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Abstract

In this work we prove that the exact internal observability for the
Euler-Bernoulli equation is robust with respect to a class of linear per-
turbations. Our results yield, in particular, that for rectangular do-
mains we have the exact observability in an arbitrarily small time and
with an arbitrarily small observation region. The usual method of tack-
ling lower order terms, using Carleman estimates, cannot be applied
in this context. More precisely, it is not known if Carleman estimates
hold for the evolution Euler-Bernoulli equation with arbitrarily small
observation region. Therefore we use a method combining frequency
domain techniques, a compactness-uniqueness argument and a Carle-
man estimate for elliptic problems.

MSC: 35B37, 93B05, 93B07.

keywords: exact observability, Euler-Bernoulli equation, compactness-
uniqueness

∗Accepted for publication on July 27, 2010.
†Nicolae.Cindea@iecn.u-nancy.fr Institut Elie Cartan, Nancy Université / CNRS /

INRIA, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
‡Marius.Tucsnak@iecn.u-nancy.fr Institut Elie Cartan, Nancy Université / CNRS /

INRIA, BP 70239, 54506 Vandoeuvre-lès-Nancy, France

205

Annals of the Academy of Romanian Scientists
Series on Mathematics and its Applications

ISSN 2066 - 6594 Volume 2, Number 2 / 2010



206 Nicolae Cîndea, Marius Tucsnak

1 Introduction and main results

The internal exact observability of the Euler-Bernoulli plate equation, model-
ing the vibrations of elastic plates, is a subject which has been widely tackled
in the literature. One of the features differentiating this problem with respect
to the corresponding system for the wave equation is that the observability
time is arbitrarily small, as it has been first shown in the Appendix 1 of Li-
ons [9]. Much later it has been shown in Miller [10] and Tucsnak and Weiss
[13, Section 6.7] that if the wave equation with a given observation region is
exactly observable then the Euler-Bernoulli equation with the same region is
exactly observable in arbitrarily small time. This holds, in particular, if the
observation region satisfies the geometric optics condition of Bardos, Lebeau
and Rauch [1] (see Lebeau [8] for a derivation of this result with no explicit
reference to the wave equation). However, this condition is not necessary
for the exact observability of the Euler-Bernoulli equation. In particular, for
rectangular domains, it has been shown in Jaffard [6] and Komornik [7] that
the exact observability holds for arbitrary open observation domains and in
any time.

The aim of this work is to study the robustness of the above mentioned ob-
servability properties with respect to lower order perturbations of the Euler-
Bernoulli equation. These perturbations may contain derivatives of order up
to two and coefficients depending on the space variable. In the case in which
a strong version of the geometric optics condition holds such perturbation
can be studied using Carleman estimates for the evolution Euler-Bernoulli
equation (see Wang [14]), which are quite appropriate to absorb the lower-
order terms. These Carleman estimates are not available for arbitrarily small
observation regions so they cannot be used to generalize the results from [6]
and [7] to the perturbed plate. Therefore we develop here a general per-
turbation argument showing that any internal observability result for the
Euler-Bernoulli equation is robust with respect to the considered class of
perturbations. This implies, in particular, that for rectangular domains, we
have exact observability with arbitrarily small observation regions.

Let Ω ⊂ Rn (n ∈ N∗) be an open and nonempty set with a C2 boundary
or let Ω be a rectangle. We consider the following initial and boundary value
problem :

ẅ(x, t) +∆2w(x, t)− a∆w(x, t) + b(x) · ∇w(x, t) + c(x)w(x, t) = 0,
for (x, t) ∈ Ω × (0,∞)

(1)



Internal exact observability of a perturbed Euler-Bernoulli equation 207

w(x, t) = ∆w(x, t) = 0, for (x, t) ∈ ∂Ω × (0,∞) (2)

w(x, 0) = w0(x), ẇ(x, 0) = w1(x), for x ∈ Ω, (3)

where a>0, b∈ (L∞(Ω))n, c∈L∞(Ω),w0∈H2(Ω)∩H1
0 (Ω) and w1∈L2(Ω).

