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Abstract
We develop sufficient optimality conditions for a Moreau-Yosida

regularized optimal control problem governed by a semilinear elliptic
PDE with pointwise constraints on the state and the control. We make
use of the equivalence of a setting of Moreau-Yosida regularization to a
special setting of the virtual control concept, for which standard second
order sufficient conditions have been shown. Moreover, we present a
numerical example, solving a Moreau-Yosida regularized model prob-
lem with an SQP method.
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1 Introduction

In this paper we consider the following class of semilinear optimal control
problems with pointwise state and control constraints

min J(y, u) :=
1
2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω)

Ay + d(x, y) = u in Ω
∂nAy = 0 on Γ

ua ≤ u(x) ≤ ub a.e. in Ω
y(x) ≥ yc(x) a.e. in Ω̄.


(P)

The precise assumptions on the given setting are stated in Assumption 1.
Due to the nonlinearity of the state equation the above model problem is of
nonconvex type, which makes it necessary to consider sufficient optimality
conditions ensuring local optimality of stationary points. We point out the
results in [7, 8, 9] where second order sufficient conditions were established for
semilinear elliptic control problems with pointwise state constraints. How-
ever, it is well known that Lagrange multipliers with respect to pointwise
state constraints are in general only regular Borel measures, cf. [1, 4, 5].
The presence of these measures in the optimality system complicates the
numerical treatment of such problems significantly, since a pointwise eval-
uation of the complementary slackness conditions is not possible. For that
reason, several regularization concepts to overcome this lack of regularity
have been developed in the recent past. We mention for example the penal-
ization method by Ito and Kunisch, [16], Lavrentiev regularization by Meyer,
Rösch, and Tröltzsch, [20], as well as interior point methods, cf. [28] and the
references therein. Special methods have been developed for boundary con-
trol problems, such as an extension of Lavrentiev regularization by a source
term representation of the control, see [31] and [24], and the virtual con-
trol approach [17]. This approach has been extended to distributed controls
in [10] and turned out to be suitable for problems were control and state
constraints are active simultaneously. Efficient optimization algorithms are
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available for all these regularized problems, see section 6 for detailed informa-
tion. Concerning second order sufficient conditions for Lavrentiev regularized
problems, we point out the results in [26]. For the Moreau-Yosida regulariza-
tion concept, one can easily see that a classical second order analysis is not
possible due to the fact that the regularized objective function is not twice
differentiable.

However, interpreting a specific setting of the virtual control concept,
i.e. φ = 0, as a Moreau-Yosida regularization, we are able to derive a suffi-
cient optimality condition for the Moreau-Yosida regularization making use
of classical second order sufficient conditions for the virtual control concept.
This condition ensures local optimality of controls satisfying the first order
optimality conditions of Moreau-Yosida regularized problems. These results
are not strictly limited to problem (P). In section 5, we therefore give ex-
amples of problem classes to which the theory can be extended, including
boundary control problems as well as problems governed by parabolic PDEs.

2 Assumptions and properties of the state equation

We begin by briefly laying out the setting of the optimal control problem and
stating some properties of the problem and the underlying PDE. Throughout
the paper, we will use the following notation: By ‖ · ‖ we denote the usual
norm in L2(Ω), and (·, ·) is the associated inner product. The L∞(Ω)-norm
is specified by ‖ · ‖∞.

Assumption 1.

• The function yd ∈ L2(Ω) and yc ∈ L∞(Ω) are given functions and
ua < ub, ν > 0 are real numbers.

• Ω denotes a bounded domain in RN , N = {2, 3}, which is convex or
has a C1,1-boundary ∂Ω.

• A denotes a second order elliptic operator of the form

Ay(x) = −
N∑

i,j=1

∂xj (aij(x)∂xiy(x)),
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where the coefficients aij belong to C0,1(Ω̄) with the ellipticity condition

N∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2 ∀(x, ξ) ∈ Ω × RN , θ > 0.

Moreover, ∂nA denotes the conormal-derivative associated with A.

• The function d = d(x, y) : Ω×R is measurable with respect to x ∈ Ω for
all fixed y ∈ R, and twice continuously differentiable with respect to y,
for almost all x ∈ Ω. Moreover, dyy is assumed to be a locally bounded
and locally Lipschitz continuous function with respect to y, i.e. the
following Carathéodory type conditions hold true: there exists K > 0
such that

‖d(·, 0)‖∞ + ‖dy(·, 0)‖∞ + ‖dyy(·, 0)‖∞ ≤ K

and for any M > 0 there exists LM > 0 such that

‖dyy(·, y1)− dyy(·, y2)‖∞ ≤ LM |y1 − y2|

for all yi ∈ R with |yi| ≤M , i = 1, 2.
Additionally, we assume that dy(x, y) is nonnegative for almost all x ∈
Ω and y ∈ R and positive on a set EΩ×R, where EΩ ⊂ Ω is of positive
measure.

Under the previous assumptions, we can deduce the following standard
result for the state equation in problem (P):

Theorem 1. Under Assumption 1 the semilinear elliptic boundary value
problem

Ay + d(x, y) = u in Ω
∂nAy = 0 on Γ

(1)

admits for every right hand side u ∈ L2(Ω) a unique solution y ∈ H1(Ω) ∩
C(Ω̄).

