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Abstract

This article surveys recent results regarding the existence of weak
solutions to quasilinear partial di�erential equations (PDE) coupled
nonlocally by the integral operator of the radiosity equation, modeling
conductive-radiative heat transfer. Both the stationary and the tran-
sient case are considered. For the stationary case, an optimal control
problem with control constraints is presented with �rst-order neces-
sary optimality conditions, where recent results on the solution theory
of the linearized state equation allow to close a previous gap. A �-
nite volume scheme for the discretization of the stationary system is
described and, based on this scheme, a numerical computation of the
temperature �eld (solution of the state equation) is shown as well as
the numerical solution to a realistic control problem in the context of
industrial applications in crystal growth.

MSC: 49K20, 35J60, 35D30, 35K05, 35K55, 45P05, 49J20, 65C20,
80M15, 80M50.

∗Accepted for publication in revised form on June 13, 2010.
†philip@math.lmu.de Department of Mathematics, Ludwig-Maximilians University

(LMU), Theresienstrasse 39, 80333 Munich, Germany.

171

Annals of the Academy of Romanian Scientists
Series on Mathematics and its Applications

ISSN 2066 - 6594 Volume 2, Number 2 / 2010



172 Peter Philip

keywords: nonlinear elliptic equation, nonlinear parabolic equation,
heat equation, nonlocal boundary condition, di�use-gray radiation, radiosity
equation, weak solution, optimal control, �nite volume method, numerical
simulation

1 Introduction
Modeling and numerical simulation of conductive-radiative heat transfer has
become a standard tool to support and improve numerous industrial pro-
cesses such as crystal growth by the Czochralski method [1] and by the phys-
ical vapor transport method [2] to mention just two examples. Moreover, in
the context of industrial applications, one is often not only interested in com-
puting stationary or transient temperature �elds as they arise from models of
conductive-radiative heat transfer, but one also needs to optimize and con-
trol such temperature �elds according to objective functionals arising from
the application [3, 4].

Models including di�use-gray radiative interactions between cavity sur-
faces consist of nonlinear elliptic (stationary) or parabolic (transient) PDE
(heat equations), where a nonlocal coupling occurs due to the integral oper-
ator of the radiosity equation. There have been numerous papers, where the
mathematical theory of existence and uniqueness of weak solutions has been
developed in recent years (see [5, 6, 7, 8, 9, 10, 11] and references therein).
Distributed over several papers, there have been important recent advances
reducing regularity requirements on the data [8, 9] as well as improving reg-
ularity results for the solution [12].

In the present survey, we compile such results for both the stationary
and the transient model. For the stationary model, it is then described, how
these results together with advances from [12] regarding the linearized model
can be applied to obtain �rst-order necessary optimality conditions for the
optimal control problem considered in [4], closing a gap left open in [4].

We then proceed to the description of a �nite volume scheme that has
been successfully applied for the numerical solution of conductive-radiative
heat transfer models. Numerical solutions based on the �nite volume scheme
are presented, where the stationary system has been solved for a complex
crystal growth arrangement. Finally, numerical results of a related applied
optimal control problem are depicted and brie�y discussed.

The paper is organized as follows: The model of conductive-radiative
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heat transfer is reviewed in Sec. 2.1, surveying some recent improvements
regarding the solution of the radiosity equation, which is a key building
block of the model. Section 2.2 treats the existence theory of weak solutions,
with applications on optimal control in Sec. 3. The �nite volume scheme is
described in Sec. 4, and we conclude with the numerical results in Sec. 5.

2 Modeling Conductive-Radiative Heat Transfer
2.1 The Model
The space domain Ω ⊆ R3 is assumed to consist of two parts Ωs and Ωg,
where Ωs represents an opaque solid and Ωg represents a transparent gas.
More precisely, we assume:

(A-1) Ω = Ωs ∪ Ωg, Ωs ∩ Ωg = ∅, and each of the sets Ω, Ωs, Ωg, is a
nonvoid, bounded, open subset of R3 such that the interface surface
Σ := Ωs ∩ Ωg is Lipschitz and piecewise C1, i.e. Σ can be partitioned
into �nitely many C1-surfaces.

(A-2) Ωg is enclosed by Ωs, i.e. Σ = ∂Ωg (see Fig. 1).

Heat conduction is considered throughout Ω. Nonlocal radiative heat
transport is considered between points on the surface Σ of Ωg.

Stationary heat conduction is described by

− div
(
κ(x, θ)∇ θ

)
= f(x) in Ω, (1)

where θ(x) ∈ R+ represents absolute temperature, depending on the space
coordinate x; κ > 0 represents the thermal conductivity, and f ≥ 0 is a
heat source due to some heating mechanism. In practice, for many heating
mechanisms such as induction or resistance heating, one has f = 0 in Ωg.
One can also allow f ≤ 0 to model heat sinks due to cooling.

While (1) models the thermal equilibrium, for example, at the end of a
heating process, it is often also desirable to model transient heat conduction,
for instance, to model crystal growth apparatus during the heating phase, im-
portant in situations, where the growth process and possible defect creation
is already initiated during the heating phase [13]. Transient heat conduction
is described by

∂ε(x, θ)
∂t

− div
(
κ(x, θ)∇ θ

)
= f(t, x) in ]0, T [×Ω, (2)
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Ωg,1

Ωg,2

Ωg,3

Ωg = Ωg,1 ∪ Ωg,2 ∪ Ωg,2

Figure 1: Possible shape of a 2-dimensional section through the 3-dimensional
domain Ω = Ωs ∪ Ωg. Here, Ωg has the 3 connected components Ωg,1, Ωg,2,
Ωg,3. Note that, according to (A-2), Ωg is engulfed by Ωs, which can not be
seen in the 2-dimensional section.

where T > 0 represents the �nal time, θ and f now depend on the time
variable t as well as on the space variable x, and ε > 0 represents internal
energy.
Remark 1. If θ is to represent absolute temperature, then it must be always
positive. However, it is also mathematically interesting to study equations
(1) and (2) in situations, where the solution θ can be negative. For example,
negative solutions can occur if the right-hand side function f is allowed to be
negative. For that reason, it is often desirable to keep the problem formula-
tion su�ciently �exible, such that it makes sense even if θ ≥ 0 can not be
guaranteed (considering κ to be de�ned on Ω × R rather than on Ω × R+ is
an example, also cf. Rem. 2 below).

On the interface Σ between solid and gas, one needs to account for ra-
diosity R and for irradiation J , resulting in a jump in the normal heat �ux(
κ(x, θ)∇ θ

) · ~ng according to the following interface condition for (1) (the
same works for (2) after replacing the space domains by the corresponding
time-space cylinders):

(
κ(x, θ)∇ θ

)
¹Ωg

·~ng +R(θ)− J(θ) =
(
κ(x, θ)∇ θ

)
¹Ωs

·~ng on Σ. (3)
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Here, ~ng denotes the unit normal vector pointing from gas to solid and ¹
denotes restriction (or trace). Thus, e�ectively, (1) consists of two equations,
one on Ωs and one on Ωg, coupled via (3) (and analogously for (2)).