We consider the output given by

y(t) = ẇ(·, t)|O, (4)

where O is an open and nonempty subset of Ω and a dot denotes differenti-
ation with respect to the time t:

ẇ =
∂w

∂t
, ẅ =

∂2w

∂t2
.

For n = 2 the equations (1)-(3) model the vibration of a perturbed Euler-
Bernoulli plate with a hinged boundary.

The main result of this work is the following theorem :

Theorem 1. Let O ⊂ Ω be an open and nonempty subset of Ω such that (1)-
(4), with a = 0, b = 0, c = 0, is exactly observable in any time τ > 0. Then,
for a = 0 and b = 0 the system (1)-(4) is exactly observable in arbitrarily
small time for every c ∈ L∞(Ω).

Moreover, (1)-(4) is exactly observable for every a > 0 and b, c real
analytic functions.

Note that, in the case a > 0, the above result gives no information on
the observability time. For rectangular domains we have the following, more
precise, result.

Theorem 2. Assume that n = 2, Ω is a rectangle and let O be an open and
nonempty subset of Ω. If b = 0 then (1) − (4) is exactly observable in any
time τ > 0 for every a > 0, c ∈ L∞(Ω). Moreover, if b 6= 0 is an analytic
function then (1)-(4) is exactly observable in any time τ > 0 for every a > 0
and c analytic.

To prove the above two theorems, we consider an abstract formulation
of our exact observability problem. More precisely, in Section 3 we prove an
exact observability result for a linear abstract perturbed system.

In Section 5 we prove the Theorem 1 and Theorem 2, applying the
abstract results from Section 3. A unique continuation result for the bi-
Laplacian is proved in Section 4.
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2 Background on exact observability

In this section we recall the definition of the exact observability of an infinite
dimensional system and we give a perturbation result for the exact observ-
ability of a second order infinite dimensional system. In this purpose we need
some notation.

Let X and Y be two complex Hilbert spaces which are identified with
their duals, and let T = (Tt)t≥0 be a strongly continuous semigroup on X,
with the generator A : D(A)→ X.

We consider the following infinite dimensional system

ż(t) = Az(t), z(0) = z0, (5)

y(t) = Cz(t), (6)

where C ∈ L(X,Y ) is a bounded linear observation operator.
We recall the classical definition of the exact observability.

Definition 1. The pair (A,C) is exactly observable in time τ > 0 if there
exists a constant kτ > 0 such that any solution of (5)-(6) satisfies∫ τ

0
‖Cz(t)‖2Y dt ≥ k2

τ‖z0‖2X , (z0 ∈ X). (7)

LetH be a Hilbert space equipped with the norm ‖·‖H , let A0 :D(A0)→H
be a self-adjoint, positive and boundedly invertible operator, with compact
resolvents and let C0 ∈ L(H,Y ) be a bounded linear operator. For such an
operator A0 we denote Hα the Hilbert space defined by Hα = D(Aα0 ) for any
α ≥ 0 and H−α is the dual space of Hα with respect to the pivot space H.

We consider the following second-order abstract system :

ẅ(t) +A2
0w(t) = 0, (8)

w(0) = w0, ẇ(0) = w1, (9)

with the output function
y(t) = C0ẇ(t). (10)

The system (8)-(10) can be described by a first order system. Indeed, if
we denotes X = H1 ×H, D(A) = H2 ×H1 and

A : D(A)→ X, A

[
f
g

]
=
[

g
−A2

0f

] ([
f
g

]
∈ D(A)

)
, (11)
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we can write (8)-(9) as

ż(t) = Az(t), z(0) = z0,

where z(t) =
[
w(t)
ẇ(t)

]
, z0 =

[
w0

w1

]
. The operator A defined above is a skew-

adjoint operator and, therefore, generates a strongly continuous semigroup
(Tt)t on X.

