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Abstract

In this paper the H2 type optimization problem for a class of time
varying linear stochastic systems modeled by Ito differential equations
and Markovian jumping with periodic coefficients is considered. The
main goal of such an optimization problem is to minimize the effect
of additive white noise perturbations on a suitable output of the con-
trolled system. It is assumed that only an output is available for mea-
surements. The solution of the considered optimization problem is
constructed via the stabilizing solutions of some suitable systems of
generalized Riccati differential equations with periodic coefficients.
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1 Introduction

The H2 and the linear quadratic control problems for linear stochastic sys-
tems have been widely studied in the current literature. A particular at-
tention was paid to two classes of stochastic systems, namely Markov jump
linear systems and systems subject to multiplicative white noise.When an
important and unpredictible variation causes a discrete change in the plant
characterization at isolated points in time, a Markov chain with a finite state
space is a natural model for the plant parameter processes.

Some illustrative applications of these systems can be found for example in
[2, 13, 16, 17] and their references, where stochastic stability properties and
useful results concerning controllability, observability and optimal control are
presented.

More recently, the H2 control problem for Markov jump linear systems has
been studied in [3] for the state feedback case and [11] for the output feedback
case. The stochastic systems with multiplicative white noise naturally arise
in control problems of linear uncertain systems with stochastic uncertainty
(see [12, 15, 19] and the references therein). Results concerning the H2

control problem for this type of systems are derived for instance in [4, 6].
In [8] the H2 optimal state feedback control problem is addressed for time
varying periodic linear stochastic systems subject to both Markov jumps and
multiplicative white noise. The afore mentioned paper extends to the time
varying periodic case a part of the results from [7].

In the present paper we extend the results of [8] to the case when only an
output is available for measurements. Lately, there is an increasing interest
in the consideration of control problems for systems modeled by differential
equations with periodic coefficients. For the reader’s convenience we refer
to [1].

The outline of the paper is: Section 2 contains the description of the math-
ematical model of the considered controlled systems. Also the H2 optimiza-
tion problems are stated. Section 3 collects several auxiliary results which
are required for the proof of the main result. Formulae for the computa-
tion of H2-norms of a linear stochastic system with periodic coefficients are
provided. The main result of the paper is given in Section 4.
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2 The problem formulation

Consider the controlled system (G) modeled by a system of the Ito differential
equations perturbed by a Markov process of the form:

dx(t) = (A0(t, ηt)x(t) +B0(t, ηt)u(t))dt

+
r∑

k=1

(Ak(t, ηt)x(t) +Bk(t, ηt)u(t))dwk(t) +Bv(t, ηt)dv(t)

dy(t) = C0(t, ηt)x(t)dt+
r∑

k=1

Ck(t, ηt)x(t)dwk(t) +Dv(t, ηt)dv(t) (2.1)

z(t) = Cz(t, ηt)x(t) +Dz(t, ηt)u(t)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm are the control parameters,
y(t) ∈ Rny are the measurements, while z(t) ∈ Rnz is the controlled output.
In (2.1) {ηt}t≥0 is an homogeneous right continuous Markov process on a
given probability space (Ω,F ,P) with the set of the states S = {1, 2, ..., N}
and the transition probability matrix P (t) = eQt, t ≥ 0, where Q ∈ RN×N is

a matrix whose elements have the properties: qij ≥ 0, if i 6= j and
N∑
j=1

qij = 0

for all 1 ≤ i ≤ N . Also, the existence of limt→∞ P (t) is valid. For details see
for example [5]. Here, (wT (t), vT (t))T is an (r + mv)-dimensional standard
Wiener process. w(t) = (w1(t), ..., wr(t))T , v(t) = (v1(t), ..., vmv(t))T (see
[14, 18]).

Throughout this paper, we make the following assumptions:

H1: {w(t)}t≥0, {v(t)}t≥0, {ηt}t≥0 are independent stochastic processes and
P{η0 = i} > 0, 1 ≤ i ≤ N .

