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Abstract

It is assumed that the dynamics of the capital of a firm is governed
by a Cauchy problem for a system of two nonlinear ordinary differential
equations containing three real parameters. In this paper we determine
a k ≥ 3 order degenerated Hopf bifurcation point for this economical
model. To this aim the normal form technique is used.
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1 Introduction

The nonlinear dynamics theory enables us to understand and develop more
realistic processes and methods in economic models. The development of
the theory of singularities and the theory of bifurcation has completed the
multitude of ways at our disposal to analyze and represent more and more
complex dynamics, giving us the possibility of analyzing some systems which
were hard, if not impossible to approach by traditional methods. The study
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of nonlinear dynamics is of outmost interest because the economical sys-
tems are by excellence nonlinear systems. Many of these contain multiple
discontinuities and incorporate inherent instability being permanently under
shock actions, extern and intern perturbations.The classical methods based
on continuity, linearity and stability have been proven unstable for represent-
ing economic phenomena and processes with a higher degree of complexity.
The researchers are bound to follow these processes in a dynamic way, to
study qualitatively the changes that interfere with the implicated economic
variables as well as the results obtained with their help.There are several
models describing microeconomical dynamics. One of them is shown by the
subsequent model consisting in the Cauchy problem x(0) = x0, y(0) = y0 for
the system o.d.e. in R2.

1.1 Mathematical model

Let Kt be the capital of a firm at the time t and let Lt be the number of
workers. Then the production force reads yt = F (Kt, Lt). The dynamics
of the capital depends on the politics of firm development involving the net
profit πt, the dividends covering by shareholders δt (where δtπt represents
the dividends and (1 − δt)πt are the remaining investments), the capital
depreciation by a coefficient µt and the income obtained by liquidation of the
depreciated assets at the revenue costs λt. Let γt be the rate of change of
the capital, such that πt = γtyt. Then, according to Oprescu [6], Ungureanu
[7] {

K̇(t) = γt(1− δt)F (Kt, Lt)− µt(1− λt)Kt

L̇(t) = α1Kt + α2Lt − α0

where the dot over quantities represents the differentiation with respect to
time. Within this system K and L : R→ R are unknown functions depend-
ing on independent variable t (time), K− the capital of a firm and L- the
number of workers.

This study is made according to the simplifying assumption that the
parameters are considered constant µt = µ, δt = δ, γt = γ, λt = λ. If
yt = V Kα

t L
β
t and the production has an increasing physical efficiency, i.e.

α+ β > 1, the above equations become{
ẋ = cx2y + bx
ẏ = x+ α2y − 1

(1.1.1)
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where we choose α = 2, β = 1, x = β1Kt, y = β2Lt, β1 = α1/α0, β2 = 1/α0

for α0 6= 0, α1 6= 0, a = V γ(1− δ), b = −µ(1− λ), c = aα2
0/α1. In this way

the new state functions x and y are proportional to the capital and working
force respectively. In addition, the number of parameters was reduced from
eight to three.

1.2 Equilibrium points

Here α2,b,c ∈ R are constant economical parameters and x and y are two
economical state functions which are proportional to the capital and working
force respectively.

The dynamics generated by (1.1.1) strongly depends on the three param-
eters. However, it is qualitatively unchanged for parameters lying in some
areas of the parameter space. Correspondingly, for various points in these
areas, the phase portraits are topologically equivalent.

In phase portraits formation a particular influence is exercised by the
equilibria. They are the starting points in the study of the dynamical bifur-
cation (understood as a negation of the structural stability).

In the (x, y) phase plane they correspond to the equilibrium points de-
noted by u .