Let C ∈ L(X,Y ) be the operator defined by C = [0 C0]. We say that
(8)-(10) is exactly observable if the pair (A,C) is exactly observable in the
sense of Definition 1.

In our recent work [3], we have shown that if (8)-(10) is exactly observable
then the following initial value problem

ẅ(t) +A2
0w(t) + aA0w(t) = 0 (12)

w(0) = w0, ẇ(0) = w1, (13)

is exactly observable with respect to the same output, for every a > 0. More
precisely, we proved the following result :

Theorem 3. Assume that the system (8)-(10) is exactly observable. Then
the system (12)-(13) is exactly observable in rapport with the observation
(10), i.e., there exist a time τ > 0 and a constant kτ > 0 such that every
solution w of (12)-(13) satisfies∫ τ

0
‖C0ẇ(t)‖2Y dt ≥ k2

τ

(
‖w0‖2H1

+ ‖w1‖2H
)
,

([
w0

w1

]
∈ H2 ×H1

)
. (14)

Moreover, if Ω is a rectangle the observability time τ > 0 can be arbitrarily
small.

3 An exact observability result for second-order per-
turbed systems

In this section we study the exact observability of (12)-(13) with the output
(10), perturbed with a term of the form P0w, where P0 ∈ L(H1−ε, H) and
ε ∈ (0, 1]. More precisely, we consider the following second-order system :

v̈(t) +A2
av(t) + P0v(t) = 0, t > 0 (15)
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v(0) = v0, v̇(0) = v1, (16)

with the output function
y(t) = C0v̇(t), (17)

seen as a perturbation of (12)-(13), where we denote Aa : H1 → H the oper-
ator defined by Aa = (A2

0 + aA0)
1
2 . It is easy to see that Aa is a self-adjoint,

strictly positive, boundedly invertible operator, with compact resolvents. Re-
mark that (12) can be written, using this notation, as

ẅ(t) +A2
aw(t) = 0, t > 0.

Let Ãa : H2 ×H1 → H1 ×H be the operator defined by

Ãa =
[

0 I
−A2

a 0

]

and denote P =
[

0 0
−P0 0

]
, C = [0 C0] ∈ L(H1 × H,Y ). We can consider

P ∈ L(H1 ×H). Then AP : H2 ×H1 → H1 ×H, with AP = Ãa + P , is well
defined. Hence, according to Theorem 1.1 from Pazy [11, p.76], AP is the
generator of a strongly continuous semigroup in H1 ×H, denoted

(
TPt
)
t≥0

.
We denote

N (T ) =
{
W0 =

[
w0

w1

]
∈ H1 ×H | CTPt W0 = 0, for any t ∈ [0, T ]

}
. (18)

The aim of this section is to prove that the exact observability of (12)-
(13) with the observation (10) implies the exact observability of (15)-(17).
The main result of this section is the following theorem :

Theorem 4. With the above notations, we assume that (12)-(13), with the
observation (10), is exactly observable in time τ > 0. We assume, moreover,
that N (T ) = {0}. If C0φ 6= 0 for every eigenvector φ of A2

a + P0 then (15)-
(17) is exactly observable in any time T > τ , i.e., there exists a constant
kT > 0 such that any solution v of (15)-(16) satisfies∫ T

0
‖C0v̇(t)‖2Y dt ≥ k2

T

(
‖v0‖2H1

+ ‖v1‖2H
)
,

([
v0
v1

]
∈ H1 ×H

)
.
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Lemma 1. Let G ∈ L(H1−ε×H−ε, H1×H) be the compact operator defined
by

G =
[
A−εa 0
0 A−εa

]
. (19)

Then, with the assumptions of Theorem 4, there exists a positive constant
CT such that∫ T

0
‖C0ψ̇(t)‖2Y dt ≤ C2

T

∥∥∥∥G [w0

w1

]∥∥∥∥2

H1×H
,

([
w0

w1

]
∈ H1 ×H

)
, (20)

where ψ is the solution of

ψ̈(t) +A2
aψ(t) + P0ψ(t) = −P0w(t), t ∈ (0,∞) (21)

ψ(0) = ψ̇(0) = 0 (22)

and w is the solution of (12)-(13).

