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Abstract
A particular Lotka-Volterra system with two parameters describing

the dynamics of two competing species is analyzed from the algebraic
viewpoint. This study involves the invariants and the comitants of the
system determinated by the application of the affine transformations
group. First, the conditions for the existence of four (different or equal)
finite singularities for the general system are proofed, then is studied
the particular case.
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1 Introduction

In this paper we study a particular family of planar vector fields with two
parameters modeling the dynamics of two competing populations.
∗Accepted for publication on January 10, 2011.
†gemiral@yahoo.com Department of Mathematics, University of Pitesti
‡Department of Mathematics and Informatics, Technical University of Civil Engineer-

ing, Bucharest

135

Annals of the Academy of Romanian Scientists
Series on Mathematics and its Applications

ISSN 2066 - 6594 Volume 3, Number 1 / 2011

In Memoriam Adelina Georgescu



136 Raluca Mihaela Georgescu, Simona Cristina Nartea

We consider the general form of a Lotka -Volterra system as [4], [8]{
ẋ = x(c+ gx+ hy),
ẏ = y(f +mx+ ny),

(1)

where x, y represent the number of the populations of the two species, c, f
represent the growth rates of the species, and g, h,m, n represent the com-
petitive impacts of one specie to another. The equilibrium points of (1) are:
M1(0, 0), M2(−c/g, 0), M3(0,−f/n) and M4((fh − cn)/(gn − hm), (cm −
fg)/(gn− hm)). All these points are in the finite part of the phase plane if
and only if gn(gn−hm) 6= 0. On the other hand, for the system (1), we have
µ0 = gn(gn− hm), where µ0 is defined in the Appendix.

Therefore, for µ0 6= 0 the system (1) has four different or equal equili-
brium points.

The following two theorems holds, and their proofs can be found in [3].

Theorem 1. [3]. For µ0 6= 0 the number of the four finite singularities of
the system (1) are determinated by the following conditions:

4 simple ⇔ D 6= 0;
2 simple, 1 double ⇔ D = 0, S 6= 0;
2 double ⇔ D = S = 0, P 6= 0;
1 of multiplicity 4 ⇔ D = S = P = 0,

where D,S,P are defined in the Appendix.

Since µ0 6= 0, due to the transformation (x, y) 7→ (x/g, y/n), we can
consider g = n = 1. Therefore, the system (1) becomes{

ẋ = x(c+ x+ hy),
ẏ = y(f +mx+ y),

(2)

for which µ0 = 1− hm, D = −c2f2(c− fh)2(f − cm)2 and

S = 3c4m2(x+ hy)2[3m2x2 − 2m(hm− 4)xy + (3h2m2 − 8hm+ 8)y2],
P = c4y2(mx+ y)2( if cf = 0),

or
S = 3c4m2(hm− 1)4x2(3m2x2 + 8mxy + 8y2),
P = c4(hm− 1)2y2(mx+ y)2( if (c− fh)(f − cm) = 0).

We use the following abbreviations: S=saddle, N=node, F=focus,
C=center, SN=saddle-node.
In addition, K,W3,W4 are defined in the Appendix.
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Theorem 2. [3]. Let us consider the system (1) with µ0 6= 0. Then the
type of the finite singularities of this system is determinated by the following
affine-invariant conditions:

1) S, S, S, N ⇔ D 6= 0, µ0 < 0, K < 0, W4 ≥ 0;
2) S, S, S, F ⇔ D 6= 0, µ0 < 0, K < 0, W4 < 0, B3 6= 0;
3) S, S, S, C ⇔ D 6= 0, µ0 < 0, K < 0, W4 < 0, B3 = 0;

4) S, N, N, N ⇔ D 6= 0, µ0 < 0, K > 0 and
{
W4 > 0 or
W4 = 0, W3 ≥ 0;

5) S, N, N, F ⇔ D 6= 0, µ0 < 0, K > 0 and
{
W4 < 0, B3 6= 0 or
W4 = 0, W3 < 0

;