The following cases hold:

a) b = c = α2 = 0⇒ (1.1.1) has an infinity of equilibria u = (1, y0) ,∀y0 ∈ R
possessing the eigenvalues s1 = s2 = 0;

b) b = c = 0, α2 6= 0⇒ (1.1.1) has an infinity of equilibria u = (1− α2y0, y0),
∀ y0 ∈ R possessing the eigenvalues s1 = 0, s2 = α2;

c) b = α2 = 0, c 6= 0⇒ (1.1.1) has a unique equilibrium u = (1, 0) possessing
the eigenvalues s1,2 = ±

√
c for c > 0 and s1,2 = ±i

√
−c for c < 0;

d) c = α2 = 0, b 6= 0⇒ (1.1.1) has no equilibrium;

e) c = 0 , bα2 6= 0⇒ (1.1.1) has an equilibrium u =
(
0, α−1

2

)
possessing the

eigenvalues s1 = b, s2 = α2;

f) b = 0, cα2 6= 0 ⇒ (1.1.1) has two equilibria u1 = u2 =
(
0, α−1

2

)
and

u3 = (1, 0) possessing the eigenvalues s1 = 0,s2 = α2 and s1,2 =(
α2 ±

√
α2

2 + 4c
)
/2, respectively;
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Figure 1: The surface S

g) α2 = 0, bc 6= 0 ⇒ (1) has an equilibrium u = (1,−b/c) possessing the
eigenvalues s1,2 =

(
−b±

√
b2 + 4c

)
/2 ;

h) α2bc 6= 0⇒ (1.1.1) has three equilibria u1 =
(
0, α−1

2

)
,

u2 =
(
c+
√
c2+4bcα2

2c ,
c−
√
c2+4bcα2

2cα2

)
, u3 =

(
c−
√
c2+4bcα2

2c ,
c+
√
c2+4bcα2

2cα2

)
.

In the general case h), the three equilibria can never coincide, neither in
the limit b, c, α2 → ±∞ . However, two of them can coincide at the points
of the parameter space situated on a surface S (Figure 1). More exactly if
u1 = u2 = (1/2, 1/2α2) . Therefore S is a hyperboloid with two sheets. It has
the equation c = −4bα2, where bα2 6= 0 and , and its sheets are situated in
the octants characterized by c > 0, bα2 < 0, and c < 0, bα2 > 0, respectively.

In the domain determined by sheets of S and the plane on which it is
supported,(b, α2) , the system (1.1.1) has an equilibrium point. Outside this
domain, at the points which do not belong to S or the three planes b = 0,
c = 0, α2 = 0 , the system (1.1.1) possesses three equilibria.

We recall that on the sheets of S (1.1.1) possesses two equilibria and S
has no point in the plans of coordinates on the parameter space. We can have
two equilibria only on S and in the b = 0 plane without axes, one equilibrium
is double, namely u2 = u3 =

(
0, α−1

2

)
, and another one u2 = (1, 0) simple.

Let us notice that in this case c 6= 0.
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Let us define the domains D1 and D2 determined by the sheets of S and
the c = 0 plane (b > 0, α2 < 0 and b < 0, α2 > 0, respectively). The domains
D1 and D2 do not contain Oc axis. There are three equilibria only for points
of the parameter space situated outside the domains D1 and D2 .

System (1.1.1) can have one equilibrium only in the following three cases:
1) Points situated on the Oc axis without origin. In this case the equi-

librium is u2 = (1, 0);
2) The c = 0 plane without axis. In this case the equilibrium point is

u1 =
(
0, α−1

2

)
;

3) The α2 = 0 plane. In this case the equilibrium is u2 = (1,−b/c).
To points of the Ob axis without origin no equilibrium corresponds. For

points of the Oα2 axis including the origin there are an infinity of equilibria
situated on the straight-line x + α2y − 1 = 0. On the Oα2 axis without
origin the corresponding equilibria have the form (x0, (1− x0)/α2). Among
them there is u2 = (1, 0) (corresponding to x0 = 1), u1 = u3 =

(
0, α−1

2

)
(corresponding to x0 = 0) and u2 = u3 = (1/2, 1/2α2) (corresponding to
x0 = 1/2). It follows that to the points of the Oα2 axis without origin the
same equilibria u1and u2 = u3 correspond as for the points of S.

The half axes α2 > 0 and α2 < 0 consist of accumulation points for S.
This is true both when S is considered as a topologic subspace of R3 and
when S possesses the above property concerning the equilibria (i.e. u2 = u3).

