S =
∫

Ω

√
1 = |∇u|2dx is the area of the free capillary surface and

V =
∫

Ω udx the volume of the liquid in the vertical tube, then we have the
bound:

Theorem 14.

(sin θ0 + 3Ku(A))|Ω| − 3KV ≤ S ≤ (sin θ0 + 3Ku(B))|Ω| − 3KV.

Here and in the above mentioned result A ∈ ∂Ω is a point where u
assumes its minimum on ∂Ω, B ∈ ∂Ω is a point where u assumes its maximum
on ∂Ω, C is the unique critical point of u and K is the curvature of ∂Ω.

The proofs follow from

Theorem 15. If u ∈ C3(Ω) is a solution of (27), then the function

P7 = 2− 2Ku− 2(1 + |∇u|2)−
1
2

attains its minimum on the boundary of Ω.

Similar problems are treated in the paper of Payne and Philippin [46],
e.g. equation of a surface of constant mean curvature, equation of the fluid
in a capillary tube, equation of thin extensible film under the influence of
gravity and surface tension. The authors obtain various bounds in terms of
boundary data and geometry of Ω.

5). Equations of Monge - Ampère type.
We consider a class of Monge - Ampère equations

detD2u = f(x, u,∇u) (30)

with a prescribed contact angle boundary value on a bounded convex
domain in two dimensions.

∂u/∂n = cos θ(x, u)
√

1 + |∇u|2 on ∂Ω,

where D2u is the hessian matrix and θ(x, u) ∈ (0, π/2) is the wetting angle.
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The existence of solutions for such boundary value problems is still open.
Even the particular case is untreated in the literature.{

detD2u = c in Ω ⊂ IR2

∂u/∂n = cos θ0

√
1 + |∇u|2 on ∂Ω,

(31)

where Ω is convex, c > 0 is a constant and θ0 ∈ (0, π/2) .

Ma Xi-nan [35] gave a necessary condition of solvability for the problem
(31).

Theorem 16. Let u ∈ C2(Ω)∩C3(Ω) be a strictly convex solution of problem
(31). Under the above stated hypotheses on Ω, c, θ0 we must have the relation

K0 ≤ max{
√
c · cos θ0,

√
c · tan θ0},

where
K0 = min

∂Ω
K > 0

and K is curvature of ∂Ω.

The proof is achieved by using the P function P8 = |∇u|2− 2
√
cu (which

satisfies a maximum principle) and introducing a curvilinear coordinate sys-
tem.

Bounds for solutions and gradient of general Monge - Ampère equations
(30) are presented in the work of Philippin and Safoui [58].

II. The higher order case
Miranda [39] was the first that showed that for the biharmonic equation

∆2u = 0, where u ∈ C4(Ω)∩C2(Ω) is a function defined on a bounded plane
domain the function P9 = |∇u|2 − u∆u takes its maximum value on the
boundary of the domain, i.e.,

max
Ω

P9 = max
∂Ω

P9.

Since then many authors have extended the Miranda’s result. For exam-
ple, maximum principles for fourth order equations containing nonlinearities
in u or ∆u can be found in works of Payne [44], Schaefer [67], [70],[71]. Sim-
ilar results are proved by H. Zhang and W. Zhang [84], Mareno [37], [38]
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(studied some equations from plate theory), Danet [8], Tseng and Lin [80],
[10], [11] etc. (see the references). We will list only a few as an indication of
the types of results that can be obtained.

1). Equations of fourth order arising in plate theory.
a). Von Kármán equations.
Assume that Ω is a bounded domain in the plane. We consider the von

Kármán equations: {
∆2φ = −1

2 [w,w] in Ω
∆2w = [w, φ] + f(x, y) in Ω.

(32)

The equations (32) govern the equilibrium configuration of a thin elas-
tic plate under stress. f(x, y) represents nonconstant perpendicular loading
terms. The function w denotes the deflection of the thin plate and φ repre-
sents the stress function. The operator [·, ·] is defined as follows:

[w, φ] = wxxφyy − 2wxyφxy + wyyφxx.