It is assumed that the solid is opaque such that R(θ) and J(θ) are com-
puted according to the net radiation model for di�use-gray surfaces, i.e. re-
�ection and emittance are taken to be independent of the angle of incidence
and independent of the wavelength. At each point of the surface Σ, the ra-
diosity is the sum of the emitted radiation E(θ) and of the re�ected radiation
Jr(θ):

R = E + Jr on Σ. (4)

According to the Stefan-Boltzmann law,

E(θ) = σ ε |θ|3θ on Σ, (5)

where σ ∈ R+ represents the Boltzmann radiation constant, and ε repre-
sents the potentially material-dependent emissivity of the solid surface. It is
assumed that:

(A-3) ε ∈ L∞(Σ) with values in [0, 1] is such that, for each connected com-
ponent Ωg,k of Ωg (cf. Fig. 1), there exists Mk ⊆ Σk := ∂Ωg,k such
that Mk has positive surface measure and ε > 0 on Mk.

Remark 2. The physically inclined reader might expect to read θ4 on the
right-hand side of (5) rather than |θ|3θ. However, whenever θ > 0 does,
indeed, represent an absolute temperature, both terms are identical, while,
due to its monotonicity properties, |θ|3θ is more suitable for the mathematical
theory in situations, where θ can become negative (cf. Rem. 1 above). This
remark should be born in mind for each subsequent occurrence of |θ|3θ.

Using the presumed opaqueness together with Kirchho�'s law yields

Jr = (1− ε) J. (6)

Due to di�useness, the irradiation can be calculated as

J(θ) = K(R(θ)), (7)
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using the nonlocal integral radiation operator K de�ned by

K(ρ)(x) :=
∫

Σ
V (x, y)ω(x, y) ρ(y) dy for a.e. x ∈ Σ, (8)

ω(x, y) :=

(
~ns(y) · (x− y)

) (
~ns(x) · (y − x)

)

π
(
(y − x) · (y − x)

)2 for a.e. (x, y) ∈ Σ× Σ, (9)

V (x, y) :=

{
0 if Σ∩ ]x, y[6= ∅,
1 if Σ∩ ]x, y[= ∅ for each (x, y) ∈ Σ× Σ, (10)

where ω is called view factor, V is called visibility factor (being 1 if, and only
if, x and y are mutually visible), and ~ns denotes the outer unit normal to
the solid domain Ωs, existing almost everywhere on the Lipschitz interface
Σ. The following Th. 3 summarizes properties of ω, V , and K, relevant to
our considerations.

Theorem 3. Assume (A-1) and (A-2).

(a) The kernel V ω of K is almost everywhere nonnegative (actually positive
for V (x, y) = 1), symmetric, and V (x, ·)ω(x, ·) is in L1(Σ) with

∫

Σ
V (x, y)ω(x, y) dy = 1 for a.e. x ∈ Σ. (11a)

Moreover, if Ωs and Ωg are polyhedral, then
∫

Σ
V (x, y)ω(x, y) dy > 0 for every x ∈ Σ, (11b)

where one can choose each of the �nitely many possible values of ~n(x) if
x belongs to more than one face of Σ.

(b) For each 1 ≤ p ≤ ∞, the operator K : Lp(Σ) −→ Lp(Σ) given by (8) is
well-de�ned, linear, bounded, and positive with ‖K‖ = 1.

Proof. See [14, Lem. 1] and [15, Lem. 2]. For (11b), let Σz := {y ∈ Σ :
V (z, y) = 1}, and note that, if Σ is a polyhedral enclosure, then meas(Σz) > 0
for each z ∈ Σ. Since ω(z, y) > 0 for each y ∈ Σz, (11b) holds.

Remark 4. It is noted that, for Σ being polyhedral, K is noncompact on
Lp(Σ) for each p ∈ [1,∞], as shown in [16]. In settings where the geometry
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of the domains is such that Σ is at least C1,α, α > 0, K is known to be
compact on Lp(Σ) [8, 15]. However, it is also shown in [16] that, for p <∞,
K can never be compact when reinterpreted as a linear bounded operator
K : Lp(0, T, Lp(Σ)) −→ Lp(0, T, Lp(Σ)) in a transient setting (regardless of
the regularity of Σ).

Combining (4) through (7) provides the so-called radiosity equation for
R: (

Id−(1− ε)K
)
(R) = εσ|θ|3θ, (12)

where Id denotes the identity operator. The following Th. 5 allows to solve
(12) for R. Its hypothesis involves the technical condition introduced as
(A-4).
(A-4) K is compact (Σ being C1,α, α > 0, is su�cient, cf. Rem. 4) or there

exists r0 > 0 such that

ess sup
x∈Σ

∫

Br0 (x)
V (x, y)ω(x, y) dy < 1, (13)

where Br0(x) := {y ∈ Σ : ‖x − y‖2 < r0} (Σ being polyhedral is
su�cient for (13) to hold, see [16, Lem. 6]).

Theorem 5. Let p ∈ [1,∞], and assume (A-1) � (A-4). Then the operator
Id−(1−ε)K has an inverse in the Banach space L(Lp(Σ), Lp(Σ)) of bounded
linear operators, and the operator

G := (Id−K)
(
Id−(1− ε)K

)−1
ε (14)

is an element of L(Lp(Σ), Lp(Σ)).
Proof. For compact K, see [6, Lem. 2]; for the case that (13) holds, see [16,
Th. 5].

Corollary 6. Under the hypotheses of Th. 5, given θ ∈ L4(Σ), the radiosity
equation (12) has the unique solution R(θ) =

(
Id−(1 − ε)K

)−1(εσ|θ|3θ) ∈
L1(Σ) (recall σ > 0 and ε ∈ L∞(Σ)).

Combining (4) � (7) yields

R(θ)− J(θ) = −ε (K(R(θ))− σ |θ|3θ) (15a)
(12)
= (Id−K)

(
Id−(1− ε)K

)−1(εσ|θ|3θ) (15b)
(14)
= G(σ|θ|3θ) on Σ, (15c)
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such that (3) becomes
(
κ(x, θ)∇ θ

)
¹Ωg

·~ng +G(σ|θ|3θ) =
(
κ(x, θ)∇ θ

)
¹Ωs

·~ng on Σ. (16)

Assuming the domain Ω is exposed to a black body environment (e.g. a
large isothermal room) radiating at θext (some given absolute temperature),
the Stefan-Boltzmann law provides the outer boundary condition

κ(x, θ)∇ θ · ~ns − σ ε (θ4
ext − |θ|3θ) = 0 on ∂Ω. (17)

The outer boundary condition (17) does not allow for nonlocal radiative
interactions between open cavities and the outer environment. It is physically
reasonable provided the considered domain does not have any open cavities,
i.e. under the simplifying assumption:

(A-5) Ω is convex.

One can also omit Assumption (A-5) to include nonlocal radiative interac-
tions between open cavities and the outer environment [17]. Here, (A-5) is
used for the sake of simpler notation and briefness.