However, for points of the Oα2 axis without origin, apart from the equi-
libria u1 and u2 = u3, there exists an infinity of other equilibria depending
on the initial datum.

Finally, to the origin of the parameters space an infinity of equilibria of
the form (1, y0)corresponds. Among them, there is also the point u2 = (1, 0)
(corresponding to y0 = 0 ).

2 Nonhyperbolic singularities of Hopf type

2.1 Normal forms

Using the eigenvalues and the eigenvectors of the nonhyperbolic point of equi-
librium u3 corresponding to the values of parameters α2 = b, c < −4b2, we
put the system (1.1.1) in the normal form and emphasises that it corresponds
to a degenerated Hopf singularity.
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Proposition 2.2.1. Up to terms of degree greater than three system{
ẋ = cx2y + bx,
ẏ = x+ by − 1

(2.1.1)

has around the equilibrium u3 = ( c−
√

∆
2c , c+

√
∆

2bc ) not= (u, v), where ∆ = c2 +
4b2c, the normal form {

ẋ5 = irx5 + Cx2
5y5,

ẏ5 = −iry5 + Cx5y
2
5.

Proof. We carry the point u3 at the origin by means of the change of
coordinates x1 = x− u, y1 = y − v. Then (2.1.1) becomes{

ẋ1 = −bx1 + cu2y1 + cvx2
1 + 2cux1y1 + cx2

1y1,
ẏ1 = x1 + by1.

(2.1.1)′

The matrix associated to the system linearized around the point (x1, y1) =

(0, 0) is Q =
(
−b cu2

1 b

)
and it admits the purely imaginary eigenvalues

s1,2 = ±i
√
−c−4b2+

√
c2+4bc

2
not= ±ir. Hence u3 is a Hopf singularity. Let

p = (s1−b, 1) be an eigenvector of Q corresponding to the eigenvalue s1 = ir.
Then, p may be written in the form p = q + it where q = (−b, 1),and t =

(r, 0). The matrix P =
(
r −b
0 1

)
is nonsingular and so, we may perform

the transformation(
x2

y2

)
= P−1

(
x1

y1

)
=

1
r

(
1 b
0 r

)(
x1

y1

)
and obtain a system in (x2, y2). As the linearized system corresponding
at (x2, y2) has not a matrix in a diagonal form we perform the change(
x3

y3

)
= Mc

(
x2

y2

)
whereMc =

(
0, 5 0, 5
−0, 5i 0, 5i

)
. Therefore,

(
x3

y3

)
=

McP
−1

(
x1

y1

)
. As Mc is a matrix in the complex field it follows that

x3, y3 ∈ C namely x3 = y3, (y3 is the complex conjugate of y3). We have
x3 = 1

r [x1 + (b+ ir)y1], y3 = 1
r [x1 + (b− ir)y1] or, x1 = r+ib

2 x3 + r−ib
2 y3,

y1 = i
2(y3 − x3). Thus, (2.1.1) becomes
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{
ẋ3 = irx3 + T

2 ,

ẏ3 = −iry3 + T
2 ,

(2.1.2)

where T = a20x
2
3 +a20y

2
3 +a11x3y3 +a30x

3
3 +a30y

3
3 +a21x

2
3y3 +a21x3y

2
3, a20 =

bc−5b
√

∆
4r + i

√
∆, a11 = b(

√
∆−c)
2r , a21 = ci(c−2b2−

√
∆+4irb)

8r , a30 = −ci(r+ib)2
4r .

In order to eliminate the nonresonant terms of second degree it is nec-
essary to complete the following table, where Λm,i = (m · s) − si and
hm,1 = Xm,i

(m·s)−si
, s = (s1, s2) [1].