The proof can be found e.g. in [6]. Based on this theorem, we introduce
the control-to-state operator

G : L2(Ω)→ H1(Ω) ∩ C(Ω̄), u 7→ y, (2)

that assigns to each u ∈ L2(Ω) the weak solution y ∈ H1(Ω) ∩ C(Ω̄) of (1).
For future reference, we will provide results concerning differentiability of the
control-to-state operator, that can be found in, e.g., [30].
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Theorem 2. Let Assumption 1 be fulfilled. Then the mapping G : L2(Ω)→
H1(Ω) ∩C(Ω̄), defined by G(u) = y is of class C2. Moreover, for all u, h ∈
L2(Ω), yh = G′(u)h is defined as the solution of

Ayh + dy(x, y)yh = h in Ω
∂nAyh = 0 on Γ.

(3)

Furthermore, for every h1, h2 ∈ L2(Ω), yh1,h2 = G′′(u)[h1, h2] is the solution
of

Ayh1,h2 + dy(x, y)yh1,h2 = −dyy(x, y)yh1yh2 in Ω
∂nAyh1,h2 = 0 on Γ,

(4)

where yhi
= G′(u)hi, i = 1, 2.

Due to the convexity of the cost functional with respect to the control u
and the associated state y = G(u), the existence of at least one solution of
problem (P) can be obtained by standard arguments, assuming that the set
of feasible controls is nonempty. For future references, we define the set of
admissible controls handling the box constraints

Uad = {u ∈ L2(Ω) : ua ≤ u ≤ ub a.e. in Ω}. (5)

Relying on the standard assumption of a Mangasarian-Fromovitz constraint
qualification, sometimes called linearized Slater condition, of the existence of
a control u0 ∈ Uad and a constant τ > 0 such that

G(ū) +G′(ū)(u0 − ū) ≥ yc + τ (6)

for the pure state constraints, we obtain the following first order necessary
optimality conditions for a locally optimal control ū:

Theorem 3. Assume that condition (6) is satisfied, and let ū be a solution
of problem (P) and let ȳ = Gū be the associated state. Then, a regular Borel
measure µ̄ := µ̄Ω + µ̄Γ ∈ M(Ω̄) and an adjoint state p̄ ∈ W 1,s(Ω), s <
N/(N − 1) exist, such that the following optimality system is satisfied:

Aȳ + d(x, ȳ) = ū

∂nA ȳ = 0
A∗p̄+ dy(x, ȳ)p̄ = ȳ − yd − µ̄Ω

∂nA∗ p̄ = −µ̄Γ
(7)
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(p̄+ νū , u− ū) ≥ 0, ∀u ∈ Uad (8)∫
Ω̄

(yc − ȳ)dµ̄ = 0, ȳ(x) ≥ yc(x) for all x ∈ Ω̄

∫
Ω̄

ϕdµ̄ ≥ 0 ∀ϕ ∈ C(Ω̄)+,

(9)

where C(Ω̄)+ is defined by C(Ω̄)+ := {y ∈ C(Ω̄) | y(x) ≥ 0 ∀x ∈ Ω̄}.

Here and in the following, A∗ denotes the formally adjoint operator to
the differential operator A. This result can be obtained adapting the theory
of Casas, cf. [6].

With the help of the classical reduced Lagrange functional

L(u, µ) = J(G(u), u) +
∫
Ω̄

(yc −G(u)) dµ,

the second order sufficient condition

∂2L
∂u2

(ū, µ̄)h2 ≥ α‖h‖2, α > 0, ∀h ∈ L2(Ω) (10)

guarantees ū to be a local minimum of (P) since the quadratic growth con-
dition

J(G(u), u) ≥ J(G(ū), ū) + β‖u− ū‖2

is satisfied for a constant β > 0 for all u ∈ Uad in a sufficiently small L2-
neighborhood of ū.

Remark 1. Condition (10) is a strong second order sufficient condition. A
weaker formulation is possible along the lines of, e.g., [7], but also rather
technical. Moreover, while weaker conditions are important for theoretical
investigations, they are more difficult to verify in numerical computations.
A nice presentation of general results can be found in the book of Bonnans
and Shapiro, [3, Section 2.3], that also explicitely takes into account possibly
non-unique Lagrange multipliers.

3 Regularization approaches

The main focus of this paper is on regularized versions of problem (P). In this
section we present the two regularization approaches we will examine in this
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paper, the Moreau-Yosida approximation on the one hand and the virtual
control concept on the other. We will elaborate that the simple version of
Moreau-Yosida regularization is equivalent to a special setting of the virtual
control concept.

3.1 Moreau-Yosida regularization

The penalization technique by Ito and Kunisch, [16], based on a Moreau-
Yosida approximation of the Lagrange multipliers with respect to the state
constraints, applied to problem (P), leads to the following family of regular-
ized problems

min JMY (yγ , uγ) := J(yγ , uγ) +
γ

2

∫
Ω

((yc − yγ)+)2dx

Ayγ + d(x, yγ) = uγ in Ω
∂nAyγ = 0 on Γ

ua ≤ uγ(x) ≤ ub a.e. in Ω,


(PMY )

where γ > 0 is a regularization parameter that is taken large. Note, that
the mapping (·)+ denotes the positive part of a measurable function, i.e.
(f)+ := max{0, f}.
Introducing a reduced formulation of problem (PMY ) by the control-to-state
mapping G in (2) for the state equation, the following existence theorem can
be proven since the set of admissible controls is nonempty. We refer to, e.g.,
[30] for details.