The summarized stationary model reads

−div
(
κ(x, θ)∇ θ

)
= f(x) in Ω, (18a)(

κ(x, θ)∇ θ
)
¹Ωg

·~ng +G(σ|θ|3θ) =
(
κ(x, θ)∇ θ

)
¹Ωs

·~ng on Σ, (18b)
κ(x, θ)∇ θ · ~ns − σ ε (θ4

ext − |θ|3θ) = 0 on ∂Ω, (18c)

an integro-di�erential boundary value problem for the unknown θ : Ω −→ R.
The summarized transient model is similar, employing time-dependent

variants of the interface and boundary condition, respectively, as well as
initial condition (19d):

∂ε(x, θ)
∂t

− div
(
κ(x, θ)∇ θ

)
= f(t, x) in ]0, T [×Ω, (19a)

(
κ(x, θ)∇ θ

)
¹]0,T [×Ωg

·~ng +G(σ|θ|3θ) =
(
κ(x, θ)∇ θ

)
¹]0,T [×Ωs

·~ng

on ]0, T [×Σ, (19b)
κ(x, θ)∇ θ · ~ns + σ ε |θ|3θ = σ ε θ4ext on ]0, T [×∂Ω, (19c)

θ(0, x) = θinit(x) on Ω, (19d)

an integro-di�erential initial-boundary value problem for the unknown θ :
[0, T ]× Ω −→ R.
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2.2 Existence of Weak Solutions
The assumptions introduced in the previous section were su�cient for the
formulation and solution of the radiosity equation (12). For the existence
theory of (18) and (19), we need to introduce further conditions on the
material and data functions and on the domain.

(A-6) κ : Ω×R −→ R+ is piecewise continuous in the following sense: There
exist �nitely many open sets with Lipschitz boundary Ω1, . . .ΩM ⊆ Ω
such that

Ω =
M⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j, Ωi ⊆ Ωg or Ωi ⊆ Ωs for each i,

(20)
and there exist continuous functions κ1, . . . , κM : R −→ R+ such that
κ(x, θ) = κi(θ) for each x ∈ Ωi.

(A-7) There exist κl, κu ∈ R+ such that 0 < κl ≤ κ ≤ κu.

(A-8) There exists εl ∈]0, 1[ such that 0 < εl ≤ ε ≤ 1.

(A-9) θext ∈ L4(∂Ω) for (18) and θext = θinit = const. for (19).

(A-10) f ∈ L1(Ω) for (18) and f ∈ L1
(
]0, T [×Ω

)
for (19).

(A-11) dist(Σ, ∂Ω) > 0.

We �rst consider the stationary case (18), surveying recent results from
[12, 18] that extend earlier results from [4, 6] (see [19] for some corrections
to [18]). Related results for a wavelength-dependent emissivity can be found
in [11].

Notation 7. For p, q ∈ [1,∞], let

V p,q(Ω) :=
{
u ∈W 1,p(Ω) : u ∈ Lq(Σ ∪ ∂Ω)

}
. (21)

Here, as elsewhere in the paper, we simply write u instead of tr(u) when
considering u on Σ ∪ ∂Ω, suppressing the trace operator tr.
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De�nition 8. Assume (A-1) � (A-4) and (A-6) � (A-11). Following [18,
Def. 1.2], we de�ne θ ∈ V s,4(Ω) for some s ∈ [1,∞] to be a weak solution to
(18) if, and only if,
∫

Ω
κ(·, θ)∇ θ · ∇ψ +

∫

∂Ω
σε|θ|3θψ +

∫

Σ
G(σ|θ|3θ)ψ =

∫

Ω
fψ +

∫

∂Ω
σεθ4

extψ

(22)
for each ψ ∈ V s′,∞(Ω), where s′ ∈ [1,∞] is the conjugate exponent to s, i.e.
1
s + 1

s′ = 1.

Theorem 9. Assume (A-1) � (A-4) and (A-6) � (A-11).

(a) If f ∈ Lp(Ω), where p > 9
7 or just p > 1 under the additional assumption

that Σ is C1,α, α > 0, then (18) has a weak solution θ. If f ≥ 0, then
θ ≥ ess inf θext. Moreover, regarding the regularity of θ, if p ≥ 3

2 and
θext ∈ L8(∂Ω), then |θ|r ∈ W 1,2(Ω) for each r ∈ [1,∞[. If p ∈]97 ,

3
2 [ and

θext ∈ L8p/(3−p)(∂Ω), then θ ∈ V 2,2p/(3−2p)(Ω) with 2p/(3 − 2p) > 6.
If Σ is C1,α, α > 0, p ∈ [65 ,

9
7 ] and θext ∈ L8p/(3−p)(∂Ω), then θ ∈

V 2,(9−5p)/(3−2p)(Ω) with 5 ≤ (9− 5p)/(3− 2p) ≤ 6. If Σ is C1,α, α > 0,
p ∈]1, 6

5 [ and θext ∈ L8p/(3−p)(∂Ω), then θ ∈ V 3p/(3−p),(9−5p)/(3−2p)(Ω)
with 3

2 < 3p/(3− p) < 2.

(b) If f ∈ L1(Ω), Σ is C1,α, α > 0, and ε < 1, then (18) has a weak solution
θ ∈ ⋂

s∈[1, 3
2
[ V

s,4(Ω).

(c) If θext ∈ L∞(∂Ω), f ∈ Lp(Ω) with p > 3
2 , and all ∂Ωi are C1, then (18)

has a weak solution θ ∈ W 1,q with q := 2p > 3 (in particular, the solu-
tion is Hölder continuous, θ ∈ Cγ(Ω), γ > 0). This solution is unique
provided the functions κ1, . . . , κM of (A-6) are Lipschitz continuous.

Proof. For (a) see [18, Th. 5.1], for (b) see [18, Th. 6.1], and for (c) see [12,
Lem. 3.6] and its proof.

It remains to discuss the transient case. Here, we survey recent results
from [9] that extend earlier results from [6]. For the sake of clarity and
briefness, the results in [9] were stated for (19) with a Dirichlet condition
instead of (19c). However, the proofs in [9] do carry over to the situation of
(19), and Def. 11 and Th. 12 below are formulated in this spirit. A similar
transient problem, where the transparent region Ωg was not enclosed by the
opaque region Ωs was �rst solved in [5]. Once again, related results for a
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wavelength-dependent emissivity can be found in [10]. All the mentioned
papers make the additional simplifying assumption that the internal energy
function is trivial:

(A-12) ε : Ω× R −→ R, ε(x, θ) = θ.

Notation 10. We introduce the abbreviations

Q :=]0, T [×Ω, S :=]0, T [×Σ, C :=]0, T [×∂Ω, (23)

and, for p, q ∈ [1,∞], the spaces

W 1,0
p (Q) :=

{
u ∈ Lp(Q) : ∂xi ∈ Lp(Q) for i = 1, 2, 3

}
, (24a)

W 1
p (Q) :=

{
u ∈W 1,0

p (Q) : ∂t ∈ Lp(Q)
}
, (24b)

Vp,q
0 (Q) :=

{
u ∈W 1,0

p (Q) : u ∈ Lq(S ∪ C)}, (24c)
Vp,q(Q) :=

{
u ∈W 1

p (Q) : u ∈ Lq(S ∪ C)}. (24d)

De�nition 11. Assume (A-1) � (A-4) and (A-6) � (A-12). Following [9,
Def. 1.1], we de�ne θ ∈ Vs,4

0 (Q) for some s ∈ [1,∞] to be a weak solution to
(19) if, and only if,

−
∫

Q
θ
∂ψ

∂t
+

∫

Q
κ(·, θ)∇ θ · ∇ψ +

∫

C
σε|θ|3θψ +

∫

S
G(σ|θ|3θ)ψ

=
∫

Ω
θinitψ(0) +

∫

Q
fψ +

∫

C
σεθ4

extψ (25)

for each ψ ∈ Vs′,∞(Q) with ψ(T, ·) = 0 a.e. in Ω, where, as before, s′ ∈ [1,∞]
is the conjugate exponent to s.