Proof. Since C0 ∈ L(H,Y ) we have the following estimate:

‖C0ψ̇‖C([0,T ];Y ) ≤ ‖C0‖L(H,Y )‖ψ̇‖C([0,T ];H) ≤ ‖C0‖L(H,Y )‖Ψ‖C([0,T ];H1×H),

where Ψ(t) =
[
ψ(t)
ψ̇(t)

]
is the solution of the following initial value problem

Ψ̇(t) = APΨ(t) + P

[
w(t)
ẇ(t)

]
, Ψ(0) = 0. (23)

Then, there exists a constant C̃T > 0 such that

‖Ψ‖C([0,T ];H1×H) ≤ C̃T
∥∥∥∥P [wẇ

]∥∥∥∥
L1([0,T ];H1×H)

= C̃T ‖P0w‖L1([0,T ];H).

Recall that P0 ∈ L(H1−ε, H). Combining this fact with the above two in-
equalities, we obtain :

‖C0ψ̇‖C([0,T ];Y ) ≤ C̃T ‖C0‖L(H,Y )‖P0‖L(H1−ε,H)‖w‖L1([0,T ];H1−ε). (24)

We recall that w is the solution of (12)-(13) and, therefore, we can bound
its L1 norm by the norm of the initial data. We have that

‖w‖L1([0,T ];H1−ε)
≤ CT

∥∥∥∥[w0

w1

]∥∥∥∥
H1−ε×H−ε

. (25)
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Using the fact that the operator G is an isomorphism from H1−ε ×H−ε
onto H1×H, we can conclude that there exists a constant CT > 0 such that

‖C0ψ̇‖C([0,T ];Y ) ≤ CT
∥∥∥∥G [w0

w1

]∥∥∥∥
H1×H

and the proof of the lemma is complete. �
Proof of Theorem 4. The solution v of (15)-(16) can be written as

v = w + ψ, where w is the solution of (12)-(13) and ψ is the solution of
(21)-(22). Then we have∫ T

0
‖C0v̇(t)‖2Y dt+

∫ T

0
‖C0ψ̇(t)‖2Y dt ≥ 1

2

∫ T

0
‖C0ẇ(t)‖2Y dt. (26)

Using the exact observability of (12)-(13), we obtain from (26) that there
exists a constant kT > 0 such that∫ T

0
‖C0v̇(t)‖2Y dt+

∫ T

0
‖C0ψ̇(t)‖2Y dt ≥

k2
T

2
(‖w0‖2H1

+ ‖w1‖2H). (27)

From (27) and Lemma 1 we obtain

∫ T
0 ‖C0v̇(t)‖2Y dt+ C2

T

∥∥∥∥G [w0

w1

]∥∥∥∥2

H1×H
≥ 1

2k
2
T (‖w0‖2H1

+ ‖w1‖2H),

for any
([
w0

w1

]
∈ H1 ×H

)
,

(28)

where G is the operator defined by (19).
The idea of the proof is to show that in (28), from Lemma 1, we can

remove the term CT ‖GW0‖2H1×H and thus we obtain the requested observ-
ability inequality∫ T

0
‖CTPt W0‖2Y dt ≥ 1

2
k2
T ‖W0‖2H1×H , (W0 ∈ H1 ×H). (29)

We assume that there exists a sequence (Wn
0 )n ∈ H1 ×H such that

‖Wn
0 ‖H1×H = 1

and ∫ T

0
‖CTPt Wn

0 ‖2Y dt→ 0, when n→∞,
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which contradicts (29). Since the operator G provided by Lemma 1, is com-
pact, we can extract a subsequence of (Wn