H2: Ak(·, i) : R → Rn×n, Bk(·, i) : R → Rn×m, Ck(·, i) : R → Rny×n, 0 ≤
k ≤ r, Bv(·, i) : R→ Rn×mv , Dv(·, i) : R→ Rny×mv , Cz(·, i) : R→ Rnz×n,
Dz(·, i) : R → Rnz×m, 1 ≤ i ≤ N , are continuous matrix valued functions
which are periodic with the period θ > 0.
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To control the system (2.1) we consider the following admissible controllers
(Gc) having the following state space representation:

dxc(t)= Ac0(t, ηt)xc(t)dt+
r∑

k=1

Ack(t, ηt)xc(t)dwk(t)+Bc(t, ηt)duc(t)(2.2)

yc(t)= Cc(t, ηt)xc(t)

where xc(t) ∈ Rnc is the vector of the state parameters of the controller,
uc(t) ∈ Rny is the vector of the inputs of the controller and yc ∈ Rm is the
output of the controller, Ack(·, i), 0 ≤ k ≤ r, Bc(·, i), Cc(·, i) are continuous
matrix valued functions which are periodic with period θ. As in the time
invariant case, (see [7],[10]), the order nc of an admissible controller is not
prefixed. It will be determined in the process of the construction of the
solution of the optimization problems. The closed-loop system obtained when
coupling an admissible controller (2.2) to the system (2.1) by taking uc(t) =
y(t) and u(t) = yc(t) has the state space representation given by:

(Gcl) :


dxcl(t) = A0cl(t, ηt)xcl(t)dt+

r∑
k=1

Akcl(t, ηt)xcl(t)dwk(t)+

+Bvcl(t, ηt)dv(t),
zcl(t) = Ccl(t, ηt)xcl(t).

(2.3)

where,

xcl(t) =
(
xT (t) xTc (t)

)T
, Akcl(t, i) =

(
Ak(t, i) Bk(t, i)Cc(t, i)

Bc(t, i)Ck(t, i) Ack(t, i)

)
,

0 ≤ k ≤ r, Bvcl(t, i) =
(

Bv(t, i)
Bc(t, i)Dv(t, i)

)
, (2.4)

Ccl(t, i) =
(
Cz(t, i) Dz(t, i)Cc(t, i)

)
for all t ∈ R, 1 ≤ i ≤ N .

Definition 2.1. An admissible controller (Gc) of the form (2.2) is a stabilizing
controller for the systems (G) if the zero state equilibrium of the linear system

dxcl(t) = A0cl(t, ηt)xcl(t)dt+
r∑

k=1

Akcl(t, ηt)xcldwk(t) (2.5)

is exponentially stable in mean square (ESMS).
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We denote Ks(G) the set of all stabilizing controllers of type (2.2).

Now, we construct the following two cost functionals associated to the system
(G):
Jl : Ks(G)→ R+, l ∈ {1, 2} by

J1(Gc) = lim
τ→∞

1
τ

t0+τ∫
t0

E[|zcl(t)|2]dt (2.6)

and

J2(Gc) = lim
τ→∞

1
τ

t0+τ∫
t0

N∑
i=1

E[|zcl(t)|2/ηt0 = i]dt (2.7)

In this paper we shall solve the following optimization problems, which will
be called stochastic H2 optimal control problems:

OP1 : Construct a stabilizing controller G1
c ∈ Ks(G) with the property that

J1(G1
c) = min{J1(Gc)|Gc ∈ Ks(G)} (2.8)

OP2 : Construct an admissible controller (G2
c) ∈ Ks(G) with the property

that

J2(G2
c) = min{J2(Gc)|Gc ∈ Ks(G)}. (2.9)

Remark 2.1. a) In the next section we shall see that both J1(Gc) and
J2(Gc) do not depend upon the initial time t0 and the initial state xcl(t0).
The values of these cost functionals are expressed in terms of bounded so-
lutions of some suitable affine differential equations which extend to this
framework the differential equations of the controllability Gramian and ob-
servability Gramian.