The formulations in [9, Ths. 2.1, 2.2] and [9, Lem. 3.1] provide stronger
results than the formulation of Th. 12(a) below, which has been simpli�ed
for the sake of clarity and briefness.

Theorem 12. Assume (A-1) � (A-4) and (A-6) � (A-12).

(a) If f ∈ L2(Q), then (19) has a weak solution θ ∈ Vs,5
0 (Q)∩C(0, T ;L2(Ω))

and ∂tθ exists in a distributional sense. This solution is unique provided
the functions κ1, . . . , κM of (A-6) are Lipschitz continuous. If f ∈ Ls(Q)
for s > 5

2 , then θ ∈ L∞(Q) and there is c > 0 such that

‖θ‖L∞(Q) ≤ max{|θext|, |θinit|}+ c ‖f‖Ls(Q). (26)
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(b) If f ∈ L1(Ω), Σ is C1,α, α > 0, and ε < 1, then (19) has a weak solution
θ ∈ ⋂

1≤p< 5
4
Vp,4

0 (Q) ∩ L∞,1(Q), where

L∞,1(Q) :=

{
u ∈ L1(Q) : ess sup

t∈]0,T [

∫

Ω
|u| <∞

}
. (27)

Proof. (a) has been shown in Th. 2.1 and Lemmas 3.1, 3.2, 3.3 of [9], also
see [9, Rem. 3.4]; (b) has been the subject of [9, Th. 4.1].

3 Optimal Control
When modeling heat transfer for industrial applications such as crystal growth,
one is usually not merely interested in determining the temperature distri-
bution θ, but one aims at optimizing θ according to a suitable objective
functional. For example, during sublimation growth of silicon carbide, small
horizontal temperature gradients in the gas domain Ωg are desirable to avoid
defects of the growing crystal, while su�ciently large vertical temperature
gradients are required to guarantee a material transport from the silicon
source to the seed crystal [20, 21]. This background led to the optimal con-
trol problem considered in [4]:

minimize J(θ, u) :=
1
2

∫

Ωg

‖∇ θ − z‖2
2 +

ν

2

∫

Ωs

u2 (28a)

subject to system (18) with f =

{
u on Ωs,

0 on Ωg,
(28b)

and 0 < ua ≤ u ≤ ub in Ωs, (28c)

where z : Ωg −→ R3 is a given desired distribution for the temperature gra-
dient. Here, (28b) imposes the condition of no heat sources in the gas region
Ωg, which is the case for the motivating application of induction heating. The
control constraints (28c) re�ect the fact that only heating (and no cooling)
is considered, and they take into account that, due to technical limitations,
an actual heating device can not produce heat sources of arbitrarily large
values. Precisely stated, the assumptions on ν, z, ua, ub are:

(A-13) ν > 0, z ∈ L2(Ωg,R3).



Conductive-Radiative Heat Transfer 183

(A-14) ua, ub ∈ L∞(Ωs), 0 < ua ≤ ub.

In view of Th. 9(c), in (28a), we consider the objective functional

J : W 1,2(Ω)× L2(Ωs) −→ R+
0 . (29)

Actually, from the point of view of the application, a control problem
like (28), where the heat sources f are controlled directly, is only the �rst
step. In practice, the heat sources are generated by a heating mechanism
such as induction heating, i.e. f itself is again the solution to some equation.
A control problem, where f is obtained as a solution to Maxwell's equations
describing induction heating, has been considered in [12]. An even more
realistic situation was used for the numerical results of Sec. 5 below.

De�nition 13. Under the assumptions of Th. 9(c), de�ne the control-to-
state operator S : L2(Ωs) −→ W 1,q(Ω) ⊆ Cγ(Ω) ⊆ L∞(Ω) (q > 3 as in Th.
9(c), γ > 0), u 7→ θ, assigning to u ∈ L2(Ωs) the unique weak solution θ of

(18) with f :=

{
u on Ωs,

0 on Ωg,
provided by Th. 9(c).

De�nition 14. Employing the control-to-state operator of Def. 13, and let-
ting

Uad :=
{
u ∈ L∞(Ωs) : ua ≤ u ≤ ub

}
, (30)

(θ̄, ū) ∈ W 1,q(Ω) × Uad (q > 3 as in Th. 9(c)) is called an optimal control
for (28) if, and only if, θ̄ = S(ū), and ū minimizes the reduced objective
functional

j : L2(Ωs) −→ R+
0 , j(u) := J

(
S(u), u

)
(31)

on Uad.

The following theorem provides the existence of an optimal control for
(28) under the simplifying assumption of θ-independent κ:

Theorem 15. Under the assumptions of Th. 9(c) plus (A-13), (A-14), κi =
const., and ess inf θext > 0, there exists an optimal control (θ̄, ū) for (28).

Proof. See [4, Th. 5.2].

Theorem 18 below provides the di�erentiability of the control-to-state
operator as well as �rst-order necessary optimality conditions for (28), which
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are related to weak solutions to the linearized form of (18) as de�ned in
Def. 16 below. For the situation of Th. 15, variants of Ths. 17 and 18
below had already been considered in [4], where the Fredholm alternative
was employed to show the linearized form of (18) admits a unique solution,
provided the homogeneous version admits only 0 as its solution. However,
the latter question remained open in [4]. This gap has now been closed due
to the availability of [12, Th. 4.4].

While the existence of an optimal control for (28) has only been proved
for θ-independent κ, the following theory of �rst-order necessary optimality
conditions merely requires the much milder condition:

(A-15) Each of the functions κ1, . . . , κM of (A-6) are Lipschitz continuous and
continuously di�erentiable (i.e. C1 with bounded derivative).

De�nition 16. Under the assumptions of Th. 9(c) plus ess inf θext > 0 and
(A-15), let ū ∈ L2(Ωs), ū ≥ 0, θ̄ := S(ū) ∈ W 1,q(Ω) with q > 3 as in Th.
9(c). Given F in the dual of W 1,q′(Ω) (q′ the conjugate exponent to q), a
function θ ∈W 1,q(Ω) is called a weak solution to the linearized form of (18)
(or (22)) with right-hand side F if, and only if,

∫

Ω
κ(·, θ̄)∇ θ · ∇ψ +

∫

Ω

∂κ

∂θ
(·, θ̄)θ∇ θ̄ · ∇ψ

+ 4
∫

∂Ω
σε|θ̄|3θψ + 4

∫

Σ
G(σ|θ̄|3θ)ψ = F(ψ) (32)

for each ψ ∈W 1,q′(Ω) (recall G : L∞(Σ) −→ L∞(Σ) according to Th. 5).