Theorem 4. Under Assumption 1, the regularized optimal control (PMY )
admits at least one (globally) optimal control ūγ with associated optimal state
ȳγ = G(ūγ).

Due to the nonlinearity of the state equation, the optimal control problem
is nonconvex and one has to take into account the existence of multiple
locally optimal controls. Forthcoming, let ūγ be a locally optimal control
of problem (PMY ) with associated state ȳγ = G(ūγ). Using the classical
Lagrange formulation, straight forward computations yield the following first
order necessary optimality conditions, cf. [16] for the linear-quadratic setting.
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Proposition 1. Let (ȳγ , ūγ) be a locally optimal solution of problem (PMY ).
Then, there exists a unique adjoint state p̄γ ∈ H1(Ω) ∩ C(Ω̄) such that the
following optimality system is satisfied

Aȳγ + d(x, yγ) = ūγ

∂nA ȳγ = 0
A∗p̄γ + dy(x, ȳγ)p̄γ = ȳγ − yd − λ̄γ

∂nA∗ p̄γ = 0
(11)

(p̄γ + νūγ , u− ūγ) ≥ 0 ∀u ∈ Uad (12)

λ̄γ = γ(yc − ȳγ)+ ∈ L2(Ω) (13)

Convergence analysis as γ tends to infinity is discussed in [22]. Con-
vergence results of the Moreau-Yosida approximation applied to control and
state constrained optimal control problems governed by semilinear parabolic
PDEs are derived in [23].

3.2 Virtual control concept

In this section, we will apply the so called virtual control concept, first in-
troduced in [17]. Instead of problem (P), we will investigate a family of
regularized optimal control problems with mixed control-state constraints:

min JV C(yε, uε, vε) := J(yε, uε) +
ψ(ε)

2
‖vε‖2L2(Ω)

Ayε + d(x, y) = uε + φ(ε)vε in Ω
∂nAyε = 0 on Γ

ua ≤ uε(x) ≤ ub a.e. in Ω
yε(x) ≥ yc(x)− ξ(ε)vε a.e. in Ω,


(PV C)

with a regularization parameter ε > 0 and positive and real valued parameter
functions ψ(ε), φ(ε) and ξ(ε). The remaining given quantities are defined as
for problem (P), see Assumption 1.

Denoting a local optimal control of (P) by ū, we point out that the pair
(ū, 0) is feasible for all problems (PV C). Then, using a continuous control-to-
state mapping, the existence of at least one pair of optimal controls (ūε, v̄ε)
can be proven by standard arguments.

The existence of regular Lagrange multipliers with respect to mixed control-
state constraints is known from e.g. [25] and [27], assuming that a constraint
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qualification is satisfied. For (PV C), constraint qualifications are not neces-
sary since the problem can be transformed into a purely control constrained
problem with ua ≤ uε ≤ ub and w := ξ(ε)vε + yε ≥ yc, cf. [21] for a Lavren-
tiev regularized problem without constraints on the control u. Based on
this, the following first order necessary optimality conditions for (PV C) are
obtained in a straight forward manner.

Proposition 2. Let (ūε, v̄ε) be an optimal solution of (PV C) and let ȳε be the
associated state. Then, there exist a unique adjoint state p̄ε ∈ H1(Ω)∩C(Ω̄)
and a unique Lagrange multiplier µ̄ε ∈ L2(Ω) so that the following optimality
system is satisfied

Aȳε + d(x, ȳε) = ūε + φ(ε)v̄ε
∂nA ȳε = 0

A∗p̄ε + dy(x, ȳε)p̄ε = ȳε − yd − µ̄ε
∂nA∗ p̄ε = 0

(14)

(p̄ε + νūε , u− ūε) ≥ 0, ∀u ∈ Uad (15)
φ(ε)p̄ε + ψ(ε)v̄ε − ξ(ε)µ̄ε = 0, a.e. in Ω (16)

(µ̄ε , yc − ȳε − ξ(ε)v̄ε) = 0, µ̄ε ≥ 0, ȳε ≥ yc − ξ(ε)v̄ε a.e. in Ω. (17)

The convergence of a sequence of regularized optimal controls ūε to an
optimal solution of the original problem (P) and the uniqueness of dual vari-
ables was discussed in [18].

3.3 Equivalence of the concepts

In this section, we will point out the equivalence of the Moreau-Yosida ap-
proximation to a special case of the virtual control concept. More precisely,
we will demonstrate that the two optimal control problems admit the same
optimal controls ūε = ūγ and we will then call the regularization concepts
and the respective optimal control problems equivalent.

We observe the problems (PV C) for the specific choice φ(ε) ≡ 0, i.e.:

min JV C(yε, uε, vε) := J(yε, uε) +
ψ(ε)

2
‖vε‖2L2(Ω)

Ayε + d(x, y) = uε in Ω
∂nAyε = 0 on Γ

ua ≤ u(x) ≤ ub a.e. in Ω
yε(x) ≥ yc(x)− ξ(ε)vε a.e. in Ω,


(QV C)
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As one can easily see, there is no longer a coupling of both control variables
by the state equation of the problem.