6) S, N, N, C ⇔ D 6= 0, µ0 < 0, K > 0 and W4 < 0, B3 = 0;

7) S, S, N, N ⇔ D 6= 0, µ0 > 0 and
{
W4 > 0 or
W4 = 0, W3 ≥ 0;

8) S, S, N, F ⇔ D 6= 0, µ0 > 0 and
{
W4 < 0 or
W4 = 0, W3 < 0;

9) SN, S, S ⇔ D = 0, S 6= 0, µ0 < 0, K < 0;
10) SN, N, N ⇔ D = 0, S 6= 0, µ0 < 0, K > 0

and
{
W4 > 0 or
W4 = 0, W3 ≥ 0;

11) SN, N, F ⇔ D = 0, S 6= 0, µ0 < 0, K > 0, W4 < 0;
12) SN, N, C ⇔ D = 0, S 6= 0, µ0 < 0, K > 0, W4 = 0, W3 < 0;
13) SN, S, N ⇔ D = 0, S 6= 0, µ0 > 0, W4 ≥ 0;
14) SN, S, F ⇔ D = 0, S 6= 0, µ0 > 0, W4 < 0;
15) SN, SN ⇔ D = S = 0, P 6= 0;
16) a degenerated nonhyperbolic point of the multiplicity 4

(a) ⇔ D = S = P = 0, µ0 < 0, η > 0, χ > 0;
(b) ⇔ D = S = P = 0, µ0 < 0, η > 0, χ < 0;
(c) ⇔ D = S = P = 0, µ0 < 0, η = 0;
(d) ⇔ D = S = P = 0, µ0 > 0, η > 0;
(e) ⇔ D = S = P = 0, µ0 > 0, η = 0,

where (a)-(e) have the representations:
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2 The particular competing species model

The model we study in this paper is proposed as an application by M.W.
Hirsch, S. Smale and R. L. Devaney in [5] and has the form{

ẋ = x(a− x− ay),
ẏ = y(b− bx− y),

(3)

where x, y represent the number of the populations of the two species, a and
b are positive parameters.

In order to apply the Theorems 1 and 2, we transform the system (3)
into the system (1).

The system (3) is equivalent with{
ẋ = −x(−a+ x+ ay),
ẏ = −y(−b+ bx+ y),

and, by the change of the sense of the time t 7→ −t we obtain the system{
ẋ = x(−a+ x+ ay),
ẏ = y(−b+ bx+ y),

(4)

which is the system we are concerned herein.
Due to physical reasons, the phase space must be the first quadrant (with-

out axes of coordinates). However, for mathematical (namely bifurcation)
reasons we consider, in addition, the origin and the half-axes.

Remark 1. The system (4) has the same equilibrium points as (3), but the
attractive properties of the equilibria of the system (4) are opposite of those
of the system (3).

3 The equilibrium points

By convention, we say that an equilibrium exists if its coordinates are finite
and positive. Therefore, this is a biological, not a mathematical existence.

The equilibrium points of the system (4) areM1(0, 0),M2(a, 0),M3(0, b),
M4(a(1 − b))/(1 − ab), b(1 − a)/(1 − ab). For these points we compute ∆i,
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ρi, δi, (i = 1, 2, 3, 4) given in the Appendix.

∆1 = ab, ρ1 = −a− b, δ1 = (a− b)2,
∆2 = ab(a− 1), ρ2 = a− b+ ab, δ2 = (a+ b− ab)2,

∆3 = ab(b− 1), ρ3 = −a+ b+ ab, δ3 = (a+ b− ab)2,
∆4 = ab(a− 1)(b− 1)/(1− ab), ρ4 = (a+ b− 2ab)/(1− ab),

δ4 = [(a− b)2 + 4a2b2(a− 1)(b− 1)]/(1− ab)2

(5)

For the system (4) we have

µ0 = 1− ab, µ1 = (−2b+ ab+ ab2)x+ (2a− ab− a2b)y,
D = −a4b4(a− 1)2(b− 1)2, K = 2(bx2 + 2xy + ay2),

W4 = (a− b)2(ab− a− b)2[(a− b)2 + 4a2b2(a− 1)(b− 1)].
(6)

In the following, we study the nature of the finite singularities of the
system (4) for the case µ0 6= 0 (i.e. ab 6= 1).