b) Also in Section 3 we shall see that the value of the cost functional J1(Gc)
depends upon the initial distribution π0 = (π0(1), ..., π0(N)), (π0(i) = P{η0 =
i}) of the Markov process, while in the case of the second optimization prob-
lem, the value of the cost functional J2(Gc) does not depend upon the initial
distribution of the Markov process.
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3 Several preliminary results

Let Sn ⊂ Rn×n be the linear subspace of the real symmetric matrices. Define
SNn by SNn = Sn ⊕ Sn ⊕ ... ⊕ Sn. We recall that SNn is a real Hilbert space
with respect to the inner product

< X,Y >=
N∑
i=1

Tr[X(i)Y (i)] (3.1)

for all X = (X(1), ..., X(N)), Y = (Y (1), ..., Y (N)) ∈ SNn .

Additionally, SNn is the ordered linear space, via the ordering induced by the
cone

SN+
n = {X ∈ SNn |X = (X(1), X(2), ..., X(N)), X(i) ≥ 0, 1 ≤ i ≤ N}. (3.2)

Here X(i) ≥ 0 means that X(i) is positive semidefinite. For more details
concerning the properties of the cone SN+

n we refer to [9].

Based on the coefficients of the linear system (2.5) we construct the following
operator valued function t→ Lcl(t) by Lcl(t)X = ((Lcl(t)X)(1), (Lcl(t)X)(2),

..., (Lcl(t)X)(N)) where

(Lcl(t)X)(i) = A0cl(t, i)X(i) +X(i)AT0cl(t, i) +

+
r∑

k=1

Akcl(t, i)X(i)ATkcl(t, i) +
N∑
j=1

qjiX(j) (3.3)

for all X = (X(1), ..., X(N)) ∈ SNn+nc
. By direct calculation one obtains that

the adjoint operator of Lcl(t) with respect to the inner product (3.1) is given
by
L∗cl(t)X = ((L∗cl(t)X)(1), ..., (L∗cl(t)X)(N)),

(L∗clX)(i) = AT0cl(t, i)X(i) +X(i)A0cl(t, i) +

+
r∑

k=1

ATkcl(t, i)X(i)Akcl(t, i) +
N∑
j=1

qijX(j) (3.4)

for all X ∈ SNn+nc
.
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In our developments an important role is played by the following affine dif-
ferential equations on SNn+nc

:

d

dt
Y (t) = Lcl(t)Y (t) + Bε(t) (3.5)

d

dt
X(t) + L∗cl(t)X(t) + C(t) = 0 (3.6)

where Bε(t) = (Bε(t, 1),Bε(t, 2), ...,Bε(t,N)),

Bε(t, i) = ε(i)Bvcl(t, i)BT
vcl(t, i) (3.7)

and C(t) = (C(t, 1), C(t, 2), ..., C(t,N)),

C(t, i) = CTcl(t, i)Ccl(t, i) (3.8)

In (3.7) ε(i) are given nonnegative scalars. Applying Theorem 4.9 and The-
orem 4.7 in [9] in the case of the equations (3.5) and (3.6), respectively, we
obtain:

Corollary 3.1. Under the considered assumptions, if the zero state equi-
librium of the linear system (2.5) is (ESMS), each of the affine differential
equations (3.5) and (3.6), has a unique bounded on R solution Yεcl(t) and
Xcl(t), respectively. Additionally, these solutions have the properties:

(i) Yεcl(t) ∈ S
N+
n+nc

, Xcl(t) ∈ SN+
n+nc

for all t ∈ R.

(ii) Yεcl(t+ θ) = Yεcl(t), Xcl(t+ θ) = Xcl(t), ∀t ∈ R.

Remark 3.1. In the special case of N = 1, Ak(t, 1) = 0, 1 ≤ k ≤ r the
differential equations (3.5) and (3.6) reduce to the well known differential
equations of the controllability Gramian and observability Gramian, respec-
tively from the deterministic case.