0 )n, denoted with the same nota-
tion, such that

GWn
0 →W0 ∈ H1 ×H, when n→∞,

Passing to the limit in (28), we obtain

CT ‖W0‖2H1×H ≥
1
2
k2
T

that is

‖W0‖2H1×H ≥
k2
T

2CT
> 0,

and so, W0 6= 0. Recall that∫ T

0
‖CTPt W0‖2Y dt = 0,

which implies
CTPt W0 = 0, (t ∈ (0, T )).

Also, we proved that W0 ∈ N (T ) and W0 6= 0. This is in contradiction with
the the assumption of the theorem and so the observability inequality (29)
is true. �

In the case ε = 1 (i.e. P0 ∈ L(H)), using a compactness and uniqueness
argument, we can prove that N (T ) = 0. More precisely, we obtained the
following result.

Theorem 5. With the notations from the beginning of this section, we as-
sume that (12)-(13), with the observation (10), is exactly observable in time
τ > 0. If C0φ 6= 0 for every eigenvector φ of A2

a+P0 then (15)-(17) is exactly
observable in any time T > τ , i.e., there exists a constant kT > 0 such that
any solution v of (15)-(16) satisfies∫ T

0
‖C0v̇(t)‖2Y dt ≥ k2

T

(
‖v0‖2H1

+ ‖v1‖2H
)
,

([
v0
v1

]
∈ H1 ×H

)
.

Proof. To prove this theorem is enough to show that N (T ) = {0} and

to apply Theorem 3. In this purpose, let W0 =
[
w0

w1

]
be an element of N (T ).
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Let G = (βI − Ãa)−1 ∈L(H1 × H,H2×H1) be a compact operator for a
fixed β ∈ ρ(Ãa) ∩ ρ(AP ). The proof of Lemma 1 remains the same for this
G, hence

CT ‖GW0‖2H2×H1
≥ 1

2
k2
T ‖W0‖2H1×H . (30)

In a first step, we prove that N (T ) is a finite dimensional space, i.e.,
the unit ball of the space (N (T ), ‖ · ‖H1×H) is compact. In this purpose,

let
([
w0n

w1n

])
n

be a bounded sequence in (N (T ), ‖ · ‖H1×H). Applying the

inequality (30), we obtain that
([
w0n

w1n

])
n

is bounded in H2×H1. We recall

that H2 × H1 ⊂ H1 × H with compact embedding. Therefore, there exists[
f
g

]
∈ H2 ×H1 such that[

w0n

w1n

]
w−→
[
f
g

]
in H2 ×H1 and (31)[

w0n

w1n

]
−→

[
f
g

]
in H1 ×H. (32)

From CTt ∈ L(H1 ×H,Y ) and (31) we obtain that

CTt
[
w0n

w1n

]
w−→CTt

[
f
g

]
in H1 ×H.

Therefore,
[
f
g

]
∈ N (T ) and, so, N (T ) is a finite dimensional space.

In a second step, we show that N (T ) is an invariant subspace of AP .
Indeed, it is clear that for δ ∈ (0, T ), ifW0 ∈ N (T ) then TPt W0 ∈ N (T−δ) for
each 0 < t < δ. Since AP commutes with (βI−AP )−1 ∈ L(H1×H,H2×H1),
we have

(βI −AP )−1 TPt − I
t

W0 → AP (βI −AP )−1W0,

when t → 0. Therefore,
(

TP
t −I
t W0

)
t
is a Cauchy family for the norm W 7→

‖(βI−AP )−1W‖ in N (T −δ). From the Remark 2.11.3 in [13] it follows that
the norms ‖((βI − AP )−1W )‖ and ‖(βI − Ãa)−1W‖ are equivalent. Hence,
we obtain that N (T ) ⊂ D(AP ). Moreover,