First, we consider both types of problems (QV C) and (PMY ) without
any notice on the optimality conditions. We start investigating the mixed
control-state constraints in (QV C) pointwise, where we split the domain Ω
into two disjoint subsets Ω = Ω1 ∪Ω2:

Ω1 := {x ∈ Ω : yc(x)− yε(x) < 0 a.e. in Ω}
Ω2 := {x ∈ Ω : yc(x)− yε(x) ≥ 0 a.e. in Ω}.

Initially, we consider Ω1. The mixed constraints are given by yc(x)−yε(x) ≤
ξ(ε)vε(x) a.e. in Ω. Due to the minimization of the L2-norm of the virtual
control vε in the objective of (QV C), we derive

vε ≡ 0 a.e. in Ω1.

Considering Ω2, the inequality

ξ(ε)vε(x) ≥ yc(x)− yε(x) ≥ 0

has to be satisfied. Choosing the virtual control as small as possible, we
deduce

vε =
1
ξ(ε)

(yc − yε) a.e. in Ω2.

Concluding, the mixed control-state constraints can be replaced by the equa-
tion

vε =
1
ξ(ε)

(yc − yε)+.

Thus, the optimal control problem (QV C) can be rewritten equivalently in
the form

min J(yε, uε) +
ψ(ε)

2ξ(ε)2
‖(yc − yε)+‖2L2(Ω)

Ayε + d(x, yε) = uε in Ω
∂nAyε = 0 on Γ

ua ≤ uε(x) ≤ ub a.e. on Ω.

Consequently, we formulate the following result.
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Corollary 1. For the specific parameter function φ(ε) ≡ 0, the problem
(PV C) is equivalent to the problem (PMY ) arising by the Moreau-Yosida reg-
ularization, if the regularization parameter γ > 0 is defined by γ := ψ(ε)

ξ(ε)2
.

For the sake of completeness, we will additionally elaborate on the equiv-
alence by the different first order necessary optimality conditions. Due to
Proposition 2 and φ(ε) ≡ 0, an optimal control (ūε, v̄ε) of (QV C) satisfies

Aȳε + d(x, ȳε) = ūε

∂nA ȳε = 0
A∗p̄ε + dy(x, ȳε)p̄ε = ȳε − yd − µ̄ε

∂nA∗ p̄ε = 0
(18)

(p̄ε + νūε , u− ūε) ≥ 0, ∀u ∈ Uad (19)
ψ(ε)v̄ε − ξ(ε)µ̄ε = 0, a.e. in Ω (20)

(µ̄ε , yc − ȳε − ξ(ε)v̄ε) = 0, µ̄ε ≥ 0, ȳε ≥ yc − ξ(ε)v̄ε a.e. in Ω (21)

Since the multiplier µ̄ε is a regular function, it is well known that the com-
plementary slackness conditions in (21) are equivalent to

µ̄ε −max{0, µ̄ε + c(yc − ȳε − ξ(ε)v̄ε)} = 0

for every c > 0. Using the specific choice c = ψ(ε)
ξ(ε)2

, we obtain

µ̄ε = max{0, ψ(ε)
ξ(ε)2

(yc − ȳε)} =
ψ(ε)
ξ(ε)2

(yc − ȳε)+.

instead of (20) and (21). Due to (20), the virtual control satisfies

v̄ε =
ξ(ε)
ψ(ε)

µ̄ε =
1
ξ(ε)

(yc − ȳε)+. (22)

By means of Proposition 1, it is easily seen that the optimality systems of
(PMY ) and (QV C) are equivalent and we conclude with the following result.

Corollary 2. Let (ȳε, ūε, v̄ε) be a stationary point of (PV C). If we set
φ(ε) ≡ 0, then the virtual control can be represented by v̄ε = 1/ξ(ε)(yc− ȳε)+.
Moreover, (ȳε, ūε) is also a stationary point of (PMY ) for the specific choice
γ = ψ(ε)

ξ(ε)2
. Conversely, a stationary point of (PMY ) is also a stationary point

of (PV C) if the conditions above are satisfied.
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4 Sufficient optimality conditions for the Moreau-
Yosida approximation

Now we will formulate a sufficient optimality condition for the Moreau-Yosida
approximation based on a second order sufficient optimality condition for
the respective equivalent virtual control concept (QV C). We first define the
Lagrangian of problem (QV C) by

LV C(u, v, µ) =
1
2
‖G(u)− yd‖2 +

ν

2
‖u‖2 +

ψ(ε)
2
‖v‖2

+
∫
Ω

(yc −G(u)− ξ(ε)v)µdx
(23)

using the control-to-state operator G, given in (2). Straight forward compu-
tations show that the second derivative of the Lagrangian is given by

∂2LV C(u, v, µ)
∂(u, v)2

[h1, h2] =(G′(u)hu,1, G′(u)hu,2)+

+ (G(u)− yd, G′′(u)[hu,1, hu,2]) + ν(hu,1, hu,2)+
+ ψ(ε)(hv,1, hv,2)− (G′′(u)[hu,1, hu,2], µ)

(24)

for hi = (hu,i, hv,i) ∈ L2(Ω)2, i = 1, 2. In the sequel, let (ūε, v̄ε) be a local
solution of (QV C) with associated Lagrange multiplier µ̄ε, i.e. (18)-(21) are
satisfied. We proceed with establishing the second order sufficient optimality
condition.