The following result provides values of the cost functionals (2.6), (2.7) respec-
tively, in terms of the bounded solutions of the affine differential equations
(3.5) and (3.6).

Theorem 3.2. Under the assumptions H1 and H2 for each stabilizing con-
troller Gc) the following equalities hold:
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(i)

J1(Gc) =
1
θ

θ∫
0

N∑
j=1

πj∞Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)]ds (3.9)

=
1
θ

θ∫
0

N∑
j=1

Tr[Ccl(s, j)Yπ∞cl (s, j)CTcl(s, j)]ds

(ii)

J2(Gc) =
1
θ

θ∫
0

N∑
j=1

δ(j)Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)]ds (3.10)

=
1
θ

θ∫
0

N∑
j=1

Tr[Ccl(s, j)Yδcl(s, j)CTcl(s, j)]ds

where Xcl(t) = (Xcl(t, 1), ...,Xcl(t,N)) is the unique bounded solution of the
affine differential equation(3.6),(3.8),while Yπ∞cl (t)=(Yπ∞cl (t, 1), ...,Yπ∞cl (t,N))
is the unique bounded on R solution of affine differential equation (3.5), (3.7)
with ε(j) = πj∞ and Yδcl(t) = (Yδcl(t, 1), ...,Yδcl(t,N)) is the unique bounded
on R solution of the affine differential equation (3.5), (3.7) for ε(j) = δ(j).
The scalars πj∞ and δ(j) are defined by

πj∞ =
N∑
i=1

p̃ijP{η0 = i}, δ(j) =
N∑
i=1

p̃ij (3.11)

where p̃ij are the elements of the matrix P̃ = lim
t→∞

P (t).

Proof. The first equalities of (3.9) and (3.10), respectively, are obtained
directly applying Theorem 4.2 and Theorem 4.3, respectively in [8].

We rewrite the second part of (3.9) and (3.10) in an unified manner, as
follows:

1
θ

θ∫
0

N∑
j=1

ε(j)Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)]ds (3.12)

=
1
θ

θ∫
0

N∑
j=1

Tr[Ccl(s, j)Yεcl(s, j)CTcl(s, j)]ds
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So, to complete the proof of the theorem it is sufficient to show that (3.12)
is true for some given nonnegative scalars ε(j).

Using (3.7) together with (3.1) we obtain

N∑
j=1

ε(j)Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)] =< Xcl(s),Bε(s) > .

Using successively equations (3.5) and (3.6) we deduce

N∑
j=1

ε(j)Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)]=

d

ds
<Xcl(s),Yεcl(s)>+<C(s),Yεcl(s)>.

Integrating the last equality from s = 0 to s = θ we obtain via Corollary 3.1.
(ii) that

θ∫
0

N∑
j=1

ε(j)Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)]ds =

θ∫
0

< C(s),Yεcl(s) > ds =

=

θ∫
0

N∑
j=1

Tr[Ccl(s, j)Yεcl(s, j)CTcl(s, j)].

For the last equality we used (3.1) together with (3.8). Thus the proof is
complete.

Remark 3.2. From (3.9) and (3.10) one sees that the values of the cost
functionals (2.6) and (2.7), respectively, do not depend upon the initial con-
ditions (t0, xcl(t0)) of the trajectories of the closed loop system (Gcl). These
values may be seen as measures of the effect of the additional white noise
on an output of the closed-loop system. So, the optimization problems we
want to solve in this work minimize the effect of the additive white noise
perturbations on a suitable output of the closed-loop system.