CTPt W0 = 0, (t ∈ [0, T ]).
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After a differentiation with respect to t, the relation above becomes

CTPt APW0 = 0, (t ∈ [0, T ]),

and, therefore, N (T ) is AP -stable.
Finally, we prove that N (T ) = {0}. Assume that N (T ) 6= {0}. Since

N (T ) is finite dimensional and AP -stable, then it contains an eigenvector of

AP . Let W0 =
[
w0

w1

]
∈ N (T ) be a eigenvector of AP . Then exists λ 6= 0 such

that
APW0 = λW0,

and, so, w1 is an eigenvector of A2
a + P0. From the definition of N (T ) we

obtain that C0w1 = 0 which contradicts the assumption of Theorem 4 that
C0φ 6= 0 for every eigenvector φ of A2

a + P0. �

Remark 1. In [2] the authors proved a result similar with Theorem 4, using
a spectral method completely different to the one presented in this section.

4 A unique continuation result for bi-Laplacian

The aim of this section is to prove the following theorem :

Theorem 6. Let a ∈ (0,∞), b ∈ (L∞(Ω))n, c ∈ L∞(Ω), µ ∈ R and let
u ∈ H4(Ω) be a function such that

∆2u− a∆u+ b · ∇u+ cu = µ2u in Ω (33)
u = ∆u = 0 on ∂Ω (34)

and
u = 0 in O. (35)

Then u = 0 in Ω.

The key of the proof of Theorem 6 is a global Carleman estimate for bi-
Laplacian (Proposition 1), which we obtained applying two times a particular
case of the global Carleman estimate proved by Imanuvilov and Puel in [5].

Let Ω be an nonempty open set with a C2 boundary or a rectangle. Let
y ∈ H2(Ω) ∩H1

0 (Ω) be the solution of the problem

∆y = f, in Ω (36)
y = 0, on ∂Ω, (37)
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where f ∈ L2(Ω). We use the following classic lemma stated in [5], and
proved in Fursikov-Imanuvilov [4].

Lemma 2. Let O be an open and nonempty subset of Ω. Then there exists
a function ψ ∈ C2(Ω) such that

ψ(x) = 0, x ∈ ∂Ω (38)
ψ(x) > 0, x ∈ Ω (39)

|∇ψ(x)| > 0, x ∈ Ω \ O. (40)

We consider the following weight function

ϕ(x) = eλψ(x), (41)

where λ ≥ 1 will be chosen later.
Using the definition of the function ϕ, and the properties of function ψ

given by Lemma 2, we have

1
ϕ(x)

=
1

eλψ(x)
= e−λψ(x) ≤ 1 ≤ e2λψ(x) = ϕ2(x), (42)

for all λ ≥ 1.
Theorem 7 is a particular case of the Carleman estimate proved in [5] for

general elliptic operators.

Theorem 7. Assume that (38)-(41) are verified and let y ∈ H2(Ω)∩H1
0 (Ω)

be the solution of (36)-(37). Then there exists a constant C > 0 independent
of s and λ, and parameters λ̂ > 1 and ŝ > 1 such that for all λ ≥ λ̂ and for
all s > ŝ we have ∫

Ω
|∇y|2e2sϕdx+ s2λ2

∫
Ω
|y|2ϕ2e2sϕdx ≤

C

(
1
sλ2

∫
Ω

|f |2

ϕ
e2sϕdx+

∫
O

(
|∇y|2 + s2λ2ϕ2|y|2

)
e2sϕdx

)
. (43)

