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Abstract

The Global Random Walk algorithm (GRW) performs a simulta-
neous tracking on a fixed grid of huge numbers of particles at costs
comparable to those of a single-trajectory simulation by the traditional
Particle Tracking (PT) approach. Statistical ensembles of GRW sim-
ulations of a typical advection-dispersion process in groundwater sys-
tems with randomly distributed spatial parameters are used to obtain
reliable estimations of the input parameters for the upscaled transport
model and of their correlations, input-output correlations, as well as
full probability distributions of the input and output parameters.
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1 Introduction

Models of passive scalar transport in highly heterogeneous media, such as
groundwater systems, turbulent atmosphere, or plasmas, are often based on
a stochastic partial differential equation for the concentration field c(x, t),

∂tc+ V∇c = D∇2c, (1)

with space variable drift V(x) which is a sample of a random velocity field,
and a local diffusion coefficient D which is assumed constant [9, 10, 14, 15, 7].
The normalized concentration solving (1) for the initial condition c(x, 0) =
δ(x−x0) is the probability density function of the diffusion process described
by the Itô stochastic ordinary differential equation

Xi(t) = x0i +
∫ t

0
Vi[X(t′)]dt′ +Wi(t), (2)

where i = 1, 2, 3, x0i = Xi(0) are deterministic initial positions and Wi are
the components of a Wiener process of mean zero and variance 2Dt [5].

In this paper we consider contaminant transport in saturated groundwa-
ter systems. The time-stationary random velocity field V(x) is, in this case,
the solution of the continuity and Darcy equations

∇V = 0, V = −K∇h, (3)

where K(x) is the hydraulic conductivity of the medium and h is the piezo-
metric head [7]. Dirichlet boundary conditions, consisting of constant heads
at the inlet and outlet boundaries of the domain, ensure the stationarity
in time of the velocity field V. The hydraulic conductivity K is supplied
by various interpretations of field-scale measurements in form of a spatially
distributed random parameter (random field) [2].

If the random velocity field, obtained by solving (3) for an ensemble of
realizations of the K field, has a finite correlation range then it can be shown
that, under certain conditions, the ensemble mean concentration is described
asymptotically by an upscaled model of form (1), with drift coefficient given
by the mean velocity and enhanced diffusion coefficients proportional with
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the velocity correlation lengths [6, 4]. Under less restrictive conditions, with
the only assumption that the first two spatial moments of the concentration
are finite at finite times, the mean concentration can still be described by an
equivalent Gaussian distribution with time variable diffusion coefficients [15],
referred to as the “macrodispersion” model in the hydrological literature [2].
Root-mean-square deviations of the solutions to (1), for fixed realizations of
the velocity field, from the predictions of the upscaled model are often used
to quantify the uncertainty in stochastic modeling of transport in random
environments [9, 12, 13, 14]. When the estimated mean-square uncertainty
is acceptably small, one considers that “ergodic conditions” are met and the
macrodispersion model can be successfully used to describe the transport
in a single realization of the groundwater formation [9]. Nevertheless, for
contamination risk assessments mean-square uncertainty assessments are not
enough and extreme values of the stochastic predictions are also required.
Such a task can be carried out by assessing the correlations and the full
probability distributions of the input/output parameters [1].

When solving advection-dominated transport problems associated to (1),
like the one considered here, with Péclet numbers Pe= Uλ/D = 100, where
U is the amplitude of the mean velocity and λ a correlation length, the chal-
lenge is to ensure the stability of the solutions and to avoid the numerical
diffusion [7]. Therefore, numerical solutions to the Itô equation (2), imple-
mented in so called Particle Tracking (PT) algorithms, are often used to
simulate trajectories of computational particles and to estimate concentra-
tions by particles densities. PT methods are stable, free of numerical dif-
fusion, thus suitable for advection-dominated transport problems. However,
since the computational costs increase linearly with the number of particles,
the estimated concentrations are too inaccurate for large-scale simulations
of transport in groundwater. Overcoming the limitations of the sequential
PT procedure, the Global Random Walk (GRW) has no limitations as con-
cerning the number of particles [9, 16]. As shown in Sect. 2.2 below, GRW
provides accurate simulations of the concentration field at costs comparable
to those of a single-trajectory PT simulation.