Case D 6= 0. This case is equivalent with 1−ab 6= 0, a /∈ {0, 1}, b /∈ {0, 1}.
From Theorem 1, it follows that the system (4) has four simple equilibrium
points.
• If µ0 < 0 then 1 − ab < 0. Since a and b are positive parameters, it

follows that K > 0. If W4 > 0, then we have a > 1, b > 1 and we are in
the case 4 from the Theorem 2 (i.e. the system (4) has three nodes and a
saddle) or (a > 1, b < 1), (a < 1, b > 1), where the point M4 is not in the
first quadrant, therefore it does not exist from biological viewpoint. In this
case there are only three points from biological viewpoint (two nodes and a
saddle). On the other hand, W4 can not be negative. Indeed, if W4 < 0 then
(a − 1)(b − 1) < 0, therefore a > 1, b < 1 or a < 1, b > 1. It follows that
M4 is not in the first quadrant, therefore it does not exist from biological
viewpoint. Again there are only three points from biological viewpoint (two
nodes and a saddle).

Thus, the finite singularities of total multiplicity four of the system (3)
which exist from biological viewpoint are as follows: if a > 1, b > 1, then
M1 is a repulsive node, M2, M3 are attractive nodes and M4 is a saddle; if
a > 1, b < 1, then M1 is a repulsive node, M2 is an attractive node and M3

is a saddle; if a < 1, b > 1, then M1 is a repulsive node, M2 is a saddle and
M3 is an attractive node.
• If µ0 > 0 then 1−ab > 0. If W4 > 0, then we have a < 1, b < 1 and we

are in the case 7 from the Theorem 2 (i.e. the system (4) has two nodes and
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two saddles), or (a > 1, b < 1), (a < 1, b > 1), when M4 is not in the first
quadrant, therefore it does not exist from biological viewpoint. In this case
there are only three points (two nodes and a saddle). On the other hand, W4

can not be negative. Indeed, if W4 < 0 then (a− 1)(b− 1) < 0, equivalently
with a > 1, b < 1 or a < 1, b > 1 therefore, the point M4 is not in the
first quadrant, so it does not exist from biological viewpoint. Again there
are only three points from biological viewpoint (two nodes and a saddle).

Thus, the finite singularities of total multiplicity four of the system (3)
that exist from biological viewpoint are as follows: if a < 1, b < 1, then
M1 is a repulsive node, M2, M3 are saddles and M4 is an attractive node; if
a > 1, b < 1, then M1 is a repulsive node, M2 is an attractive node and M3

is a saddle; if a < 1, b > 1, then M1 is a repulsive node, M2 is a saddle and
M3 is an attractive node.

Case D = 0. We have two subcases: ab = 0 or (a− 1)(b− 1) = 0.

• For ab = 0, without loss of generality, due to the change x↔ y, a↔ b,
which keeps the system (4) unchanged, we can consider only a = 0. In this
case S = 0 and P = b4x4.

If b 6= 0, then P 6= 0 and we are in the case 15 from the Theorem 2 (i.e.
the system (4) has two saddle-nodes).

If b = 0, then P = 0, µ0 = 1 > 0 and η = 1 > 0, therefore we are
in the case 16 (d) from the Theorem 2 (i.e. the system (4) has a point of
multiplicity 4).

Thus, in the plane, the type of the finite singularities for the system (3)
are as follows: if a = 0, b 6= 0 (a 6= 0, b = 0), then M1 = M2, M3 = M4

(M1 = M3, M2 = M4) are saddle-nodes ; if a = 0, b = 0, then M1 = M2 =
M3 = M4, i.e. we have a nonhyperbolic point of multiplicity 4.