Let u ∈ H4(Ω) be the solution of the problem

∆2u− a∆u = g, in Ω (44)
u = ∆u = 0, on ∂Ω, (45)

where g ∈ L2(Ω).
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Proposition 1. Let ψ ∈ C2(Ω) be a function such that (38)-(40) are verified
and let ϕ given by (41). Let u ∈ H4(Ω) be a solution of (44)-(45). Then
there exist ŝ > 1, λ̂ > 1 and a constant C > 0 independent of s ≥ ŝ and
λ ≥ λ̂, such that

sλ2

∫
Ω

(
|∇(∆u)|2 + s3λ4|∇u|2 + s5λ6|u|2ϕ2

)
e2sϕ ≤ C

(∫
Ω

|g|2

ϕ
e2sϕ

+sλ2

∫
O

(|∇(∆u)|2 + s2λ2ϕ2|∆u|2 + s3λ4|∇u|2 + s5λ6ϕ2|u|2)e2sϕ
)
. (46)

Proof. We denote y = ∆u and g1 = g + a∆u. Then (44) and the last
part of (45) can be written as

∆y = g1, in Ω (47)
y = 0, on ∂Ω (48)

We can apply Theorem 7. Therefore, there exist s1 > 1, λ1 > 1 and a
constant C1 > 0 independent of s and λ such that for all s ≥ s1, λ ≥ λ1 the
following estimate is satisfied

sλ2

∫
Ω
|∇y|2e2sϕdx+ s3λ4

∫
Ω
|y|2ϕ2e2sϕdx ≤

C1

(∫
Ω
|g1|2ϕ−1e2sϕdx+

∫
O

(
sλ2|∇y|2 + s3λ4ϕ2|y|2

)
e2sϕ

)
dx ≤

C1

(
2
∫
Ω

(|g|2ϕ−1 + a2|∆u|2ϕ2)e2sϕdx+∫
O

(
sλ2|∇y|2 + s3λ4ϕ2|y|2

)
e2sϕdx

)
where bellow we used (42). Replacing y with ∆u in the previous estimate,
we obtain

sλ2

∫
Ω
|∇(∆u)|2e2sϕdx+ (s3λ4 − 2a2C1)

∫
Ω
|∆u|2ϕ2e2sϕdx ≤

C1

(
2
∫
Ω
|g|2ϕ−1e2sϕdx+

∫
O

(
sλ2|∇(∆u)|2 + s3λ4ϕ2|∆u|2

)
e2sϕdx

)
. (49)

Now consider the problem

∆u = y, in Ω (50)
u = 0, on ∂Ω, (51)



218 Nicolae Cîndea, Marius Tucsnak

and apply Theorem 7. Then there exists a constant C2 > 0, s2 > 1, λ2 > 1
such that for s ≥ s2 and λ ≥ λ2 we have

sλ2

∫
Ω
|∇u|2e2sϕdx+ s3λ4

∫
Ω
|u|2ϕ2e2sϕdx ≤

C2

(∫
Ω
|∆u|2ϕ−1e2sϕdx+

∫
O

(
sλ2|∇u|2 + s3λ4ϕ2|u|2

)
e2sϕdx

)
≤

C2

(∫
Ω
|∆u|2ϕ2e2sϕdx+

∫
O

(
sλ2|∇u|2 + s3λ4ϕ2|u|2

)
e2sϕdx

)
, (52)

where for the last part of the inequality bellow we used (42).
We denote λ̂ = max{λ1, λ2} and ŝ = max{s1, s2}. For every s ≥ ŝ,

λ ≥ λ̂, combining (49) and (52) we have

sλ2

∫
Ω
|∇(∆u)|2e2sϕdx

+
s3λ4 − 2a2C1

C2
sλ2

∫
Ω

(|∇u|2 + s2λ2|u|2ϕ2)e2sϕdx

−(s3λ4 − a2C1)
(∫
O

(
sλ2|∇u|2 + s3λ4ϕ2|u|2

)
e2sϕdx

)
≤

C1

(
2
∫
Ω
|g|2ϕ−1e2sϕdx+

∫
O

(
sλ2|∇(∆u)|2 + s3λ4ϕ2|∆u|2

)
e2sϕdx

)
.