To construct the optimal controllers of the two optimization problems stated
before, we need the stabilizing solution of the following systems of Riccati
equations:
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a) System of generalized Riccati differential equations of control SGRDE-C

d

dt
X(t, i)+AT0 (t, i)X(t, i)+X(t, i)A0(t, i)+

r∑
k=1

ATk (t, i)X(t, i)Ak(t, i)+

+
N∑
j=1

qijX(t, j)− (X(t, i)B0(t, i) +
r∑

k=1

ATk (t, i)X(t, i)Bk(t, i) +

+CTz (t, i)Dz(t, i))(DT
z (t, i)Dz(t, i) +

+
r∑

k=1

BT
k (t, i)X(t, i)Bk(t, i))−1(BT

0 (t, i)X(t, i) + (3.13)

+
r∑

k=1

BT
k (t, i)X(t, i)Ak(t, i) +DT

z (t, i)Cz(t, i)) +

+CTz (t, i)Cz(t, i) = 0, 1 ≤ i ≤ N.

b) System of generalized Riccati differential equations of filtering SGRDE-F

d

dt
Y (t, i)=A0(t, i)Y (t, i)+Y (t, i)AT0 (t, i)+

r∑
k=1

Ak(t, i)Y (t, i)ATk (t, i)+

+
N∑
j=1

qjiY (t, j)− (Y (t, i)CT0 (t, i) +
r∑

k=1

Ak(t, i)Y (t, i)CTk (t, i) +

ε(i)Bv(t, i)DT
v (t, i))(ε(i)Dv(t, i)DT

v (t, i) (3.14)

+
r∑

k=1

Ck(t, i)Y (t, i)CTk (t, i))−1(C0(t, i)Y (t, i)

+
r∑

k=1

Ck(t, i)Y (t, i)ATk (t, i) + ε(i)Dv(t, i)BT
v (t, i)) +

+ε(i)Bv(t, i)BT
v (t, i), 1 ≤ i ≤ N.

We recall that a global solution Xs : R → SNn of SGRDE-C (3.13) is called
stabilizing solution if the zero state equilibrium of the following closed-loop
system

dx(t) = (A0(t, ηt) +B0(t, ηt)Fs(t, ηt))x(t)dt (3.15)

+
r∑

k=1

(Ak(t, ηt) +Bk(t, ηt)Fs(t, ηt))x(t)dwk(t)
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is ESMS, where

Fs(t, i) = −(DT
z (t, i)Dz(t, i)+

r∑
k=1

BT
k (t, i)Xs(t, i)Bk(t, i))−1(BT

0 (t, i)Xs(t, i)

+
r∑

k=1

BT
k (t, i)Xs(t, i)Ak(t, i)+DT

z (t, i)Cz(t, i)), 1≤ i≤ N. (3.16)

Also, a global solution Ys : R→ SNn of SGRDE-F (3.14) is called stabilizing
solution if the zero state equilibrium of the closed-loop system

dx(t) = (A0(t, ηt) +Ks(t, ηt)C0(t, ηt))x(t)dt (3.17)

+
r∑

k=1

(Ak(t, ηt) +Ks(t, ηt)Ck(t, ηt))x(t)dwk(t)

is ESMS, where

Ks(t, i) = −(Ys(t, i)CT0 (t, i)+
r∑

k=1

Ak(t, i)Ys(t, i)CTk (t, i) + (3.18)

+ε(i)Bv(t, i)DT
v (t, i))(

r∑
k=1

Ck(t, i)Ys(t, i)CTk (t, i)+ε(i)Dv(t, i)DT
v (t, i))−1,

1 ≤ i ≤ N.

It must be remarked that in (3.14) and (3.18), ε(i) is replaced by πi∞ in the
case of OP1 and by δ(i), in the case of OP2, respectively.

Applying Theorem 7 from Chapter 4 in [10] one obtains a set of necessary and
sufficient conditions for the existence of the bounded on R and stabilizing so-
lution
Xs(t) = (Xs(t, 1), ..., Xs(t,N)) of SGRDE-C (3.13) which satisfies the con-
dition

DT
z (t, i)Dz(t, i) +

r∑
k=1

BT
k (t, i)Xs(t, i)Bk(t, i)>0, 0 ≤ t ≤ θ, 1 ≤ i ≤N.(3.19)

Moreover, Xs(t+ θ, i) = Xs(t, i) ∀t ∈ R, 1 ≤ i ≤ N .