Theorem 17. In the situation of Def. 16, there exists a unique weak solution
to the linearized form of (18), i.e. θ ∈W 1,q(Ω) such that (32) holds for each
ψ ∈W 1,q′(Ω). Moreover, there exists c > 0 such that

‖θ‖W 1,q(Ω) ≤ c ‖F‖. (33)

Proof. See [12, Th. 4.4]. The proof is based on the Fredholm alternative,
which yields that (32) admits a unique solution θ ∈ W 1,q(Ω) if, and only if,
its homogeneous version (F = 0) has 0 as its unique solution. The latter is
established in the proof of [12, Th. 4.4] via a comparison principle.

Theorem 18. Under the assumptions of Th. 9(c) plus ess inf θext > 0 and
(A-15), the control-to-state operator of Def. 13 is Fréchet di�erentiable on
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L2
+(Ωs) := {ū ∈ L2(Ωs) : ū > 0}. Moreover, for ū ∈ L2

+(Ωs), θ̄ = S(ū), and
u ∈ L2(Ωs), one has θ := S′(ū)(u) given by the weak solution to the linearized
form of (18) with right-hand side F(ψ) := Fu(ψ) :=

∫
L2(Ωs)

uψ.
If (A-13) and (A-14) hold, then (θ̄, ū) ∈ W 1,q(Ω)× Uad (q > 3 as in Th.

9(c)) being an optimal control for (28) implies the necessary condition

j′(ū)(u−ū) = 〈∇ θ̄−z,∇ θ〉L2(Ωg)+ν〈ū, (u−ū)〉L2(Ωs) ≥ 0 for each u ∈ Uad,
(34)

with j as in (31), θ̄ = S(ū), and θ = S′(ū)(u− ū).

Proof. Using Th. 17, the proof is based on the implicit function theorem and
can be conducted as in [4, Th. 7.1].

Second-order su�cient optimality conditions for the situation of Th. 15
have been proved in [22], and a similar problem with constraints on θ (i.e.
state constraints) has been treated in [23].

4 Finite Volume Discretization
4.1 Setting
The numerical simulation results presented in Sec. 5 below are based on a
�nite volume discretization of (18), which is described in the present section.
As for the considerations on optimal control, we will restrict ourselves to the
stationary setting. For transient simulation results solving (19), we refer to
[24, 25, 26]. Descriptions of �nite volume schemes suitable for the transient
situation can be found in [17, 24].

The described �nite volume scheme was designed for polyhedral domains.
In consequence, within the present section, assume:

(A-16) Ωg and Ωs are polyhedral.

For the sake of more readable notation, we use the following simpli�ed version
of (A-6):

(A-17) There are precisely two materials, i.e. (A-6) holds with M = 2, Ω1 =
Ωg, Ω2 = Ωs.

We also impose more regularity on the emissivity, the external temperature,
and the heat sources:
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(A-18) ε : Σ −→ [0, 1] and θext : ∂Ω −→ R+ are continuous. Moreover, there
are continuous functions fm : Ωm −→ R such that fm ¹Ωm= f ¹Ωm ,
m ∈ {s, g}.

4.2 Discretization of the Local Terms
An admissible discretization of Ω is given by a �nite family T := (ωi)i∈I of
subsets of Ω satisfying a number of assumptions, subsequently denoted by
(DA-∗).

(DA-1) T = (ωi)i∈I forms a �nite partition of Ω (i.e. Ω =
⋃

i∈I ωi), and, for
each i ∈ I, ωi is a nonvoid, polyhedral, connected, and open subset
of Ω.

From T , one can de�ne discretizations of Ωs and Ωg: For m ∈ {s, g} and
i ∈ I, let

ωm,i := ωi ∩ Ωm, Im :=
{
j ∈ I : ωm,j 6= ∅}, Tm := (ωm,i)i∈Im . (35)

To allow the incorporation of the interface condition (18b) into the scheme, it
is assumed that, if some ωi has a 2-dimensional intersection with the interface
Σ, then it lies on both sides of the intersection. More precisely:

(DA-2) For each i ∈ I: ∂regωs,i ∩ Σ = ∂regωg,i ∩ Σ, where ∂reg denotes the
regular boundary of a polyhedral set, i.e. the parts of the boundary,
where a unique outer unit normal vector exists (see Fig. 2), ∂reg∅ :=
∅.

Integrating (18a) over ωm,i and applying the Gauss-Green integration
theorem yields

−
∫

∂ωm,i

κm(θ)∇ θ · ~nωm,i =
∫

ωm,i

f, (36)

where ~nωm,i denotes the outer unit normal vector to ωm,i.
The �nite volume scheme is furnished by incorporating the interface and

boundary conditions (18b) and (18c) followed by an approximation of the
integrals by quadrature formulas. To approximate θ by a �nite number of
discrete unknowns θi, i ∈ I, precisely one value θi is associated with each
control volume ωi. Introducing a discretization point xi ∈ ωi for each control
volume ωi, the θi can be interpreted as θ(xi). Moreover, the discretization
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ωs,1ωg,1

ω3

Ωs

ΩsΩg

ω2

Σ

Figure 2: Illustration of condition (DA-2): Ωs consists of the outer wall of
the box as well as of the region to the right of the vertical plane in the middle
of the box, which is contained in Σ; Ωg consists of the region to the left of
that plane and engulfed by the wall. Both ω1 and ω2 satisfy (DA-2) (since
∂regωs,2 ∩ Σ = ∅ and ∂regωg,2 ∩ Σ = ∂reg∅ ∩ Σ = ∅), however ω3 does not
satisfy (DA-2) (since ∂regωs,3 ∩ Σ 6= ∅ and ∂regωg,3 ∩ Σ = ∂reg∅ ∩ Σ = ∅).

makes use of regularity assumptions concerning the partition (ωi)i∈I that can
be expressed in terms of the xi (see (DA-3), (DA-4), and (DA-5) below).

The boundary of each control volume ωm,i can be decomposed according
to (see Fig. 3)

∂ωm,i =
(
∂ωm,i ∩ Ωm

) ∪ (
∂ωm,i ∩ ∂Ω

) ∪ (
∂ωm,i ∩ Σ

)
. (37)

To guarantee that there is a discretization point xi in each of the inte-
gration domains occurring in (37), it is assumed that the discretization T
respects interfaces and outer boundaries in the following sense:
(DA-3) For each m ∈ {s, g}, i ∈ Im: xi ∈ ωm,i. In particular, if ωs,i 6= ∅ and

ωg,i 6= ∅, then xi ∈ ωs,i ∩ ωg,i.

(DA-4) For each i ∈ I, the following holds: If meas(ωi ∩ ∂Ω) 6= 0, then
xi ∈ ωi ∩ ∂Ω (cf. Fig. 4).
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Ωs

Ωs

Ωg,2

Ωg,3

Ωg = Ωg,1 ∪ Ωg,2 ∪ Ωg,2

Ωg,1

ω1 = ωs,1

ωg,3

∂ωm,i ∩ ∂Ω∂ωm,i ∩ Ωm ∂ωm,i ∩ Σ

ωg,3

ωs,3 ωs,3 ωs,3

ωg,3

∂ωm,i ∩ Ωm ∂ωm,i ∩ Σ∂ωm,i ∩ ∂Ω

ωs,1ωs,1ωs,1

ωs,2ωs,2ωs,2

ωs,2

ωg,2

ωg,2 ωg,2 ωg,2

ωg,3

ωs,3

Figure 3: Illustration of the decomposition of the boundary of control vol-
umes ωm,i according to (37). The lower control volume ω3 is not admissible,
as it has 2-dimensional intersections with both Σ and ∂Ω (see Rem. 19).

