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Abstract

In this work we consider the non linear stability of a chemical
equilibrium of a thermally conducting two component reactive vis-
cous mixture which is situated in a horizontal layer heated from below
and experiencing a catalyzed chemical reaction at the bottom plate.
The evolution equation for the perturbation energy is deduced with
an approach which generalizes the Joseph’s parametric differentiation
method. Moreover, the nonlinear stability bound for the chemical equi-
librium of the fluid mixture is derived in terms of thermal and concen-
trational non dimensional numbers.
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1 Introduction

The convective instability and the nonlinear stability of a chemically inert
fluid in a gravitational field heated from below (the classical Bénard problem)
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have been studied and present a well known interesting problem in several
fields of fluid mechanics. More recently, [1]-[4] have considered reactive fluids
of technological interest for whose chemical reactions can give temperature
and concentration gradients which influence the transport process, for exam-
ple, the dissociation of nitrogen, oxygen or hydrogen gas near the gas-solid
interface of a space vehicle when returning to the earth’s atmosphere, (see
Bdzil and Frisch [1], [2] and Loper and Roberts [5],) and can alter hydrody-
namic stabilities.

In the present paper, begun in 2009 when the first Author was still alive
and then finished by the second author also developing some A. Georgescu’s
ideas and suggestions, we consider a fluid mixture composed of the dimer A2

and the monomer A in a horizontal layer heated from below, the bottom plate
being catalytic. We evaluate the effects of heterogeneous surface catalyzed
reactions on the hidrodynamic stability of the chemical equilibrium.

The model adopted is that of Bdzil and Frisch.
We consider a Newtonian fluid model and derive the evolution equation

for the perturbation energy with the approach from [6], [7],[8], which gener-
alizes the Joseph’s parametric differentiation method reported in [9], [10].

A non linear stability bound is derived in terms of all involved physical
parameters.

2 The initial/boundary value problem for pertur-
bation

We consider the mixture (A2, A) described by a Newtonian model to which we
apply the Boussinesq approximation in the layer bounded by the surfaces z =
0 and z = 1 with the lower surface being catalytic, that is, the interconversion
(A2 
 A) occurs via the surface z = 0. However, the conditions that must
be satisfied at the catalyzed boundary z = 0, are [3]:

~J · ~k = 0 ~Q · ~k = 0

where ~J is the mass flux, ~k is the unit vector in the vertical upward direction,
and Q is the heat flux. The chemical equilibrium S0 is characterized by
the following temperature (T ) and degree of dissociation (fraction of pure
monomers present) (C) fields [2], [3]:

T (z) = T1 + β(1− z), C(z) = C1 + γ(1− z), (1)
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where C1 and T1 are the values of C and T at z = 1 and the constants β and
γ are given in [1], [3].

Let us now perturb S0 up to a cellular motion (convection-diffusion)
characterized by a velocity ~u = ~0 + ~u, a pressure p = P̄ + p′ a tempera-
ture T = T̄ + θ and a concentration C = C̄ + γ fields, where ~u, p′, θ, γ are
the corresponding perturbation fields and ~0, P̄ , T̄ , C̄ represent the basic state
S0 (the expression of P̄ follows from the momentum equation for S0). The
perturbation fields satisfy the following equations which express the conserva-
tion of the momentum, energy and concentration, written in nondimensional
coordinates [4], [11]

∂

∂t
~u+ (~u · ∇)~u = −∇p′ + ∆~u+ (Rθ + Cγ)~k, , (2)

Pr(
∂

∂t
θ + ~u · ∇θ) = ∆θ −Rw, (t, ~x) ∈ (0,∞)× V (3)

Sc(
∂

∂t
γ + ~u · ∇γ) = ∆γ + Cw, (4)

in a subset of L2, namely ,

N = {(~u, p, θ, γ) ∈ L2 | div~u = 0;
∂u

∂z
=
∂v

∂z
= w = 0 on ∂V2, (5)

~u = 0 on ∂V1 θ = γ = 0 on ∂V2
∂θ

∂z
= −sγ,

∂γ

∂z
= rγ on ∂V1}.

where ~u = (u, v, w), V is a periodicity cell in the x, y-directions, ∂V
is the boundary of V , ∂V1 = ∂V ∩ {z = 0}, ∂V2 = ∂V ∩ {z = 1}. The
perturbation fields depend on the time t and space ~x = (x, y, z) andR2, C2, Pr
and Sc are the thermal and concentrational numbers of Rayleigh, Prandtl
and Schmidt, respectively. In addition, r, s > 0 are dimensionless surface
reactions numbers.