Assumption 2. There exists a constant α ≥ 0 such that

∂2LV C(ūε, v̄ε, µ̄ε)
∂(u, v)2

[hu, hv]2 ≥ α‖hu‖2 + ψ(ε)‖hv‖2 (25)

is valid for all hu ∈ L2(Ω).

Remark 2. Condition (25) can be deduced from the strong second order
sufficient condition (10) for the unregularized problem (P), cf. [18].

Remark 3. Note, that the coercivity condition of the second derivative of the
Lagrangian with respect to directions hv ∈ L2(Ω) is satisfied by construction,
see (24). Coercivity with respect to directions hu can again be formulated
with the help of strongly active sets, cf. [7]. However, the strong formulation
(25) matches the strong formulation (10) for the unregularized problem.
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Based on the previous coercivity condition, one can prove a quadratic
growth condition for problem (QV C) that ensures local optimality of (ūε, v̄ε).

Proposition 3. Let (ūε, v̄ε) be a control satisfying the first order necessary
optimality conditions (18)-(21). Additionally, (ūε, v̄ε) fulfills Assumption 2.
Then, there exist constants β > 0 and δ > 0 such that

JV C(G(u), u, v) ≥ JV C(G(ūε), ūε, v̄ε) + β(‖u− ūε‖2 + ‖v − v̄ε‖2) (26)

for all feasible controls (u, v) of problem (QV C) with ‖u− ūε‖ ≤ δ.

Proof. First, let us mention that there is a specific difference to the standard
proofs, since no smallness condition for ‖v − v̄ε‖ is required. Let (u, v) ∈
Uad × L2(Ω) be an admissible control of problem (QV C), i.e. mainly yc −
ξ(ε)v−G(u) ≤ 0. In view of the positivity of the optimal Lagrange multiplier
µ̄ε, we can estimate the cost functional JV C by the Lagrange functional:

JV C(G(u), u, v) ≥ JV C(G(u), u, v)+
∫
Ω

(yc−G(u)−ξ(ε)v)µ̄ε dx = L(u, v, µ̄ε).

Under Assumption 1, the Lagrange functional is twice continuously differen-
tiable with respect to the L2(Ω)-norms, since the solution operator G has
this property, see Theorem 2. Then, a Taylor expansion is given by

LV C(u, v, µ̄ε) = LV C(ūε, v̄ε, µ̄ε) +
∂LV C(ūε, v̄ε, µ̄ε)

∂(u, v)
(u− ūε, v − v̄ε)

+
1
2
∂2LV C(ũ, ṽ, µ̄ε)

∂(u, v)2
(u− ūε, v − v̄ε)2

with ũ = ūε + θ(u − ūε), ṽ = v̄ε + θ(v − v̄ε) for a θ ∈ (0, 1). Since (ūε, v̄ε)
satisfies the first order necessary optimality conditions (18)-(21) and µ̄ε is
the associated Lagrange multiplier, we have

∂LV C(ūε, v̄ε, µ̄ε)
∂(u, v)

(u−ūε, v−v̄ε) ≥ 0 and LV C(ūε, v̄ε, µ̄ε) = JV C(G(ūε), ūε, v̄ε),

which implies

LV C(u, v, µ̄ε) ≥JV C(G(ūε), ūε, v̄ε) + 1
2
∂2LV C(ūε,v̄ε,µ̄ε)

∂(u,v)2
(u− ūε, v − v̄ε)2

+1
2

(
∂2LV C(ũ,ṽ,µ̄ε)

∂(u,v)2
− ∂2LV C(ūε,v̄ε,µ̄ε)

∂(u,v)2

)
(u− ūε, v − v̄ε)2.
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Using the SSC of Assumption 2, we obtain

LV C(u, v, µ̄ε) ≥ JV C(G(ūε), ūε, v̄ε) + α‖u− ūε‖2 + ψ(ε)‖v − v̄ε‖2

+1
2

(
∂2LV C(ũ,ṽ,µ̄ε)

∂(u,v)2
− ∂2LV C(ūε,v̄ε,µ̄ε)

∂(u,v)2

)
(u− ūε, v − v̄ε)2.

One can easily see that the second derivative (24) is independent of the
virtual control v since the control-to-state operator is only applied to the
control variable u and linear mixed control-state constraints are considered.
Moreover, one can prove under Assumption 1 that the second derivative of
the Lagrangian (24) is locally Lipschitz continuous with respect to u, i.e.
there exists a positive constant CL such that the estimate∣∣∣∣(∂2LV C(u1, v, µ)

∂(u, v)2
− ∂2LV C(u2, v, µ)

∂(u, v)2

)
h2

∣∣∣∣ ≤ CL‖u1 − u2‖‖h‖2

holds true for ‖u1 − u2‖ ≤ δ and δ > 0 sufficiently small, see for instance
[30, Lemma 4.24]. By means of the Lipschitz property concerning u and the
independency of v, see (24), we conclude

LV C(u, v, µ̄ε) ≥ JV C(G(ūε), ūε, v̄ε) + α‖u− ūε‖2 + ψ(ε)‖v − v̄ε‖2

−c‖u− ūε‖(‖u− ūε‖2 + ‖v − v̄ε‖2)
≥ JV C(G(ūε), ūε, v̄ε) + (α− cδ)‖u− ūε‖2 +

+(ψ(ε)− cδ)‖v − v̄ε‖2,

provided that ‖u−ūε‖ ≤ δ. For sufficiently small δ > 0, we find a positive
constant β > 0 such that the assertion is fulfilled.