Remark 19. Suppose a control volume ωi has a 2-dimensional intersection
with both ∂Ω and Σ. Then, by (DA-2), ωs,i 6= ∅ and ωg,i 6= ∅. Thus, by (DA-
3), xi ∈ Σ. On the other hand, by (DA-4), xi ∈ ∂Ω, which means that (A-11)
is violated. It is thus shown that ωi cannot have 2-dimensional intersections
with both ∂Ω and Σ. In particular, the lower control volume ω3 in Fig. 3 is
not admissible.
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ωm,1

ωm,1 ∩ ωm,7

ωm,1 ∩ ωm,4

ωm,1 ∩ ωm,2

ωm,3 ∩ ωm,2

ωm,3 ∩ ωm,4

ωm,3 ∩ ωm,5

ωm,2

ωm,3

ωm,4

ωm,5

ωm,6

x2
x4

x3x5

x6

x7 x1

ωm,7

Figure 4: Illustration of conditions (DA-4) and (DA-5) as well as of the
partition of ∂ωm,i ∩ Ωm according to (40). One has nbm(1) = {2, 4, 7} and
nbm(3) = {2, 4, 5}.

Using the boundary condition (18c) leads to the following approximation:

−
∫

∂ωs,i∩∂Ω
κs(θ)∇ θ · ~nωs,i ≈ −σ ε(xi) (θ4

ext(xi)− |θi|3θi) meas
(
∂ωs,i ∩ ∂Ω

)
.

(38)
The nonlocal interface condition (18b) with G(σ|θ|3θ) = −ε (K(R(θ)) −
σ |θ|3θ) according to (15) yields

−
∑

m∈{s,g}

∫

∂ωm,i∩Σ
κm(θ)∇ θ · ~nωm,i = −

∫

ωi∩Σ
ε
(
K(R(θ))− σ |θ|3θ). (39)
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The approximation of the nonlocal term K(R(θ)) is more involved and will
be considered in detail in Sec. 4.3 below. First, to approximate the integrals
over ∂ωm,i ∩ Ωm, this set is partitioned further (see Fig. 4):

∂ωm,i ∩ Ωm =
⋃

j∈nbm(i)

∂ωm,i ∩ ∂ωm,j , (40)

where nbm(i) := {j ∈ Im \ {i} : meas(∂ωm,i ∩ ∂ωm,j) 6= 0} is the set of
m-neighbors of i. Moreover, it is assumed that:
(DA-5) For each i ∈ I, j ∈ nb(i) := {j ∈ I \ {i} : meas(∂ωi ∩ ∂ωj) 6=

0}: xi 6= xj and xj−xi

‖xi−xj‖2
= ~nωi ¹∂ωi∩∂ωj , where ~nωi ¹∂ωi∩∂ωj is the

restriction of the normal vector ~nωi to the interface ∂ωi∩∂ωj . Thus,
the line segment joining neighboring vertices xi and xj is always
perpendicular to ∂ωi ∩ ∂ωj (see Fig. 4, where the vertices xi are
chosen such that (DA-5) is satis�ed).

The approximation of the integrals over ∂ωm,i ∩ Ωm, is now provided by
replacing the normal gradient of θ on ∂ωi ∩ ∂ωj by the corresponding di�er-
ence quotient and by approximating κm(θ) on ∂ωm,i∩∂ωm,j by the arithmetic
mean of κm(θi) and κm(θj):

∫

∂ωm,i∩Ωm

κm(θ)∇ θ · ~nωm,i

≈
∑

j∈nbm(i)

κm(θi) + κm(θj)
2

θj − θi

‖xi − xj‖2
meas

(
∂ωm,i ∩ ∂ωm,j

)
. (41)

Finally, for the approximation of the source term,
∫

ωm,i

f ≈ fm(xi)meas(ωm,i). (42)

4.3 Discretization of the Nonlocal Radiation Terms
Similarly to the �nite volume approximation of the local terms, the discretiza-
tion of K(R(θ)) proceeds by partitioning the surface Σ into 2-dimensional
polyhedral control volumes (so-called boundary elements).
(DA-6) (ζα)α∈IΣ is a �nite partition of Σ, where for each α ∈ IΣ, the bound-

ary element ζα is a nonvoid, polyhedral, connected, and (relative)
open subset of Σ, lying in a 2-dimensional a�ne subspace of R3.
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On Σ, the boundary elements are supposed to be compatible with the
control volumes ωi:
(DA-7) For each α ∈ IΣ, there is a unique i(α) ∈ I such that ζα ⊆ ∂ωs,i(α)∩Σ.

Moreover, for each α ∈ IΣ: xi(α) ∈ ζα (see Fig. 5).
De�nition and Remark 20. For each i ∈ I, de�ne JΣ,i := {α ∈ IΣ :
meas(ζα ∩ ∂ωs,i) 6= 0}. It then follows from (DA-1), (DA-6), and (DA-7),
that (ζα ∩ ∂ωs,i)α∈JΣ,i

is a partition of ∂ωs,i ∩ Σ = ωi ∩ Σ (see Fig. 5).

x1

x2

x3

x4

x5
x6

i(5) = i(6) = 2, i(7) = 3, i(8) = i(9) = 4.
i(1) = i(10) = 5, i(2) = 6, i(3) = i(4) = 1,

JΣ,1 = {3, 4}, JΣ,2 = {5, 6},
JΣ,3 = {7}, JΣ,4 = {8, 9}, JΣ,5 = {1, 10}, JΣ,6 = {2}.

ωs,1

ωs,2

ωs,3

ωs,4

ωs,5

ωs,6

ζ3ζ2ζ1

ζ10

ζ9

ζ6

ζ7
ζ8

ζ5

ζ4
Ωg

Figure 5: Illustration of the partitioning of Σ into the ζα, and of the compat-
ibility condition (DA-7) as well as of Def. and Rem. 20. Note that, in order
to satisfy (DA-2), each ωi must extend into Ωg (i.e. ωg,i 6= ∅). However, only
the parts ωs,i are drawn in the �gure.