The paper is organized as follows. After recalling basic notions about
Euler schemes and PT methods in Section 2.1, we introduce in Section 2.2
the GRW algorithm as a weak numerical scheme for the Itô equation and in
Section 2.3 we present a two-dimensional GRW algorithm. A Monte Carlo
approach based on GRW is described in Section 3.1. Finally, in Section
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3.2 we demonstrate the ability of the GRW approach to produce a detailed
sensitivity and uncertainty numerical analysis of the macrodispersion model.

2 Numerical simulations of diffusion processes

2.1 Itô equation and Particle Tracking

Let us consider the one-dimensional Itô equation (2) and an equidistant time
discretization 0 < δt < · · · < kδt < · · · < Kδt = T . In most of its implemen-
tations, the PT simulation of the particle’s trajectory consists of an Euler
approximation Yt of the solution X(t), which is a continuous time process
satisfying the iterative scheme

Yk+1 = Yk + Vkδt+ δWk, (4)

where Yk = Ykδt, Vk = V (Yk), and δWk = Wk+1−Wk is the increment of the
Wiener process. While the strong convergence of order β > 0 of the Euler
scheme requires

lim
δt−→0

E (|Xt − Yt|) ≤ Cδtβ,

where E denotes the expectation, for the weak convergence of order β > 0,
it suffices that

lim
δt−→0

|E (g(Xt))− E (g(Yt))| ≤ Cδtβ,

for some functionals g(Xt) (e.g. moments E(Xm
t ), m ≥ 1).

For strong pathwise convergence, the Euler scheme (4) has to consider
the Wiener process specified in the Itô equation (2). For weak convergence,
when only the probability distribution is approximated, the increments of the
Wiener process can be replaced by random variables ξ with similar moments.
For weak Euler scheme of order β = 1 the first three moments of ξ have to
satisfy, for some constant M , the condition [5, Sect. 5.12]

|E(ξ)|+
∣∣E(ξ3)

∣∣+
∣∣E(ξ2)− δt

∣∣ ≤Mδt2.

Easily generated noise increments satisfying the above condition are the
two-states random variables

ξ : Ω −→ {−
√

2Dδt,+
√

2Dδt}, P{ξ = ±
√

2Dδt} =
1
2
. (5)
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2.2 Global Random Walk

As far as one approximates probability distributions and their moments the
trajectories of the weak Euler scheme are in fact not necessary. The probabil-
ity distribution of the surrogate random increments of the Wiener process (5)
is the limit over a large number of trials N of the relative frequency n/N of
occurrence of n heads or tails of an unbiased coin. This can also be thought
of as probability that a random walker takes unbiased left/right jumps of
constant length δx =

√
2Dδt on a lattice,

P{←} = P{→} = lim
N−→∞

n←

N
= lim

N−→∞

n→

N
=

1
2
, (6)

where n← and n→ are the number of walkers jumping to the first-neighbor
left site and to the first-neighbor right site, respectively.

The evaluation of the moments E(Xm
t ) within the numerical implemen-

tation of the weak Euler scheme consists of an arithmetic average, over an
ensemble of trajectories (4), of the position of the particles at a given time,
which approximates the stochastic average with respect to the probability
distribution, E(Xt) =

∫
xmP (t, dx). The latter average can also be esti-

mated by discretizing the integral on a regular grid of length L and space
step δx as a sum

∑L
i=1(iδx)mP (iδx), where the probability distribution at a

fixed time P (iδx) can be approximated by the relative frequency of occupa-
tion of the i-th lattice site, ni/N . Since, according to (5), the walkers cannot
be trapped at lattice sites, the occupancy number ni is the sum of numbers
of wlakers reaching the site i from the left, n→i , and from the right, n←i , i.e.
ni = n→i + n←i . One obtains thus the estimation of the m-th order moment
of Xt given by

E(Xm
t ) =

L∑
i=1

(iδx)m
(
n→i
N

+
n←i
N

)
. (7)

For large N , the random variables n→i and n←i occurring in (6-7) can be
well approximated as follows. If the number ni of walkers at the grid site i is
even then half of them jump to the left and half to the right, n←i = n→i = n/2.
If ni is odd then one walker is allocated to either n←i or to n→i with the
same probability, P{←} = P{→} = 1/2. One obtains in this way a GRW
algorithm for the Wiener process, described by equation (2) without drift
term [16]. Figure 1 illustrates the evolution of the number ni of random
walkers over the first three simulation steps, obtained with a straightforward
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MATLAB implementation of the above one-dimensional GRW algorithm.
The concentration at a given time (solution of (1)) can be simply estimated
as c(iδx) = ni/δx.