The basic state S0 corresponds to the zero solution of the initial-boundary
value problem for (2)-(4) in the class N . This state is called non linearly
stable if a Liapunov function E(t), called energy, remains bounded when
t→∞ in the sense of limt→∞

∫ t
0 E(t′)dt′ <∞ [9], [10]. It is asymptotically

nonlinearly stable if E(t)→ 0 when t→∞. The stability or instability of S0

depends on six physical parameters occurring in (2)-(5): Pr, Sc = τPr,R, C, r
and s.
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3 The evolution equation for the perturbation
energy

Integrating over V the sum of the equation (4) multiplied by P−1
r γ and the

equation (3) multiplied by S−1
c θ we obtained:

d

dt
<θγ>= −τRS−1

c <γw>+CS−1
c <θw>−(1 + τ)S−1

c <∇θ ·∇γ>+ (6)

S−1
c

∫
V
∇ · (θ∇γ)dV + P−1

r

∫
V
∇ · (γ∇θ)dV.

Multyplying (2) by u, (3) by θ, (4) by γ and integrating the resulted equations
over V and taking into account the boundary conditions from (5) we have
respectively

1
2
d

dt
< |u|2 >= − < |∇u|2 > +R < θw > +C < γw >, (7)

1
2
d

dt
< Prθ

2 >= −R < θw > − < |∇θ|2 > +
∫
V
∇ · (θ∇θ)dV, (8)

1
2
d

dt
< Scγ

2 >= C < γw > − < |∇γ|2 > +
∫
V
∇ · (γ∇γ)dV. (9)

We perform the sum of (7) to (8) multiplied by a > 0, (9) multiplied by b > 0
and (6) multiplied by c > 0, and introducing the functions

E2(t) =< |u|2 + d1φ
2
1 + d2φ1φ2 > /2, Ψ(t) =< d3φ

2
2 > /2, (10)

we obtain

dE2

dt
+
dΨ
dt

= − < |∇u|2 + (a2
1d4 + b21d5 + a1b1d6)|∇φ1|2+

(a2
2d4+b22d5+a2b2d6)|∇φ2|2+

[
2a1a2d4+2b1b2d5+(a1b2+a2b1)d6

]
|∇φ1·∇φ2| >

+R < (a1d7 + b1d8)φ1w > +R < (a2d7 + b2d8)φ2w > +

(aa2
1 + bb21 + cS−1

c a1b1 + cP−1
r a1b1)

∫
V
∇ · (φ1∇φ1)dV+

(aa2
2 + bb22 + cS−1

c a2b2 + cP−1
r a2b2)

∫
V
∇ · (φ2∇φ2)dV+
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(aa1a2 + bb1b2 + cS−1
c a1b2 + cP−1

r a2b1)
∫
V
∇ · (φ1∇φ2)dV+

(aa1a2 + bb1b2 + cS−1
c a2b1 + cP−1

r a1b2)
∫
V
∇ · (φ2∇φ1)dV, (11)

where
θ = a1φ1 + a2φ2, γ = b1φ1 + b2φ2. (12)

Here a1, a2, b1 and b2 are unknown parameters and di, i = 1 · · · 8 are functions
of a, b, c and the physical parameters, defined by

d1 = aPra
2
1 + bScb

2
1 + 2ca1b1; d2 = aPra1a2 + bScb1b2 + c(a1b2 + a2b1),

d3 = aPra
2
2 + bScb

2
2 + 2ca2b2; d4 = a,

d5 = b; d6 = cS−1
c (1 + τ),

d7 = 1− a+ cαS−1
c ; d8 = bα+ α− cτS−1

c ,

where α = C
R .

The seven constants a, b, c, a1, b1, a2 and b2 shall be determined from the
requirement that (11) assumes the form [6], [7], [8]

dE2

dt
+
dΨ
dt

= − < |∇u|2 + |∇φ1|2 > +R < (a1d7 + b1d8)φ1w >, (13)

where the energy E2 has the form

E2(t) =< |u|2 + d1|φ1|2 > /2. (14)

In the case τ = 1 the right-hand side of (11) assumes the form from (13) and
instead of (10) the energy E2 assumes the form (14) if

d2 = 0,
a2

1d4 + b21d5 + a1b1d6 = 1,
a2

2d4 + b22d5 + a2b2d6 = 0,
2a1a2d4 + 2b1b2d5 + (a1b2 + a2b1)d6 = 0,
a2d7 + b2d8 = 0,
sb2 + ra2 = 0.

(15)

φ1 and φ2 as linear combinations of θ and γ are given by

φ1 = a′1θ + a′2γ, φ2 = b′1θ + b′2γ, (16)
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where
a′1 = b2/M, a′2 = a2/M, b′1 = −b1/M, b′2 = a1/M,

a1 = b′2/M
′, a2 = −a′2/M ′, b1 = −b′1/M ′, b2 = a′1/M

′, (17)

and M = a1b2 − a2b1 and M ′ = a′1b
′
2 − a′2b′1.