Forthcoming, we will rewrite the second order sufficient optimality con-
dition of problem (QV C) in terms of the equivalent Moreau-Yosida regular-
ization (PMY ) using relations between the respective variables derived in the
previous section.

Due to Corollary 2, the control ūε satisfies the first order optimality
conditions (11)-(13) of (PMY ) with γ = ψ(ε)

ξ(ε)2
. Thus, we set

ūλ = ūε, λ̄γ = µ̄ε =
ψ(ε)
ξ(ε)2

(yc − ȳε)+
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and the SSC (25) of Assumption 2 yields the following

‖G′(ūγ)hu‖2 + ν‖hu‖2 +(G(ūγ)− yd, G′′(ūγ)h2
u)

−(λ̄γ , G′′(ūγ)h2
u) ≥ α‖hu‖2 (27)

for all hu ∈ L2(Ω), written in terms of the Moreau-Yosida regularization.
Summarizing, one ends up with

J ′′(G(ūγ), ūγ)h2
u − (λ̄γ , G′′(ūγ)h2

u) ≥ α‖hu‖2.

Concluding, we can state the following result.

Theorem 5. Let ūγ ∈ Uad, with associated state ȳγ = G(ūγ), be a control
satisfying the first order necessary optimality conditions (11)-(13). Addition-
ally, there exists a constant α > 0 such that for all hu ∈ L2(Ω) the following
condition is fulfilled:

J ′′(G(ūγ), ūγ)h2
u − γ((yc −G(ūγ))+, G

′′(ūγ)h2
u) ≥ α‖hu‖2, (28)

i.e. there exists a constant α > 0 such that∫
Ω

(y2
hu
− p̄γdyy(x, ȳγ)y2

hu
+ νh2

u) dx ≥ α‖hu‖2 (29)

is satisfied for all (hu, yhu) ∈ L2(Ω) ×H1(Ω) with yhu = G′(ūγ)hu, and p̄γ
defined in (11).

Then, there exist constants β > 0 and δ > 0 so that the quadratic growth
condition

JMY (G(uγ), uγ) ≥ JMY (G(ūγ), ūγ) + β‖uγ − ūγ‖2 (30)

holds for all uγ ∈ Uad with ‖uγ − ūγ‖ ≤ δ. In particular, (G(ūγ), ūγ) is a
locally optimal solution of (PMY ).

Proof. Due to Corollary 2 and (22), the pair (ūγ , v̄γ := 1
ξ(ε)(yc− ȳγ)+) satis-

fies the first order optimality conditions (18)-(21) of problem (QV C), where
the parameter functions ψ(ε) and ξ(ε) are chosen in a way such that γ = ψ(ε)

ξ(ε)2
.

The associated Lagrange multiplier in the optimality conditions is denoted



Sufficient optimality conditions for Moreau-Yosida-type regularization 237

by µ̄γ . Due to the former argumentation, one can easily see, that (28) implies
the coercivity condition (25) in the point (ūγ , v̄γ , µ̄γ), i.e.

∂2LV C(ūγ , v̄γ , µ̄γ)
∂(u, v)2

[hu, hv] ≥ α‖hu‖2 + ψ(ε)‖hv‖2

for all hu ∈ L2(Ω). Thus, Assumption 2 is satisfied and we proceed by
applying Proposition 26. Hence, there exist constants β > 0 and δ > 0 such
that

JV C(G(u), u, v) ≥ JV C(G(ūγ), ūγ , v̄γ) + β(‖u− ūγ‖2 + ‖v − v̄γ‖2)

for all feasible (u, v) of problem (QV C) with ‖u− ūγ‖ ≤ δ. Now, we consider
an arbitrary control u ∈ Uad with ‖u − ūγ‖ ≤ δ. Furthermore, the pair of
controls (u, v := 1

ξ(ε)(yc −G(u))+) is feasible for problem (QV C) since

ξ(ε)v = (yc −G(u))+ ≥ yc −G(u).

By means of the equivalence of the problems (PMY ) and (QV C) and γ = ψ(ε)
ξ(ε)2

,
we deduce

JMY (G(ūγ), ūγ)=JV C(G(ūγ), ūγ v̄γ) and JMY (G(u), u)=JV C(G(u), u, v).

Concluding, we obtain the assertion

JMY (G(u), u) ≥ JMY (G(ūγ), ūγ) + β‖u− ūγ‖2

for all u ∈ Uad with ‖u− ūγ‖ ≤ δ.