Also, applying Theorem 7 from Chapter 4 in [10] to a suitable dual equation
one obtains a set of necessary and sufficient conditions for the existence of a
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bounded on R and stabilizing solution Ys(t) = (Ys(t, 1), ..., Ys(t,N)) of the
SGRDE-F (3.14) which satisfies the following sign condition:

ε(i)Dv(t, i)DT
v (t, i)+

r∑
k=1

Ck(t, i)Ys(t, i)CTk (t, i)>0, 0≤ t≤θ, 1≤ i≤N.(3.20)

Additionally, we have Ys(t+ θ, i) = Ys(t, i) (∀)t ∈ R, i ∈ S.

Several aspects concerning the numerical computation of the stabilizing so-
lutions of (3.13) and (3.14), respectively, via some Lyapunov iterations can
be found in [8] or [10] Chapter 4.

4 The main result

Let us introduce the following performance index Wε : Ks(G)→ R+ defined
by:

Wε(Gc) =
1
θ

θ∫
0

N∑
j=1

ε(j)Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)]ds (4.1)

where ε(i) ≥ 0 are given and Xcl(t) = (Xcl(t, 1), ...,Xcl(t,N)) is the unique
bounded on R solution of the affine differential equation on SNn+nc

(3.6),
(3.8).

From Theorem 3.2 we deduce that if ε(i) = πi∞ then Wε(Gc) coincides with
J1(Gc) while if ε(i) = δ(i) then Wε(Gc) recovers J2(Gc). Therefore, the
finding of a controller which minimizes (4.1) allows us to obtain in an unified
manner the solutions of the two optimization problems stated in Section 2.

Theorem 4.1. Assume: a) the assumptions H1) and H2) are fulfilled.

b) The SGRDE-C (3.13) has a θ periodic and stabilizing solution Xs(·) which
verifies condition (3.19).

c) The SGRDE-F (3.14) has a θ-periodic and stabilizing solution Ys(·) which
verifies condition (3.20).
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Consider the controller G̃ε
c having the state space representation

dx̃c(t) = Ãc0(t, ηt)x̃c(t)dt+
r∑

k=1

Ãck(t, ηt)x̃c(t)dwk(t) + B̃c(t, ηt)duc(t)

dyc(t) = C̃c(t, ηt)x̃c(t) (4.2)

where

Ãck(t, i) = Ak(t, i) +Bk(t, i)Fs(t, i) +Ks(t, i)Ck(t, i), 0 ≤ k ≤ r
B̃c(t, i) = −Ks(t, i), C̃c(t, i) = Fs(t, i). (4.3)

Fs(t, i) and Ks(t, i) being constructed as in (3.16), (3.18) respectively. Under
the considered assumptions G̃ε

c ∈ Ks(G) and Wε(G̃ε
c) ≤ Wε(Gc), for all

Gc ∈ Ks(G).

The minimal value achieved by the cost (4.1) is

Wε(G̃ε
c) =

1
θ

θ∫
0

N∑
j=1

{ε(j)Tr[BT
v (s, j)Xs(s, j)Bv(s, j)] (4.4)

+Tr[V (s, j)Fs(s, j)Ys(s, j)F Ts (s, j)V (s, j)]}ds

where

V (s, j) = (DT
z (s, j)Dz(s, j) +

r∑
k=1

BT
k (s, j)Xs(s, j)Bk(s, j))

1
2 . (4.5)

Proof. From (4.3) one sees that G̃ε
c depends upon ε, via Ks(t, i). In the

sequel we do not write explicitly the dependence of G̃c upon the parameter
ε.

To show that G̃c ∈ Ks(G) we consider the linear system of type (2.5) ob-
tained when coupling (4.2), (4.3) to (2.1), taking uc(t) = y(t) and u(t) =
yc(t).