It follows

φ1 = (b2θ − a2γ)/M and φ2 = (−b1θ + a1γ)/M. (18)

The system (15) can be considered as yielding a1, b1, a2/b2, b, c as func-
tions of a, (15)3 follows from (15)1 and (15)2, so, another relationship between
these parameters is necessary.

In order to find it we followed the Joseph’s generalized method of para-
metric differentiation [6], [7], [8].

Denoting
2A = R|a1d7 + b1d8|, (19)

relation (13) implies

dE2

dt
≤ −ξ2

(
1−A/

√
Ra∗

)
E2(t), (20)

where [12], [13], [14], [15]

ξ2 = minu,φ1

2 < |∇u|2 + |∇φ1|2 >
< |u|2 + |φ1|2 >

,
1√
Ra∗

= maxu,φ1

2 < φ1w >

< |∇u|2 + |∇φ1|2 >
.

(21)
Therefore, the stability criterion reads

R < 2
√
Ra∗/|a1d7 + b1d8|. (22)

As a consequence R will be maximal if |a1d7 + b1d8| will be minimal. Since
|a1d7+b1d8| is a function of the parameter a this requirement will be fullfilled
iff

d(a1d7 + b1d8)
da

= 0. (23)

This equation represents the equation determining a.
In this way, the stability bound

RE = 2
√
Ra∗/|a1d7 + b1d8| (24)
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will be obtained once the system (15), (23), admits real solutions and it can
be solved explicitly in terms of the physical parameters.

Of course, all values of the physical parameters ensuring the negativity
of a1d7 + b1d8 are in the stability domain.

In this section we applied a Joseph’s generalized method [6], [7], [8] to
derive the evolution equation for E2.

The Joseph’s idea of using (6) was generalized by us in the following way
[6], [7], [8]:

We used from the beginning an integral relation, i.e. the equation (6)
(already followed by suitable multiplications, addition and integration over
V of the balance equations for temperature and concentration (2)-(4)), in [7]
we proved that (6) is nothing else but the projection of a system, equivalent to
(2)-(4), including the equations which generate (6) and with a symmetrizable
linear part, for a suitable choice of the constants [7].

As a consequence, the initial equations (2)-(4) were replaced by some
others in which the equations which generated (6) were present. In this way
drastically changed the linear part of the initial equations allowing a much
more advantageous symmetrization. By contrast, the symmetric operator for
(2)-(4) does not contain the effect of terms in u from (2) and those of terms
in θ from (3) because they are opposite.

4 Nonlinear stability bound

From (15) we deduce the relations

d2
6 = 4d4d5, (25)

d2
8d4 = d2

7d5, (26)
s

r
= α, (27)

Then we determine explicit expression for a1, b1 and a2/b2in terms of
d8/d7, d6/d4 and d4, or, taking into account (25) and (26), in terms of

√
d5/d4

and d4.This implies
a1d7 + b1d8 = d7/

√
d4. (28)

On the other hand, (23) was written as an equation of the form

d

da

1 + a( srα− 1)
√
a

= 0. (29)



Nonlinear stability bounds 113

If srα > 1, the solution

a =
1

s
rα− 1

(30)

of (29) gives, in terms of the physical quantities, the non linear stability
bound (24)

RE =
√
Ra∗

(√
(
s

r
)2 − 1

)−1
(31)

Theorem. For physical parameters R, C = αR, s
r = α, ( sr )2 > 1, the

zero solution of (2)-(4), corresponding to the basic conduction state, is non
linearly asymptotically stable if R < RE , where RE is given by (31). Or,
equivalently, if

C2 −R2 < Ra∗

where Ra∗ is given by (21).

5 Conclusions

We treated the problem of the non linear stability of an equilibrium for a
binary mixture in a horizontal layer heated from below and experiencing
a catalyzed chemical reaction at bottom plate, using the energy method,
improved as in [6] by taking into account an idea from [9] [10] . The given
problem governing the perturbation evolution was changed in order to obtain
an optimum energy inequation. Then the non linear stability bound was
obtained with the aid of some appropriately chosen multiplication constants.

The presence of derivatives in the boundary conditions heavily influences
the possibility to relate linear and non linear bounds because of the lack of
corresponding maximum principle for the Laplace equation. However, the
generalized method, as in [6], [7], [8] gives us the possibility to drastically
change the linear problem derived by the evolution equations, so that allows
us an easier handling of the linear problem to determine a generalized lin-
earization principle (in the sense of the coincidence of linear and nonlinear
stability bounds) [16].
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