The quadratic growth condition (30) for Problem (PMY ) from the last
theorem has essentially been proven under condition (28) for the regularized
problem formulation. In [18], we have deduced second-order sufficient condi-
tions for the regularized problem (PV C) on assumptions on the unregularized
problem (P) only. By the previously shown equivalence of the two regular-
ization concepts the same is true for (PMY ). As an analogue to [18, Theorem
4.5] we obtain that (28) also follows from (10):

Corollary 3. Let ū fulfill the first order necessary optimality conditions of
Theorem 3 with unique dual variables µ̄ and p̄, as well as the second order
sufficient condition (10). Then there exists a constant α > 0 such that∫

Ω

(y2
hu
− p̄γdyy(x, ȳγ)y2

hu
+ νh2

u) dx ≥ α‖hu‖2

is fulfilled for all hu ∈ L2(Ω) provided that γ is sufficiently large.
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5 Generalizations

In this section we want to point out that the theory presented in this paper
can be generalized to large classes of semilinear optimal control problems.
Let us start with an elliptic boundary control problem. The virtual control
formulation with φ(ε) = 0 is given by

min J(yε, uε, vε) :=
α1

2
‖yε − yd,Ω‖2L2(Ω) +

α2

2
‖yε − yd,Γ ‖2L2(Γ )

+
ν

2
‖uε‖2L2(Γ ) +

ψ(ε)
2
‖vε‖2L2(Ω)

Ayε + d(x, yε) = 0 in Ω
∂nAyε + b(x, yε) = uε on Γ

ua ≤ uε(x) ≤ ub a.e. in Γ
yε(x) ≥ yc(x)− ξ(ε)vε a.e. in Ω,


(QV C

1 )

and the corresponding equivalent Moreau-Yosida regularization is presented
by

min J(yγ , uγ , vγ) :=
α1

2
‖yγ − yd,Ω‖2L2(Ω) +

α2

2
‖yγ − yd,Γ ‖2L2(Γ )

+
ν

2
‖uγ‖2L2(Γ ) +

γ

2
‖(yc − yγ)+‖2L2(Ω)

Ayγ + d(x, yγ) = 0 in Ω
∂nAyγ + b(x, yγ) = uγ on Γ

ua ≤ uγ(x) ≤ ub a.e. in Γ.


(PMY

1 )

The theory presented in section 3 can be adapted by only changing the
corresponding sets. The results of section 4 depend on the dimension of the
domain. For dimension N = 3 we get a two norm discrepancy in the second
order sufficient optimality condition of proposition 3 in the virtual control
approach, but only for the original control u. Of course, the corresponding
sufficient optimality condition for the Moreau-Yosida regularization in The-
orem 5 contains a two norm setting, too. Let us mention that in this case
sufficient optimality conditions for the unregularized problems are challeng-
ing due to regularity problems. Therefore, Corollary 3 is then not verified by
our theory.
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It is also possible to generalize the theory to the regularized version of
parabolic optimal control problems like

min J(y, u) :=
α1

2
‖y − yd‖2L2(Q) +

α2

2
‖y(T )− yT ‖2L2(Ω)

+
α3

2
‖y − yΣ‖2L2(Σ) +

ν

2
‖u‖2L2(Q)

yt +Ay + d(t, x, y) = u in Q = (0, T )×Ω
∂nAy + b(t, x, y) = 0 on Σ = (0, T )× Γ

ua ≤ u(t, x) ≤ ub a.e. in Q
y(t, x) ≥ yc(t, x) a.e. in Q,

y(0) = y0.


(P2)

Due to the weaker differentiability properties of parabolic control-to-state
operators, a two norm discrepancy will have to be taken into account in
proposition 3 and theorem 5 for spatial dimensions greater than one. Simi-
larly to the elliptic problem, Corollary 3 is then not verified.

Moreover, it is possible to discuss more general objectives and nonlin-
earities in the partial differential equations with respect to the control u.
However, then the discussion of the differentiability of the control-to-state
mapping becomes more involved. In addition, one needs several technical
assumptions on the nonlinearities to get the desired results. Such assump-
tions are essentially that ones that were needed for the derivation of sufficient
second order conditions, see [26]. These discussions go beyond the scope of
the paper.

6 Numerical example

In this section, we present a numerical example and motivate how the theo-
retical results shown in this article are used in numerical computations. We
aim at solving the optimal control problem

min J(y, u) :=
1
2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω)

∆y + y + y3 = u+ f in Ω
∂ny = 0 on Γ

ua ≤ u(x) ≤ ub a.e. in Ω
y(x) ≥ yc(x) a.e. in Ω̄,


(PT)
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with Ω = [0, 1]2 and Tikhonov regularization parameter ν = 1 · 10−3, where
the remaining data is chosen such that

ū(x) = Π[ua,ub]

{
−p(x)

ν

}
with ua = 150 and ub = 850 is an optimal control with associated optimal
state ȳ, adjoint state p, and Lagrange multiplier µ, given by

ȳ(x) = −16x4
1 + 32x3

1 − 16x2
1 + 1,

p(x) = 2x3
1 − 3x2

1,

µ(x) = max{0, ȳ(x1 = 0.2)− ȳ(x)}.

It can be verified that this is obtained with

yc(x) = min{ȳ(x1 = 0.2), ȳ(x)},
f = −∆ȳ + ȳ + ȳ3 − ū,

yd = ∆p− p− 3ȳ2p+ ȳ − µ.

The second order sufficient conditions are also satisfied, which is easily proven
by computing −p(x)dyy(x, ȳ(x)) ≥ 0 on [0, 1]2, that guarantees (29). Notice,
that the active sets associated to the pure state constraints and active set cor-
responding to the control constraints are not disjoint, so that regularization
by the virtual control approach is reasonable.