Table 2.1

m1 m2 Xm,1 Xm,2 Λm,1 Λm,2 hm,1 hm,2
2 0 a20

2
a20
2 ir 3ir a20

2ir
a20
6ir

1 1 a11
2

a11
2 −ir ir −a11

2ir
a11
2ir

0 2 a20
2

a20
2 −3ir −ir −a20

6ir −a20
2ir

It follows the transformation

(
x3

y3

)
=
(
x4

y4

)
+
(

a20
2ir x

2
4 − a11

2ir x4y4 − a20
6ir y

2
4

a20
6ir x

2
4 + a11

2ir x4y4 − a20
2ir y

2
4

)
,

which introduced in (2.1.2), leads to the system

{
ẋ4 = irx4 +Ax3

4 +Ay3
4 + Cx2

4y4 + Cx4y
2
4,

ẏ4 = −iry4 +Ax3
4 +Ay3

4 + Cx2
4y4 + Cx4y

2
4,

(2.1.3)

where A = 6a2
20+a11a20+6ira30

12ir and C = 2a20a20−3a11a20+3a2
11+6ira21

12ir .

In order to reduce the nonresonant terms of order three (2.1.3) we use
the table.
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Table 2.2

m1 m2 Xm,1 Xm,2 Λm,1 Λm,2 hm,1 hm,2
3 0 A A 2ir 4ir A

2ir
A

4ir

2 1 C C 0 2ir − C
2ir

1 2 C C −2ir 0 − C
2ir −

0 3 A A −4ir −2ir − A
4ir − A

2ir

Thus we obtain the transformation(
x4

y4

)
=
(
x5

y5

)
+

(
A

2irx
3
5 − C

2irx5y
2
5 − A

4iry
3
5

A
4irx

3
5 + C

2irx
2
5y5 − A

2iry
3
5

)
leading to the system{

ẋ5 = irx5 + Cx2
5y5,

ẏ5 = −iry5 + Cx5y
2
5.

(2.1.4)

In this system we retained terms up to the third degree. Thus we ob-
tained the normal form in C. Obviously the second equation is the conjugate
of the first, therefore, up to terms of the third degree the normal form is
(2.1.4)1.

Theorem 2.1.1 The Hopf singularity u3 is degenerated of order k ≥ 2.
Proof. Taking into account the expressions of a20, a11, a21, r, ∆ a direct

computation leads us to the expression of C :
C = − ic

48r3

(
16b4 + 5b2c− c2 + c

√
∆− 7b2

√
∆
)
. Since c < −4b2 it fol-

lows that 16b4 + 5b2c− c2 + c
√

∆− 7b2
√

∆ < −4b2− c2− 3b2
√

∆ < 0, hence
C 6= 0 and C is purely imaginary. Then (2.1.4) has the follow normal form,
according to Arrowsmith [1]:(

0 −β
β 0

)(
y1

y2

)
+

[(N−1)/2]∑
k=1

(y2
1 + y2

2)k
{
ak

(
y1

y2

)
+ bk

(
−y2

y1

)}
+

O
(
|y|N+1

)
, β =

√
detA,N ≥ 3, [.] represents integer part and ak, bk ∈ R

where a1 = 0 and b1 = ImC 6= 0, whence the conclusion of the theo-
rem.(Figure 1)

Corollary 2.1.1 The first Liapunov coefficient associated to system (2.1.1)′

is null (ReC = 0).
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Figure 2: Local phase portrait in the degenerated Hopf bifurcation, for
α2 = b = −0.1, c = −0.04.

2.2 Computation of the Liapunov coefficients

Proposition 2.2.1. The system (2.1.1)′ is topologically equivalent to system


ẋ2 = −ry2 + cvrx2

2 + (2cu− 2vb)x2y2 + cvb2−2cub
r y2

2 + crx2
2y2

−2cbx2y
2
2 + cb2

r y
3
2,

ẏ2 = rx2.

(2.2.1)

Proof. The transformation of coordinates{
x1 = rx2 − by2,
y1 = y2

carries system (2.1.1)′ in (2.2.1). In this conditions, according to Chow
and Wang [2] there exists a smooth function F (x) = r

2(x2
2 + y2

2) +O(|x, y|3)
such that

〈gradF,X0〉 =
m∑
i=1

Vi(x2
2 + y2

2)i+1 +O(|x, y|m+1) (2.2.2)
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where X0 is the vector field corresponding to (2.2.1), and Vi are the Liapunov
coefficients.