Figure 1: Distribution of N = 300 random walkers after the first three time
steps of the GRW simulation.

Unlike the discrete-time grid-free weak Euler scheme, the GRW algorithm
is a discrete time-space stochastic scheme. As follows from (5) the constant
amplitude δx of the random jumps ξ is related to the time step δt and the
diffusion coefficient D by

D =
δx2

2δt
. (8)

Since the numerical scheme is constrained by the relation (8), GRW is not
affected by numerical diffusion. GRW is also stable because the number
of random walkers N is conserved. Figure 2 shows the estimated mean
M = E(Xt) and diffusion coefficient D = [E(X2

t )−E(Xt)2]/(2t), computed
according to (7), as well as the final distribution of ni for a diffusion process
with D = 1 resulted from a GRW simulation with δx = 1 and δt = 0.5.



224 Nicolae Suciu, Călin Vamoş, Harry Vereecken, Peter Knabner

It is also possible to simplify the GRW algorithm by completely removing
the randomness from the scheme. This is done by setting n←i and n→i to the
exact value of n/2. In this case N has no longer the meaning of a number
of random walkers and can be taken as an arbitrary positive real number,
for instance equal to 1. This deterministic GRW scheme is equivalent to the
finite-difference scheme for the heat equation and converges as δx2 for δx→ 0
[16]. Since according to relation (8) δx2 ∼ δt, the deterministic GRW has
the same order of convergence with the time step as the weak Euler scheme
of order β = 1. The convergence of the stochastic GRW simulation reaches
the same order only if the number of random walkers N is large enough to
smooth out the random fluctuations of ni. Figure 3 shows the dependence
on N of the absolute error eD(t) = |Dgrw(t)−D| and the convergence of the
norm ‖Dgrw −D‖ defined by

‖Dgrw −D‖2 =
T/δt∑
k=1

[Dgrw(kδt)−D]2 .

Figure 2: Estimation of the diffusion coefficient D(t) and of the mean M(t)
(left) and distribution of N = 300 random walkers after 200 time steps in
the GRW simulation (right).

Note that the GRW scheme described above is practically insensitive to
the number of random walkers N . Assuming that all L grid points contain
random walkers at all the computation time steps, one needs LT calls of
a uniformly-distributed random-numbers generator for the entire simulation.
Hence, the total computation time is of the order of that for the simulation of
a single trajectory of the Itô process by the weak Euler scheme. Since forN =
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Figure 3: Errors for the estimations of diffusion coefficients for increasing N
(left) and the convergence of the error norm (right).

1 the output of the simulation is the trajectory of a single random walker,
GRW can be thought of as a superposition of particle tracking procedures
for arbitrary large numbers of particles. Since the computational cost of a
simulation for N trajectories with the Euler scheme is of the order of NT , the
GRW algorithm achieves a speed-up of computations, with respect to PT,
of the order N/L. For example, while the convergence investigations with
GRW presented in Figure 3 were performed in about one second, similar
investigations with the Euler scheme required several minutes on the same
computer. In case of realistic simulations of diffusion processes, when very
large numbers of particles should be considered, e.g. N = 1024 (Avogadro’s
number), as well as large grids of the order of L = 106 nodes, a huge speed-
up of computations by a factor of 1018 can be achieved by using the GRW
algorithm.

2.3 Two-dimensional GRW algorithm

For a two-dimensional transport problem, the solution of the parabolic equa-
tion (1) is simulated with N particles undergoing advective displacements
and diffusive jumps according to the random walk law on a regular grid. The
concentration at a given time t = kδt and a point (x1, x2) = (i1δx1, i2δx2) is
given by

c(x1, x2, t) =
1

N∆1∆2

s1∑
i′1=−s1

s2∑
i′2=−s2

n(i1 + i′1, i2 + i′2, k), (9)
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where ∆l = 2slδxl, l = 1, 2, are the lengths of the symmetrical intervals
centered at xl and n(i1, i2, k) is the number of particles which at the time
step k lie at the grid point (i1, i2).