Fixing λ in above inequality, is easy to see that there exists a constant
C > 0 such that (46) is verified. Therefore, the proof of the proposition is
complete. �

Proof of Theorem 6. The proof is a direct consequence of Theorem 1. Let
us denote g = (µ2− a)u− b · ∇u ∈ L2(Ω). Applying Theorem 1 to (33)-(34)
and using (35), we obtain

sλ2

∫
Ω

(|∇(∆u)|2 + s3λ4|∇u|2 + s5λ6|u|2ϕ2)e2sϕdx ≤ C
∫
Ω

|g|2

ϕ
e2sϕdx.

We can easily verify that

|g(x)|2 ≤ 2
(
µ4 + ‖a‖2L∞(Ω)

)
|u(x)|2 + 2‖b‖2(L∞(Ω))n |∇u(x)|2, (x ∈ Ω).
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Combining the above inequality with (42), we obtain∫
Ω

(
sλ2|∇(∆u)|2 + s4λ6|∇u|2 + s6λ8|u|2ϕ2

)
e2sϕdx ≤

2C
((

µ4 + ‖a‖2L∞(Ω)

)∫
Ω
|u|2ϕ2e2sϕdx+ ‖b‖2(L∞(Ω))n

∫
Ω
|∇u|2e2sϕdx

)
.

Taking s→∞ in previous inequality, we easily obtain that u = 0 in Ω. �

5 Proof of main results

The idea of the proofs of Theorem 1 and Theorem 2 is to apply the abstract
results proven in Section 2. In order to apply Theorem 4 or Theorem 5,
we use the unique continuation result for the bi-Laplacian obtained in the
previous section.

In the remaining part of this section, Aa : H1 → H denotes the following
operator

H1 = H2(Ω) ∩H1
0 (Ω), H = L2(Ω),

Aaϕ = (∆2 − a∆)
1
2ϕ, (a > 0, ϕ ∈ H1)

and P0 ∈ L(H 1
2
, H)

P0ϕ = b · ∇ϕ+ cϕ, (ϕ ∈ H 1
2
),

where a, b, c are as in Theorem 1 and Hα are as in Section 2. Therefore
(1)-(3) can be written as

ẅ(t) +A2
aw(t) + P0w(t) = 0, t > 0 (53)

w(0) = w0, ẇ(0) = w1. (54)

Let Y = L2(O) and let C0 ∈ L(H,Y ) be the bounded linear operator given
by

C0w(t) = w(·, t)|O.

We consider the following output function

y(t) = C0ẇ(t) (55)
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To prove Theorem 1 or Theorem 2 is nothing else than to prove the exact
observability of (53)-(55), the only difference between the two theorems being
the exact observability time.

Proof of Theorem 1. If we translate the result of Proposition 6 in the
operator notation introduced above, we obtain that{

A2
0ψ + P0ψ = µ2ψ

C0ψ = 0
implies ψ = 0.

In other words, for every eigenvector ψ of A2
0+P0 we have C0ψ 6= 0. Therefore

we can apply Theorem 4.
If b = 0 we can consider P0 ∈ L(H) and then, applying Theorem 5 in

the case a = 0, we obtain the exact observability of (53)-(55) in a time
arbitrarily small for every c ∈ L∞(Ω). In the case a > 0, applying Theorem
3 and Theorem 4 we obtain the exact observability of (53)-(55) with no
information about the observability time.

If b and c are analytic functions we obtain the same results as in the case
b = 0, using John’s global Holmgren theorem (see for instance Rauch [12,
Theorem 1, p.42]) to deduce that N (T ) = {0} for Theorem 4. �

Proof of Theorem 2. The only difference between this proof and the
previous one is that we apply here Proposition 5.1 in [3] which give us the
observability of the pair (Ãa, C) in any time τ > 0 and, applying Theorem
4, we obtain that (53)-(55) is exactly observable in any time τ > 0. �
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