Proposition 2.2.2. For the system (2.2.1) we have V1 = 0 and

V2 =− b2c2

24r2

[
13c2 + 78b2c+ 5bc+ 104b4 − 90b3 − (3b+ 52b2 + 13c)

√
c2 + 4b2c

]
.

Proof. We look for F to the form F (x) = r
2(x2

2 + y2
2) +

∑
i+j=k

∑
k>3

cijx
i
2y
j
2.

Therefore, we have

〈gradF,X0〉 = r2x2y2 + r
∑
i+j=3

jcijx
i+1
2 yj−1

2 − r2x2y2 − r
∑
i+j=4

icijx
i−1
2 yj+1

2 +

cvr2x3
2 + cvr

∑
i+j=3

icijx
i+1
2 yj2 + 2c(u− vb)rx2

2y2 +

2c(u− vb)
∑
i+j=4

icijx
i
2y
j+1
2 +

cvb2 − 2cub
r

rx2y
2
2 +

cvb2 − 2cub
r

y2
2

∑
i+j=3

icijx
i−1
2 yj+2

2 + cr2x3
2y2 +

cr
∑
i+j=4

icijx
i+1
2 yj+1

2 − 2cbrx2
2y

2
2 − 2cb

∑
i+j=3

icijx
i
2y
j+2
2 +

cb2x2y
3
2 +

cb2

r

∑
i+j=4

icijx
i−1
2 yj+3

2

Identifying the monomials of degree three coefficients in (2.2.2) we obtain
the following system in unknowns cij , i+ j = 3 :


rc21 + cvr2 = 0,
−rc12 = 0,
3rc03 − 2rc21 + cvb2 − 2cub = 0,
2rc12 − 3rc30 + 2cru− 2cvbr = 0.

The solution of this system reads c12 = 0, c21 = −cvr, c03 = 2cub−cvb2−2r2cv
3r ,

c30 = 2cu−2cvb
3 .

Identifying the monomials of degree four coefficients in (2.2.2) we obtain
the following system in unknowns cij , i+ j = 4 and V1
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

rc31 + 3cvrc30 = V1,

−rc13 + cvb2−2cub
r c12 = V1,

4rc04 − 2rc22 + 2c(u− vb)c12 + 2 cvb
2−2cub
r c21 + cb2 = 0,

3rc13 − 3rc31 + cvrc12 + 4c(u− vb)c21 + 3 cvb
2−2cub
r c30 − 2cbr = 2V1,

2rc22 − 4rc40 + 2cvrc21 + 6c(u− vb)c30 + cr2 = 0,

the solution of which is V1 = 0, c13 = 0, c31 = −2c2uv + 2c2v2b, c04 =
c22
2 + 2c2v2b2−4c2uvb−cb2

4r , c40 = c22
2 + 4c2u2−8c2uvb+4c2v2b2−2c2v2r2+cr2

4r .

Remark 2.2.1. The result V1 = 0 represents a new proof for Theorem
2.1.1.

Identifying the monomials of degree five coefficients in (2.2.2) we obtain
the following system in unknowns cij , i+ j = 5



rc41 + 4cvrc40 = 0,
rc14 + cvb2−2cub

r c13 + cb2

r c12 = 0,
5rc05 − 2rc23 + 2c(u− vb)c13 + 2 cvb

2−2cub
r c22 − 2bcc12 + 2cb2

r c21 = 0
4rc14 − 3rc32 + cvrc13 + 4c(u− vb)c22 + 3 cvb

2−2cub
r c31 + crc12

−4cbc21 + 3cb2

r c30 = 0,
3rc23 − 4rc41 + 2cvrc22 + 6c(u− vb)c31 + 4 cvb

2−2cub
r c40

+2crc21 − 6bcc30 = 0,
2rc32 − 5rc50 + 3cvrc31 + 8c(u− vb)c40 + 3crc30 = 0

whence
c14 = 0,
c41 = −4cvc40,
c23 =

[
1
3r (−16cvr − 4 cvb

2−2cub
r )c40 − 2cvrc22 − 6c(u− vb)c31 − 2crc21

+6cbc30] ,
c32 =

[
1

3r2
4cr(u− vb)c22 + 6c3v3b3 − 18c3v2ub2 + 12c3vu2b+ 4c2vbr2

+2c2ub2 − 2c2vb3
]
,

c50 = 1
5r [2rc32 + 3cvrc31 + 8c(u− vb)c40 + 3crc30] ,

c05 = 2
5c23 − 2cb2

5r2
c21 − 2

5r2
(cvb2 − 2cub)c22.