For constant diffusion coefficient D, the two-dimensional simulation con-
sists of repeating the one-dimensional procedure on each of the two spatial
directions [16, 11]. The one-dimensional GRW algorithm, which generalizes
the algorithm presented in Section 2.2 to account for advective displacements,
describes the scattering of the n(i, k) particles from (xi, tk) by

n(j, k) = δn(j, j + vj , k) + δn(j + vj − d, j, k) + δn(j + vj + d, j, k), (10)

where vj = Vjδt/δx are discrete displacements produced by the velocity field
and d describes the diffusive jumps. The quantities δn introduced in (10) are
Bernoulli random variables and describe respectively, the number of particles
which remain at the same grid site after an advective displacement and the
number of particles jumping to the left and to the right of the advected
position j + vj . The distribution of the particles at the next time (k + 1)δt
is given by

n(i, k + 1) =
∑
j

δn(i, j, k).

The average number of particles undergoing diffusive jumps and the average
number of particles remaining at the same node after the displacement vj
are given by the relations

δn(j + vj ± d, j, k) =
1
2
r n(j, k),

δn(j, j + vj , k) = (1− r) n(j, k),

where 0 ≤ r ≤ 1. The diffusion coefficient D is related to the grid steps by
the relation

D = r
(dδx)2

2δt
,

which generalizes (8) and ensures that the scheme does not produce numerical
diffusion.

Particularizing the above one-dimensional GRW algorithm for genuine
diffusion, i.e. letting vj = 0 in (10), one can easily see that the evolution of
the mean number of particles is described by

n(i, k + 1) =
r

2
n(i+ d, k) + (1− r)n(i, k) +

r

2
n(i− d, k). (11)
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which has the form of the explicit scheme for the heat equation. Since the
scheme (11) is consistent and, by condition r ≤ 1 (von Neumann’s criterion),
it is also stable, it converges with the order O(δx2). Moreover, as demon-
strated numerically in [16], the un-averaged GRW solution n(i, k) converges
as O(δx2) +O(N−1/2). Thus, for sufficiently large numbers of particles GRW
has the same order of convergence as the stable finite differences scheme.

It is worth noting that while for constant drift coefficients Vj the GRW
algorithm is still equivalent to a finite difference scheme, the equivalence fails
for space variable Vj . Indeed, in the latter case to the site i contribute not
only particles jumping from two symmetrical left and right sites, like in the
finite difference scheme (11), but also particles coming from distances vj ± d
which depend on the variable drift coefficient Vj . However, GRW remains
equivalent to a superposition of many PT schemes and this makes it suitable
for simulating advection-diffusion processes described by the parabolic equa-
tion (1). In fact, as shown in Section 2.2 above, GRW is a weak scheme for
solving Itô equations, which approximates the true probability distribution
(concentration) at all grid points and time steps, without solving for indi-
vidual trajectories. This is the essential feature which considerably increases
the performance of the GRW algorithm with respect to PT, where, after the
sequential simulation of particles trajectories, a post-processing is required to
count the contribution of the computational particles to the concentration,
estimated at given points in space and time steps.

The “reduced fluctuations” GRW algorithm generalizes the simple proce-
dure described in Section 2.2 by

δn(j + vj − d, j, k) =
{

n/2 if n is even
[n/2] + θ if n is odd,

where n = n(j, k) − δn(j, j + vj , k), [n/2] is the integer part of n/2 and θ
is a variable taking the values 0 and 1 with probability 1/2. Further, the
number of particles jumping in the opposite direction, δn(j, j + vj + d, k) is
determined by (10). This algorithm is appropriate for large scale problems,
for two reasons. Firstly, the diffusion front does not extend beyond the limit
concentration defined by one particle at a grid point, keeping a physical
significant shape (unlike in finite differences schemes, where a pure diffusion
front has a cubic shape of side ∼

√
2Dt ). Secondly, the reduced fluctuations

algorithm requires only a minimum number of calls of the random number
generator.
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A comparison with a PT code (done for the diffusion over ten time steps
of N particle starting at the center of a cubic grid) shows that while for the
GRW algorithm there were practically no limitations concerning the total
number of particles and the computation time was of about one second, PT
simulations for N = 109 particles already required a computing time of about
one hour and 256 processors on a CRAY T3E parallel machine [16].