The radiosityR(θ) is approximated as constant on each boundary element
ζα, α ∈ IΣ. The approximated value is denoted by Rα(~u), depending on the
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vector ~u := (θi(α))α∈IΣ . From (8), one obtains
∫

ζα

K(R(θ)) ≈
∑

β∈IΣ

Rβ(~u)Vα,β for each α ∈ IΣ, (43)

where
Vα,β :=

∫

ζα×ζβ

V ω for each (α, β) ∈ IΣ × IΣ. (44)

The Vα,β are nonnegative since V ω is nonnegative according to Th. 3(a).
The forms of V and ω imply the symmetry condition

Vα,β = Vβ,α for each (α, β) ∈ IΣ × IΣ, (45)

and (11a) implies
∑

β∈IΣ

Vα,β = meas(ζα) for each α ∈ IΣ. (46)

Using (43) and approximating ε as constant on ζα allows to write the radiosity
equation in the integrated and discretized form

Rα(~u) meas(ζα)− (
1− ε(xi(α))

) ∑

β∈IΣ

Rβ(~u)Vα,β

= σ ε(xi(α)) |θi(α)|3θi(α) meas(ζα) for each α ∈ IΣ. (47)

If the vector ~u = (θi(α))α∈IΣ is known, then (47) constitutes a linear system
for the determination of the vector (Rα(~u))α∈IΣ .

In matrix form, (47) reads

G ~R(~u) = ~E(~u), (48)

with vector-valued functions
~R : RIΣ −→ RIΣ , ~R(~u) =

(
Rα(~u)

)
α∈IΣ

, (49a)
~E : RIΣ −→ RIΣ , ~E(~u) =

(
Eα(~u)

)
α∈IΣ

,

Eα(~u) :=σ ε(xi(α)) |uα|3uα meas(ζα), (49b)

and the matrix

G = (Gα,β)(α,β)∈I2
Σ
, Gα,β :=

{
meas(ζα)− (

1− ε(xi(α))
)
Vα,β for α = β,

− (
1− ε(xi(α))

)
Vα,β for α 6= β.

(49c)
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Lemma 21. (a) For each α ∈ IΣ:
∑

β∈IΣ\{α} |Gα,β| ≤ (1− ε(xi(α)))Gα,α ≤
Gα,α. In particular, G is weakly diagonally dominant.

(b) G is an M-matrix, i.e. G is invertible, G−1 is nonnegative, and Gα,β ≤ 0
for each (α, β) ∈ I2

Σ, α 6= β.

Proof. See [17, Lem. 3.4 and Rem. 3.5].

Now, Lemma 21(b) allows to give a precise de�nition of ~R by completing
(49a) with

~R(~u) := G−1
(
~E(~u)

)
. (50)

Remark 22. The de�nition of ~R in (50) implies that (47) and (48) hold
with ~u = (θi(α))α∈IΣ replaced by a general vector ~u = (uα)α∈IΣ ∈ RIΣ.

Finally, introducing the vector-valued function

~V : RIΣ −→ RIΣ , ~V (~u) =
(
Vα(~u)

)
α∈IΣ

,

Vα(~u) := ε(xi(α))
∑

β∈IΣ

Rβ(~u)Vα,β,
(51)

(43) provides the desired approximation of the nonlocal term in (39):
∫

ζα

εK(R(θ)) ≈ ε(xi(α))
∑

β∈IΣ

Rβ(~u)Vα,β = Vα(~u). (52)

The following Lem. 23 states some useful properties of the function ~V . We
introduce the following notation for ~u = (ui)i∈IΣ ∈ RIΣ :

min (~u) := min{ui : i ∈ IΣ}, max (~u) := max{ui : i ∈ IΣ}. (53)

Lemma 23. (a) For each ~u ∈ (R+
0 )IΣ: ~R(~u) ≥ 0 and ~V (~u) ≥ 0.

(b) For each ~u ∈ (R+
0 )IΣ, α ∈ IΣ:

σ ε(xi(α)) min (~u)4 meas(ζα) ≤ Vα(~u) ≤ σ ε(xi(α)) max (~u)4 meas(ζα).

Proof. See [17, Lem. 3.7].
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4.4 The Finite Volume Scheme
For ~u = (ui)i∈I , de�ne

~u¹IΣ := (ui(α))α∈IΣ . (54)
At this point, all preparations are in place to state the �nite volume scheme
in (55) below. The terms in (55) arise from (36) after summing over m ∈
{s, g} and employing the approximations (38), (39), (41), (42), and (52),
respectively. One is seeking a solution ~u = (ui)i∈I , to

0 = −
∑

m∈{s,g}

∑

j∈nbm(i)

κm(ui) + κm(uj)
2

uj − ui

‖xi − xj‖2
meas

(
∂ωm,i ∩ ∂ωm,j

)

(55a)
+ σ ε(xi)

(
u4

i − θ4
ext(xi)

)
meas(∂ωs,i ∩ ∂Ω) (55b)

+ σ ε(xi)u4
i meas

(
ωi ∩ Σ

)−
∑

α∈JΣ,i

Vα(~u¹IΣ) (55c)

−
∑

m∈{s,g}
fm(xi) meas(ωm,i). (55d)

5 Numerical Simulation
As discussed before, the modeling of conductive-radiative heat transfer is
motivated by industrial applications such as crystal growth. We now present
simulation results, where the solution θ to (18) has been computed and op-
timized numerically in the context of such applications for axisymmetric
geometries. Here, the heat sources f are due to induction heating, generated
by �nitely many coil rings located outside the domain Ω. The heat sources
are numerically computed according to the following model, where all ma-
terials in Ωs are considered as potential conductors, whereas Ωg is treated
as a perfect insulator (see [2, Sec. 2.6] for details; due to the axisymmetry,
cylindrical coordinates (r, z) are used):

f(r, z) =
|j(r, z)|2
2σc(r, z)

, (56)

j =

{
−iω σc φ + σc vk

2πr in the k-th coil ring,
−iω σc φ in Ωs,

(57)
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where σc denotes the electrical conductivity, vk is the voltage imposed in the
kth coil ring, ω is the common angular frequency of the imposed voltages,
and i is the imaginary unit. The potential φ is determined from the following
system of elliptic partial di�erential equations:

− ν div
∇(rφ)
r2

= 0 in Ωg, (58a)

− ν div
∇(rφ)
r2

+
i ωσcφ

r
=
σc vk

2πr2
in the k-th coil ring, (58b)

− ν div
∇(rφ)
r2

+
i ωσcφ

r
= 0 in Ωs, (58c)

where ν denotes the magnetic reluctivity. The system (58) is completed by
the interface conditions

(
ν¹Ωi

r2
∇(rφ)¹Ωi

)
• ~nΩi =

(
ν¹Ωj

r2
∇(rφ)¹Ωj

)
• ~nΩi , (59)

where Ωi and Ωj can be either Ωg or subsets of Ωs, representing di�erent solid
materials, as the magnetic reluctivity ν can be discontinuous at interfaces
between such di�erent solid materials. Moreover, the assumption φ = 0 is
used both on the symmetry axis r = 0 and su�ciently far from the growth
apparatus (imposed as Dirichlet boundary condition).

A �nite volume discretization as described in Sec. 4 above was used to
compute the solution θ to (18), where Newton's method was used to solve
(55). The computation of the nonlocal radiation terms involves the calcu-
lation of visibility and view factors. The method used is based on [1] and
is described in [27, Sec. 4]. The discrete scheme was implemented as part
of the software WIAS-HiTNIHS 1 which is based on the program package
pdelib [28]. In particular, pdelib uses the grid generator Triangle [29] to pro-
duce constrained Delaunay triangulations of the domains, and it uses the
sparse matrix solver PARDISO [30, 31] to solve the linear system arising
from the linearization of the �nite volume scheme via Newton's method.