By identifying the coefficients of the monomials of degree six in (2.2.2)
we obtain the following system in unknowns V2 and cij , i+ j = 6
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

rc51 + 5cvrc50 = V2,

−rc15 + cvb2−2cub
r c14 + cb2

r c13 = V2

2rc42 − 6rc60 + 4cvrc41 + 10c(u− vb)c50 + 4crc40 = 0
3rc33 − 5rc51 + 3cvrc32 + 8c(u− vb)c41 + 5 cvb

2−2cub
r c50

+3crc31 − 8cbc40 = 3V2,

4rc24 + 2cvrc23 + 6c(u− vb)c32 − 4rc42 + 4 cvb
2−2cub
r c41+

2crc22 − 6bcc31 + 4cb2

r c40 = 0,
5rc15 − 3rc33 + cvrc14 + 4c(u− vb)c23 + 3 cvb

2−2cub
r c32 + crc13

−4cbc22 + 3cb2

r c31 = 3V2,

6rc06 − 2rc24 + 2c(u− vb)c14 + 2 cvb
2−2cub
r c23 − 2bcc13 + 2cb2

r c22 = 0.

Since c15 = −V2
r , c51 = V2

r − 5cvrc50, by replacing the found value for 3rc33

from the sixth equation in the fourth equation and taking into account the
found values for cij , i+ j = 5, we have

V2 = − b
2c2

24r2
13c2 + 78b2c+ 5bc+ 104b4 − 90b3

−(3b+ 52b2 + 13c)
√
c2 + 4b2c.

The set V2 = 0 intersects the domain
{
α2 = b, c < −4b2

}
along a curve

γ3 the existence of which is proved by studying the sign of V2 in the domain
considered, and also by numerical methods (figure 3).

It is important to remark that the equilibrium ū3 exists also on the half-
axis c < 0 and in this case b = 0 implies V2 = 0. The curve γ3 and the
negative half-axis c < 0 divide the interior of the parabola α2 = b, c = −4b2

in three regions:

U1 =
{

(b, b, c)| c < 0,−
√
−c
2 < b < 0

}
,

U2 = {(b, b, c)| c < 0, 0 < b < b(c)} ,
U3 =

{
(b, b, c)| c < 0, b(c) < b <

√
−c
2

}
,

where α2 = b, b = b(c) are the equations of the curve γ3. It is easy to see
that V2 < 0 on U1 ∪ U2, V2 > 0 on U3. As V2 = 0 on γ3 and on the half-axis
c < 0 it follows
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Figure 3: The sign of V2 in
{
α2 = b, c < −4b2

}
.

Theorem 2.2.1 The point of equilibrium ū3 is locally a Bautin bifurca-
tion with the Liapunov coefficient V2 < 0 for (α2, b, c) ∈ U1 ∪ U2, a Bautin
bifurcation with the Liapunov coefficient V2 > 0 for (α2, b, c) ∈ U3, and a de-
generated Hopf bifurcation of order k ≥ 3 for a point of γ3 or of the negative
half-axis c < 0.

2.3 Conclusions

From economic point of view, the variation of capitalK and labor L over time
it can be observed, starting from the initial significant data corresponding
to some points in the parameter space. Therefore, there are situations when
the system considered enable a periodic solution appropriate to a cyclical
economic evolution. Negative phenomena such as production shortage and
increase of unemployment rate and also the positive ones, featured by refur-
bishment of production capacities that could induce the growth of demand for
consumption goods and determination of employment level, can be relieved.
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