To compute moments, as for instance the variance of particle displace-
ments s2ll = E(X2

l ) − E(Xl)2, l = 1, 2, a more accurate result is obtained if
instead of the concentration (9) one uses the point density of the number of
particles n(i1, i2, k):

1
(δx)2

s2ll(kδt) =
1
N

∑
i1,i2

i2l n(i1, i2, k)−

 1
N

∑
i1,i2

il n(i1, i2, k)

2

.

With this, the effective diffusion coefficients will be computed as

Deff
ll (kδt) = s2ll/(2kδt). (12)

Let us consider NX0
points uniformly distributed inside the initial plume,

N/NX0
particles at each initial point and let n(i1, i2, k; i01, i02) be the dis-

tribution of particles at the time step k given by the GRW procedure for a
diffusion process starting at (i01δx1, i02δx2). Writing the distribution for the
extended plume as

n(i1, i2, k) =
∑
i01,i02

n(i1, i2, k; i01, i02),

the averages defining the first two moments can be rewritten in the form

1
N

∑
i1,i2

αn(i1, i2, k) =
1

NX0

∑
i01,i02

NX0

N

∑
i1,i2

αn(i1, i2, k; i01, i02)

 , (13)

where α stands for il and i2l respectively. As follows from (13), the first two
moments E(Xl), and E(X2

l ), as well as the effective diffusion coefficients (12)
are averages over the trajectories of the diffusion process starting at given
initial positions and over the distribution of the initial positions.
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3 Sensitivity and uncertainty analysis

3.1 Monte Carlo simulations

To enable the simulation of large ensembles of transport realizations, a lin-
earization of the flow equation (3) was considered and the velocity samples
were generated, for given statistics of the hydraulic conductivity K, by the
Kraichnan’s randomization method [8], which has been successfully used in
numerical investigations on large scale behavior of the passive transport in
aquifers [3, 9, 10]. We considered a log-normally distributed conductivity K,
i.e. a normal lnK field with variance σ2 and exponential isotropic correlation
ρ(|x1−x2|) = σ2exp(−|x1−x2|/λ), where λ is the correlation length. For a
given pressure gradient between the inlet and outlet boundaries, which fixes
the value of the ensemble mean velocity U = |〈V〉|, the incompressible Darcy
flow, solution of equations (3), was approximated by a superposition of Np

periodic modes

Vi(x)=Uδi1 + Uσ

√
2
Np

Np∑
l=1

pi(ql) sin(ql · x + αl). (14)

The wave vectors ql are mutually independent random variables, with prob-
ability distribution proportional with the spectral density of the lnK field,
and the phases αl are random variables uniformly distributed in the interval
[0, 2π]. The functions pl are projectors which ensure the incompressibility of
the flow. It has been shown that Vi tends to a Gaussian random field when
Np →∞ [8]. It was also found that Np = 6400, which we fix in the following,
provides reliable approximations of the velocity field at the problem’s spatial
scale considered here [9, 3].

The mean velocity occurring in (14), which can be freely chosen, was set
to a typical value of U = 1 m/day. We also have chosen a typical local-
scale diffusion coefficient in (1), D = 0.01 m2/day, and λ = 1 m for the
correlation length of the lnK field, so that the Péclet number was set to
Pe= Uλ/D = 100. We conducted Monte Carlo simulations for two cases,
corresponding to two extreme degrees of heterogeneity: σ2 = 0.1, for which
the approximation (14) of the velocity field is accurate and the macrodisper-
sion model is expected to provide a reliable description of the mean behavior
of the transport process, and σ2 = 6, an extremely large value, for which (14)
is no longer close to the true solution of flow equations (3) but can however
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serve to illustrate the situation when the macrodispersion model might be
inadequate.