We solve this problem with the help of the Moreau-Yosida regularization
approach, i.e. the virtual control approach with φ = 0, and denote the reg-
ularized problem by (PTMY ). We apply an SQP method, cf. for instance
[15] and [29]. We point out that a key argument in the proof of convergence
of SQP methods are second order sufficient conditions, which are now guar-
anteed for the Moreau-Yosida regularized problem, and it is reasonable to
investigate the convergence behavior of the solution algorithm.

For completeness, let us mention that a primal-dual active set strategy
is used for solving the linear quadratic subproblems, see e.g. [2, 11, 12,
19] and the references therein. Moreover, all functions are discretized by
piecewise linear ansatz functions, defined on a uniform finite element mesh.
The number of intervals in one dimension, denoted by N , is related to the
mesh size by h =

√
2N . In the following all computations are performed with

N = 192. The Figures 1-4 show the numerical solution of the Moreau-Yosida
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Figure 1: Control uγ Figure 2: State yγ

approximation of problem (PT) for the fixed penalization parameter γ =
1 · 105. In Figure 4 one can see irregularities of the multiplier approximation
on the boundary and in the parts of the domain, where the active sets of the
original problem (PT) associated to the different constraints are not disjoint.
We obtain the following error of the numerical solution of problem (PTMY ):

‖uγ−ū‖ ≈ 3.1426e−02, ‖yγ−ȳ‖≈2.7497e−05, ‖pγ−p‖ ≈ 1.5147e−04. (31)

The convergence behavior of the SQP method is presented in Table 1. We
display the value of the cost functional JMY for each step of SQP algorithm
as well as the relative difference between two iterates, which is defined by

δγ =
1
3

(
‖u(n)

γ − u(n+1)
γ ‖

‖u(n+1)
γ ‖

+
‖y(n)
γ − y(n+1)

γ ‖
‖y(n+1)
γ ‖

+
‖p(n)
γ − p(n+1)

γ ‖
‖p(n+1)
γ ‖

)
.

This quantity is used for a termination condition of the SQP method. In all
numerical tests the algorithm stops if δ < 1 · 10−6. In addition the number
of iterations of the primal-dual active set strategy is shown.
We also test the regularization algorithm for increasing regularization param-
eters, noting that convergence of ūγ towards ū is discussed in, e.g., [22]. We
mention Hintermüller and Kunisch in [14, 13], where path-following methods
associated to the Moreau-Yosida regularization parameter are developed. In
this numerical test, we use only a simple nested approach: the numerical so-
lution of the problem is taken as the starting point for the SQP-method with
respect to the next regularization parameter. The convergence behavior for
increasing regularization parameters γ is displayed in Table 2. As expected,
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itSQP JMY δγ #itAS
1 1.497214e+ 02 1.414707e+ 00 13
2 1.766473e+ 02 3.585474e− 01 32
3 1.767212e+ 02 4.605969e− 02 12
4 1.767218e+ 02 7.115167e− 04 6
5 1.767218e+ 02 2.087841e− 07 1

Table 1: Convergence of SQP-method for (PTMY )

Figure 3: Adjoint state pγ
Figure 4: Approximation of La-
grange multiplier λγ

the errors ‖ūγ − ū‖ and ‖ȳγ − ȳ‖ are decreasing for increasing parameters γ.
Moreover, an influence of the discretization error is visible in the difference
of the controls.

7 Conclusions

In this article, we have investigated the well-known Moreau-Yosida regular-
ization concept for state-constrained optimal control problems governed by
semilinear elliptic equations with respect to sufficient optimality conditions.
These are important in numerous ways such as convergence of numerical
algorithms, stability with respect to perturbations, and also discretization
error estimates, and hence play an essential role in the analysis of numeri-
cal methods for nonlinear optimal control problems. For the Moreau-Yosida



Sufficient optimality conditions for Moreau-Yosida-type regularization 243

γ ‖ūγ − ū‖ ‖ȳγ − ȳ‖ #itSQP #itAS
20 5.114051e− 01 1.495545e− 02 8 34
40 3.161757e− 01 7.893723e− 03 3 5
80 1.853852e− 01 4.056569e− 03 2 3
160 1.059317e− 01 2.053420e− 03 2 3
320 6.072430e− 02 1.030834e− 03 2 3
640 3.559594e− 02 5.152590e− 04 2 2
1280 2.176439e− 02 2.568771e− 04 2 3
2560 1.442802e− 02 1.277243e− 04 2 2
5120 1.093492e− 02 6.323253e− 05 2 2
10240 9.458933e− 03 3.104869e− 05 2 2
20480 8.883362e− 03 1.500880e− 05 2 2
40960 8.656709e− 03 7.063147e− 06 2 3

Table 2: Convergence of (PTMY )

regularization, a standard second order analysis is not possible, since the reg-
ularized objective function is not twice differentiable. However, by the equiv-
alence of the Moreau-Yosida regularization to a specific setting of the virtual
control concept, we were able to bypass these restrictions. As a byproduct of
our analysis, we obtained that a sufficient condition for the Moreau-Yosida
regularization can be deduced from an SSC for the unregularized problem.
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