• For (a − 1)(b − 1) = 0, without loss of generality, due to the change
x ↔ y, a ↔ b, which keeps the system (4) unchanged, we can consider only
a = 1. In this case S = 3b2(b− 1)4x2(3b2x2 + 8bxy + 8y2).

If S 6= 0, then b /∈ {0, 1} and µ0 = 1− b, η = 0, W4 = (b− 1)2.

For µ0 < 0 (i.e. b > 1), we have K > 0, W4 > 0, therefore we are
in the case 10 from the Theorem 2 (i.e. the system (4) two nodes and a
saddle-node).
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For µ0 > 0 (i.e. b < 1), we have K > 0, W4 > 0 therefore we are in the
case 13 from the Theorem 2 (i.e. the system (4) has a node, a saddle and a
saddle-node).

Thus, the finite singularities of total multiplicity four of the system (3)
are as follows: if a = 1, b < 1 (b > 1), then M1 is a repulsive node, M3

is a saddle, M2 = M4 is a saddle-node (M1 is a repulsive node, M3 is an
attractive node, M2 = M4 is a saddle-node); if b = 1, a < 1 (a > 1) then
M1 is a repulsive node, M2 is a saddle, M3 = M4 is a saddle-node (M1 is a
repulsive node, M2 is an attractive node, M3 = M4 is a saddle-node).

If S = 0, then b = 0 (if b = 1 we obtain a contradiction: µ0 = 0). For
b = 0 we have two saddle-nodes M1 = M3 and M2 = M4 .

4 The phase portraits

In [2] the system (3) was studied by the topological methods and the dy-
namic bifurcation diagram was representing. Here we represent only the
phase portraits that have a biological significance (i.e the equilibria are in
the first quadrant) and where the equilibrium points have total multiplicity
four (fig.2). The parametric portrait (fig.1) is representing by the strata 0-10
without the curve T (corresponding to ab = 1).

Fig. 1. The parametric portrait.



142 Raluca Mihaela Georgescu, Simona Cristina Nartea

Fig. 2. The phase portraits for the various strata from Fig. 1

5 Appendix

Consider the two-dimensional nonlinear system of ordinary differential equa-
tions {

ẋ = p0(x, y) + p1(x, y) + p2(x, y) ≡ p(x, y),
ẏ = q0(x, y) + q1(x, y) + q2(x, y) ≡ q(x, y),

(7)

where pi and qi, i=0,1,2 homogenous polynomials of i degree.
For a singular point Mi(xi, yi) we use the notations:

ρi = (p′x(x, y) + q′y(x, y))|(xi,yi) = trAi,
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∆i =
∣∣∣∣ p′x(x, y) p′y(x, y)
q′y(x, y) q′y(x, y)

∣∣∣∣
(xi,yi)

= det Ai,

δi = ρ2
i − 4∆i = tr2 Ai − 4 det Ai,

where Ai is the matrix of the linear terms from the linearized system around
the point (xi, yi).

The following polynomials are the GL-comitants and T -comitants of the
system (7) [1], [6], [7]:

Ci(a, x, y) = ypi(a, x, y)− xqi(a, x, y), i = 0, 1, 2;
η(a) = Discrim(C2(a, x, y));
K(a, x, y) = Jacob(p2(a, x, y), q2(a, x, y));
µ0(a) = Resx(p2, q2)/y4 = Discrim(K(a, x, y))/16;

D(a) = −
((

(D,D)(2), D
)(1)

, D
)(3)

/576 ≡ −Discrim(D);
P(a, x, y) = µ2

2 − 3µ1µ3 + 12µ0µ4;
S(a, x, y) =

[
3µ2

1 − 8µ0µ2

]2 − 16µ2
0P;

B3(a, x, y) = (C2, D)(1) = Jacob(C2, D),
W3 = µ2

0

∑
1≤i<j<l≤4

δiδjδl,

W4 = µ2
0δ1δ2δ3δ4.
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