In Memoriam Adelina Georgescu

FIXED POINTS THEOREMS IN MULTI-METRIC SPACES*

Mitrofan M. Choban[†]

Laurențiu I. Calmuţchi[‡]

Abstract

The aim of the present article is to give some general methods in the fixed point theory for mappings of general topological spaces. Using the notions of the multi-metric space and of the E-metric space, we proved the analogous of several classical theorems: Banach fixed point principle, Theorems of Edelstein, Meyers, Janos etc.

MSC: 54H25, 54E15, 54H13, 12J17, 54E40.

keywords: fixed point, *m*-scale, semifield, multi-metric space, *E*-metric space, pseudo-metric.

1 Introduction

Any space is considered to be Tychonoff and non-empty. We use the terminology from [12, 13].

Let \mathbb{R} be the space of real numbers.

A pseudo-metric on a set X is a function $\rho: X \times X \longrightarrow \mathbb{R}$ satisfying the following conditions: $\rho(x, x) = 0$, $\rho(x, y) = \rho(y, x)$ and $\rho(x, z) \le \rho(x, y) + \rho(y, z)$ for all $x, y, z \in X$. The number $\rho(x, y)$ is called the ρ -distance between the points x, y.

^{*}Accepted for publication on November 12, 2010.

[†]Department of Mathematics, Tiraspol State University, Kishinev, Republic of Moldova, MD 2069, mmchoban@gmail.com

 $^{^{\}ddagger} \mathrm{Department}$ of Mathematics, Tiraspol State University, Kishinev, Republic of Moldova, MD 2069