Mareno [38] proved (the first that proved a maximum principle for such
equations) that the P function

P10 = |∇2φ|2 + |∇2w|2 − φi∆φi −wi∆wi + h(x, y)[|∇w|2 + |∇φ|2] + f2(x, y)

satisfies a maximum principle and as a consequence obtained the following
bound:

2
|Ω|

∫
Ω

(
|∇2φ(x, y)|2 + |∇2w(x, y)|2

)
dxdy ≤ |∇2φ(x0, y0)|2 + |∇2w(x0, y0)|2

+f2(x0, y0),

for some point (x0, y0) on ∂Ω, if φ = w = ∂φ/∂n = ∂w/∂n = 0 on ∂Ω. Here
|∇2w| = wijwij , and h(x, y) is a smooth function.

b). An equation arising in plate theory.
We deal with the following equation

∆2u+ k1u+ k2u
3 = 0 in Ω ⊂ IRn, n ≥ 2, (33)

where k1, k2 > 0 are constants.
The equation (33) arises in the plate theory and in the bending of cylindrical
shells [67].
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The next maximum principle ([10]) will be used to obtain solution and
gradient bounds for the equation (33)

Theorem 17. Let u be a classical solution of (33). Then the function

P11 = (∆u)2 +
k2

2
u4 + k1u

2

attains its maximum value on ∂Ω.

If u satisfies (33) then, we have the following bounds
a).

max
Ω
|u| ≤

√
1
k1

(
max
∂Ω
|∆u|+

√
k2

2
max
∂Ω

u2 +
√
k1 max

∂Ω
|u|
)
, (34)

where n ≥ 2.
b).

max
Ω
|∇u|2 ≤ max

∂Ω
|∇u|2 +

3 + k1

2
max
∂Ω

u2 +
k2

2k1
max
∂Ω

u4 +
2k1 + 1

2k1
max
∂Ω

(∆u)2,

(35)
where n = 2.

The hypothesis that is assumed over and over again in plate theory is
convexity. Under this assumption, Schaefer [67] proved the uniqueness for
the solution of {

∆2u+ k1u+ k2u
3 = 0 in Ω

u = ∆u = 0 on ∂Ω,
(36)

where Ω ⊂ IR2 is a convex domain.
An application the maximum principle (Theorem 17) shows that the con-

vexity assumption is redundant. Moreover, our result holds for n ≥ 2.
The result reads as follows:

Theorem 18. Let u be a classical solution of (36), where Ω ⊂ IRn is an
arbitrary domain. Then u ≡ 0 in Ω.

Maximum principles for fourth and six order equations are presented in
the author’s paper [10] and [11].
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2). The m (> 4) order case.
We conclude this paper with a result for the general case due to the

author [11].

Theorem 19. Let u be a classical solution of equation

∆mu+ a0u = 0

in Ω, where Ω ⊂ IRn,m even, n ≥ 2.
Suppose that a0 > 0, ∆a0 ≤ 0 in Ω.
We define the function P10

P12 =
(

(∆m−1u)2 + (∆m−2u)2 + · · ·+ u2
)
/a0.

a). If

max{1 + sup
Ω
a0, 2}+ sup

Ω

∆a0

a0
≤ 0, (37)

then, the function P12 attains its maximum value on ∂Ω.
b). If

max{1 + sup
Ω
a0, 2}+ sup

Ω

∆a0

a0
<

4
d2e2

(38)

and if there exists i ∈ {1, . . . , n} such that ∂
∂xi

(
1
a0

)
≥ 0 in Ω, then, the

function P12/w3 attains its maximum value on ∂Ω, where w3 = 1−βeαxi , β =
supΩ c/α

2 and α > 0 is a constant.

The proof follows from the generalized maximum principle, Theorem 7
and works also for the case m odd.

As an immediate consequence of the above mentioned maximum principle
we obtain the uniqueness of the classical solution (C2m(Ω)∩C2m−2(Ω),m ≥
3) of the boundary value problem{

∆mu+ (−1)ma0(x)u = f in Ω
u = g1, ∆u = g2, . . . , ∆m−1u = gm on ∂Ω.

(39)

Moreover the following classical maximum principle holds for solutions of
(39), if g2 = · · · = gm = 0 on ∂Ω and f = 0 in Ω.

max
Ω
|u| ≤ C max

∂Ω
|u|, (40)
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where C > 1 is a constant.
Note that the problem was solved for a more general problem, but under

the restriction Ω is of class C2 (see [73]).

Final remark. Below we collected many papers concerning the P func-
tion method for the interested reader (not all are quoted in this paper).
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