Figure 6 depicts a numerical solution for the temperature �eld θ inside a
complex Czochralski crystal growth apparatus (for crystal growth from melt
[32]). As described above, the model equations (18) and (56) � (59) have
been used for the computation.

1High Temperature Numerical Induction Heating Simulator; pronunciation: ∼hit-
nice.
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Figure 6: Numerical solution of (18) for the temperature �eld θ inside a
Czochralski crystal growth arrangement computed by WIAS-HiTNIHS. The
�gure shows detail of an enlarged and rotated section, not according to scale
� see [32] for the entire apparatus and the precise dimensions.
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For the following numerical results of an optimal control problem, a sim-
pler domain was used, schematically depicted in Fig. 7 (see [3, Figs. 1,3]
for the precise dimensions). This domain represents an apparatus for silicon
carbide single crystal growth via sublimation by physical vapor transport.
As discussed in Sec. 3, during sublimation growth of silicon carbide, small
horizontal temperature gradients in the gas domain Ωg (more precisely in
the part of Ωg close to the surface of the growing crystal) are desirable to
avoid defects of the growing crystal, while su�ciently large vertical tempera-
ture gradients are required to guarantee a material transport from the silicon
source to the seed crystal [20, 21].

graphite

insulation

polycrystalline
SiC powder

gas

SiC seed
crystal

z = zrim

of seed)
cooling
(for
blind hole

copper induction coil rings

z = 0

Figure 7: Schematic picture of apparatus for silicon carbide single crystal
growth by physical vapor transport. For the precise dimensions of the domain
used for the temperature �eld optimization, see [3, Figs. 1,3].

In the following, numerical optimization results from [3] are presented,
where a problem similar to (28) was solved. However, for the numerical
optimization of the temperature θ in [3], the heat sources were not controlled
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directly as in (28), but they were computed according to (56) � (59), whereas
the quantities heating power P , vertical upper rim zrim of the induction coil
(cf. Fig. 7), and the frequency f = ω/(2π) of the heating voltage were used
as control parameters, which is more realistic from the point of view of the
considered crystal growth application. The control parameters, thus, result
in a temperature distribution θ(P, zrim, f) via (56) � (59) and (18) (see [3]
for details).

(a): θ(P = 10.0 kW, zrim = 24.0 cm, f = 10.0 kHz)

SiC crystal

SiC powder

3002 K

3007 K

3012 K

3022 K

3042 K

(b): θ(P = 7.98 kW, zrim = 22.7 cm, f = 165 kHz)

Nelder-Mead result minimizing Fr(θ)

SiC crystal

SiC powder

2304 K

2314 K

2334 K

(c): θ(P = 10.3 kW, zrim = 12.9 cm, f = 84.9 kHz),

Nelder-Mead result minimizing Fr(θ)−Fz(θ)
2

SiC crystal

SiC powder

2299 K

2304 K

2314 K

2324 K

2364 K

Figure 8: Stationary solution for the temperature �eld θ(P, zrim, f) in gas re-
gion A between SiC powder and crystal for the generic, unoptimized situation
P = 10 kW, zrim = 24 cm, f = 10 kHz. Isotherms spaced at 5 K.

While Fig. 8 depicts the temperature �eld for a generic, unoptimized
situation as a reference, the objective functional minimized in Fig. 9 is

Fr(θ) :=
(∫

Γ
2π r ∂rθ(r, z)2 dr

)1/2

, (60)

aiming at minimizing the radial temperature gradient on the lower surface Γ
of the growing SiC crystal. The objective functional minimized in Fig. 10 is

1
2
Fr(θ)− 1

2
Fz(θ), Fz(θ) :=

(∫

A
2π r ∂zθ(r, z)2 d(r, z)

)1/2

, (61)

aiming at minimizing the radial temperature gradient on Γ, while simul-
taneously maximizing the vertical temperature gradient inside the region A
between the SiC crystal and the SiC powder, to guarantee material transport
from the powder to the crystal.

The optimization is subject to a number of state constraints on θ: (a) The
maximal temperature in the apparatus must not surpass a prescribed bound
θmax; (b) the temperature at the crystal surface Γ needs to stay within a
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(a): θ(P = 10.0 kW, zrim = 24.0 cm, f = 10.0 kHz)

SiC crystal

SiC powder

3002 K

3007 K

3012 K

3022 K

3042 K

(b): θ(P = 7.98 kW, zrim = 22.7 cm, f = 165 kHz)

Nelder-Mead result minimizing Fr(θ)

SiC crystal

SiC powder

2304 K

2314 K

2334 K

(c): θ(P = 10.3 kW, zrim = 12.9 cm, f = 84.9 kHz),

Nelder-Mead result minimizing Fr(θ)−Fz(θ)
2

SiC crystal

SiC powder

2299 K

2304 K

2314 K

2324 K

2364 K

Figure 9: Temperature �eld θ(P, zrim, f) in gas region A between SiC powder
and crystal according to Nelder-Mead minimization of Fr(θ), resulting in
P = 7.98 kW, zrim = 22.7 cm, f = 165 kHz. Isotherms spaced at 5 K.

prescribed range [θmin,Γ, θmax,Γ]; (c) the temperature gradient between source
and seed must be negative, and must not surpass a prescribed value ∆max <
0:

max
Ω

(θ) ≤ θmax, (62a)

θmin,Γ ≤ min
Γ

(θ) ≤ max
Γ

(θ) ≤ θmax,Γ, (62b)

max
A

(∂zθ) ≤ ∆max < 0. (62c)

A Nelder-Mead method was used for the numerical optimization as described
in [3, Sec. 3].

(a): θ(P = 10.0 kW, zrim = 24.0 cm, f = 10.0 kHz)

SiC crystal

SiC powder

3002 K

3007 K

3012 K

3022 K

3042 K

(b): θ(P = 7.98 kW, zrim = 22.7 cm, f = 165 kHz)

Nelder-Mead result minimizing Fr(θ)

SiC crystal

SiC powder

2304 K

2314 K

2334 K

(c): θ(P = 10.3 kW, zrim = 12.9 cm, f = 84.9 kHz),

Nelder-Mead result minimizing Fr(θ)−Fz(θ)
2

SiC crystal

SiC powder

2299 K

2304 K

2314 K

2324 K

2364 K

Figure 10: Temperature �eld θ(P, zrim, f) in gas region A between SiC pow-
der and crystal according to Nelder-Mead minimization of 1

2Fr(θ)− 1
2Fz(θ),

resulting in P = 10.3 kW, zrim = 12.9 cm, f = 84.9 kHz. Isotherms spaced
at 5 K.

The main di�erence between the generic solution of Fig. 8 and the op-
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timized solutions shown in Figures 9,10 is the gained homogeneity of the
temperature inside the SiC crystal in the optimized solutions (favorable with
respect to low thermal stress and few crystal defects) as well as the isotherms
below the crystal's surface becoming more parallel to that surface (as in-
tended by the minimization of Fr(θ)). As expected, in Fig. 10, the max-
imization of Fz(θ) leads to an increased number of isotherms between the
crystal and the source powder. Summarizing the results, the radial and the
vertical gradient can be e�ectively tuned simultaneously.
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