The behavior of a passive tracer, initially uniformly distributed in slabs of
dimensions 100λ×λ perpendicular to the mean flow direction, was simulated
over 2000 days for the low heterogeneity case σ2 = 0.1, in 1024 realizations
of the random field (14), and over 300 days, in 100 realizations in the highly
heterogeneous case σ2 = 6. The plume’s shapes in the two extreme cases are
compared in Figure 4. (Note that the spatial simulation domain was, in all
cases, large enough to avoid the influence of the boundaries.)

Figure 4: Plume contours for σ2 = 0.1 at t = 0, 100, 500 and 1000 days (left
panel) and for σ2 = 6 at t = 0, 10, and 100 days (right panel).

Monte Carlo estimates, by equal-weight (arithmetic) averages over the
corresponding ensembles of realizations, hereafter denoted by 〈· · · 〉, were
computed for the set of input parameters of the macrodispersion model,
consisting of longitudinal u = E(X1)/t and transverse v = E(X2)/t compo-
nents of the center of mass velocity, longitudinal Dx = Deff

11 and transverse
Dy = Deff

22 effective diffusion coefficients (12), for the only output parameter
considered here, consisting of the cross-section space average concentration
at the center of mass (hereafter denoted by c), as well as for their cross-
correlations, 〈uv〉, 〈uDx〉, 〈uDy〉, 〈vDx〉, 〈vDy〉, 〈DxDy〉, 〈uc〉, 〈vc〉, 〈Dxc〉,
and 〈Dyc〉. Probability densities of the parameters, approximated by his-
tograms, were summed-up to estimate cumulative probability distributions.
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3.2 Results

The left panel of Figure 5 shows that for low heterogeneity (σ2 = 0.1) the
only input-input relevant correlation is that between the longitudinal veloc-
ity of the center of mass and the transverse effective diffusion coefficient.
The sensitivity of the transverse dispersion to the mean longitudinal flow
indicates the increased role of the transverse dispersion for small mean flow
velocity. The results for the highly heterogeneous case (σ2 = 6) from the
right panel of Figure 5 show stronger correlations between the input param-
eters, which are expected to facilitate the uncertainty propagation and to
reduce the reliability of the macrodispersion model.

Figure 5: Correlations between input parameters of the macrodispersion
model (velocity components of center of mass, u and v, and dispersion coef-
ficients, Dx and Dy) for σ2 = 0.1 (left panel) and σ2 = 6 (right panel).

As expected, for low heterogeneity (left panel of Figure 6) there is a
strong correlation between the longitudinal effective diffusion coefficient and
the cross-section averaged concentration. This suggests that, when the only
output parameter of interest is the cross-section concentration, the macrodis-
persion model can be trusted as reliable for single-realizations of the transport
process, in agreement with other observations that the cross-section concen-
tration can be modeled as an one-dimensional advection-diffusion process
governed by the longitudinal effective diffusion coefficient [9]. The situation
is different for high heterogeneity (right panel of Figure 6), where the cross-
section concentration is also strongly correlated with the transverse effective
diffusion coefficient. Again, this result renders questionable the applicability
of the macrodispersion model to highly heterogeneous media.
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Figure 6: Correlations between input parameters u, v, Dx, and Dy, and
the output parameter c (the cross-section space average concentration at the
center of mass) for σ2 = 0.1 (left panel) and σ2 = 6 (right panel).

To illustrate the capability of the Monte Carlo approach based on GRW
simulations to produce a full statistical description of the transport process,
we present in Figure 7 the estimated cumulative probability distributions
of the cross section concentration at the plumes center of mass and of the
longitudinal velocity of the center of mass. In a forthcoming work, these prob-
ability distributions will be used as reference data in developing a probability
density function method similar to those used in modeling turbulent trans-
port [1]. The novelty of the new approach will consists of a three-dimensional
GRW solution of the equations governing the evolution of the concentration
probability density in the cartesian product between the physical space and
the concentration domain.

Acknowledgement. This work was supported by the Deutsche Forschungs-
gemeinschaft under Grant SU 415/1-2, Jülich Supercomputing Centre Project
No. JICG41, and Romanian Ministry of Education and Research under
Grant 2-CEx06-11-96
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Figure 7: Probability distributions of the concentration estimated along the
longitudinal component of the center of mass c(xcm) (left panel) and of the
longitudinal component of the center of mass velocity as function of time
ucm(t) (right panel), for σ2 = 0.1.
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