If x̃cl(t) = (x̃(t), x̃Tc (t))T is the state vector of this system, we perform the
change of the state variables as:

ẽ(t) = x̃(t)− x̃c(t).
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Thus, we obtain the system of stochastic differential equations:

dx̃(t) = [(A0(t, ηt) +B0(t, ηt)Fs(t, ηt))x̃(t)−B0(t, ηt)Fs(t, ηt)ẽ(t)]dt

+
r∑

k=1

[(Ak(t, ηt) +Bk(t, ηt)Fs(t, ηt))x̃(t)

−Bk(t, ηt)Fs(t, ηt)ẽ(t)]dwk(t) (4.6)
dẽ(t) = [A0(t, ηt) +Ks(t, ηt)C0(t, ηt)]ẽ(t)dt

+
r∑

k=1

[Ak(t, ηt) +Ks(t, ηt)Ck(t, ηt)]ẽ(t)dwk(t)

The exponential stability in mean square of the closed loop systems (3.15)
and (3.17), respectively, together with Theorem 32, (iii) Chapter 2 in [10]
allows us to deduce that the trajectories of (4.6) satisfy:

lim
t→∞

E[|x̃(t)|2 + |ẽ(t)|2|η0 = i] = 0

or equivalently,

lim
t→∞

E[|x̃cl(t)|2|η0 = i] = 0 (4.7)

for all 1 ≤ i ≤ N and all x̃cl(0) ∈ R2n.

Further (4.7) together with Theorem 23 in Chapter 2 in [10] lead to

E[|x̃cl(t)|2|ηt0 = i] ≤ βe−α(t−t0)|x̃cl(t0)|2

for all t ≥ t0 ≥ 0, x̃cl(t0) ∈ R2n, for some β > 0 and α > 0.

This shows that the controller (4.2), (4.3) is stabilizing. It remains to prove
that the controller G̃c minimizes the cost (4.1). First we rewrite (4.1) in the
form

Wε(Gc) =
1
θ

θ∫
0

N∑
j=1

ε(j)Tr[BT
v (s, j)Xs(s, j)Bv(s, j)]ds (4.8)

+
1
θ

θ∫
0

N∑
j=1

ε(j)Tr[BT
vcl(s, j)X̂(s, j)Bvcl(s, j)]ds
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for all Gc ∈ Ks(G), where X̂(t, j) = Xcl(t, j) − diag(Xs(t, j), 0). By direct
calculations one obtains that t → X̂(t) = (X̂(t, ·), ..., X̂(t,N)) verifies the
affine differential equation

d

dt
X̂(t) + L∗cl(t)X̂(t) + Θ(t) = 0 (4.9)

where Θ(t) = (Θ(t, 1), ...,Θ(t,N)) with

Θ(t, i) = (ΘT (t, i)Θ(t, i))
Θ(t, i) = V (t, i)

(
Fs(t, i) −Cc(t, i)

)
. (4.10)

So X̂(t, i) ≥ 0, (∀) t ∈ R, 1 ≤ i ≤ N . Reasoning as in the proof of the
equality (3.12), one gets

N∑
j=1

ε(j)Tr[BT
vcl(s, j)X̂(s, j)Bvcl(s, j)] =

N∑
j=1

Tr[Θ(s, j)Yεcl(s, j)ΘT (s, j)].

This allows us to transform (4.8) as follows:

Wε(Gc) =
1
θ

θ∫
0

N∑
j=1

ε(j)Tr[BT
v (s, j)Xs(s, j)Bv(s, j)]ds

+
1
θ

θ∫
0

N∑
j=1

Tr[Θ(s, j)Yεcl(s, j)ΘT (s, j)]ds.

Further, we write

Wε(Gc) = µ̃+
1
θ

θ∫
0

N∑
j=1

Tr[Θ(s, j)Ŷ(s, j)ΘT (s, j)]ds (4.11)

where we denote by

µ̃ =
1
θ

θ∫
0

N∑
j=1

{ε(j)Tr[BT
v (s, j)Xs(s, j)Bv(s, j)] (4.12)

+Tr[V (s, j)Fs(s, j)Ys(s, j)F Ts (s, j)V (s, j)]}ds

and Ŷ (s, j) = Yεcl(s, j)− diag(Ys(s, j), 0).
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By direct calculations one obtains that t→ Ŷ(t) = (Ŷ (t, 1), ..., Ŷ (t,N)) is a
bounded solution of the affine differential equation on SNn+nc

:

d

dt
Ŷ(t) = Lcl(t)Ŷ(t) + Ψ(t) (4.13)

where Ψ(t) = (Ψ(t, 1), ...,Ψ(t,N)) with

Ψ(t, i) = Ψ(t, i)ΨT (t, i)

Ψ(t, i) =
(

Ks(t, i)
−Bc(t, i)

)
V̂ (t, i) (4.14)

V̂ (t, i) = (ε(i)Dv(t, i)DT
v (t, i) +

r∑
k=1

Ck(t, i)Ys(t, i)CTk (t, i))
1
2 .

Applying Theorem 4.9 in [9] to the equation (4.13), (4.14) we deduce that

Ŷ (t, i) ≥ 0 (4.15)

for all t ∈ R, 1 ≤ i ≤ N and for all Gc ∈ Ks(G).

From (4.12) one sees that µ̃ does not depend upon the controller Gc. More-
over, from (4.11) and (4.15) we deduce that

Wε(Gc) ≥ µ̃ (4.16)

for all Gc ∈ Ks(G). To complete the proof we have to show that in (4.16)
the equality takes place if Gc = G̃c. To this end let us remark that in the
case of the controller G̃c we have

Θ(s, j)Ŷ (s, j)ΘT (s, j) = V (s, j)Fs(s, j)J Ŷ (s, j)J TF Ts (s, j)V (s, j) =
= V (s, j)Fs(s, j)Z11(s, j)F Ts (s, j)V (s, j)(4.17)

where J =
(
In −In

)
and Z11(s, j) is the 11-block of the matrix Z(t, j) =

T Ŷ(s, j)T T , with T =
(
In −In
0 In

)
. One obtains the equation

d

dt
Z(t, i) = Â0(t, i)Z(t, i) + Z(t, i)ÂT0 (t, i) +

r∑
k=1

Âk(t, i)Z(t, i)ÂTk (t, i)(4.18)

+
N∑
j=1

qjiZ(t, j) + T Ψ(t, i)ΨT (t, i)T T
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where Âk(t, i) ∈ R2n×2n, Âk(t, i) = T Ãkcl(t, i)T −1, Ãkcl(t, i) being con-
structed via (2.4) using (4.3). Taking the (1,1)-block of (4.18) one obtains
that t → (Z11(t, 1), ..., Z11(t,N)) is a bounded solution of the differential
equation on SNn :

d

dt
Z11(t, i) = (A0(t, i)+Ks(t, i)C0(t, i))Z11(t, i)

+Z11(t, i)(A0(t, i)+Ks(t, i)C0(t, i))T

+
r∑

k=1

(Ak(t, i) +Ks(t, i)Ck(t, i))Z11(t, i)(Ak(t, i) (4.19)

+Ks(t, i)Ck(t, i))T +
N∑
j=1

qjiZ11(t, j), 1 ≤ i ≤ N

Having in mind the fact that Ks(t, i) is the stabilizing injection associated
to the stabilizing solution Ys(·) of SGRDE-F (3.14) we conclude that (4.19)
admits a unique bounded on R solution. Hence Z11(t, i) = 0 for all t ∈ R,
1 ≤ i ≤ N . So, we deduce that in (4.16) we have equality if Gc = G̃c. This
completes the proof.

Remark 4.1. In the special case N = 1, Ak(t, 1) = 0, Bk(t, 1) = 0,
Ck(t, 1) = 0, 1 ≤ k ≤ r, t ∈ R the optimal controller (4.2), (4.3) reduces to
the well known Kalman filter (see e.g. [20]).
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