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Abstract

In this paper the problem of robust stabilization of a general class of
discrete-time linear stochastic systems subject to Markovian jumping
and independent random perturbations is investigated. A stochastic
version of the bounded real lemma is derived and the small gain theo-
rem is proved. Finally, methodology for the designing of a stabilizing
feedback gain for discrete-time linear stochastic system with structured
parametric uncertainties is proposed.
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1 Introduction

In many applications the mathematical model of the controlled process is
not completely known. Even if the multiplicative white noise perturbations
are introduced in order to model the stochastic environmental perturbations
which are hard to quantify, it is also possible that some parametric uncer-
tainties occur in the coefficients of the stochastic system. Thus a robust
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stabilization problem, ask to construct a control law in a static or dynamic
feedback form which stabilizes all discrete-time linear stochastic systems into
a neighborhood of a given system often called the nominal system.

To be more specific, let us consider the controlled system:

x(t+ 1) = (A0(ηt) +∆A(t, ηt) +
r∑

k=1

wk(t)Ak(ηt))x(t) +B(ηt)u(t) (1)

where Ak(i), 0 ≤ k ≤ r, B(i), 1 ≤ i ≤ N , ar known matrices of appropriate
dimensions, while ∆A(t, i), t ≥ 0 are unknown matrices. A robust stabi-
lization problem, via state feedback control law, ask to construct a control
u(t) = F (ηt)x(t) such that the zero state equilibrium of the nominal system

x(t+ 1) = (A0(ηt) +B(ηt)F (ηt) +
r∑

k=1

wk(t)Ak(ηt))x(t) (2)

and the zero state equilibrium of the perturbed system

x(t+ 1) = (A0(ηt) +B(ηt)F (ηt) +∆A(t, ηt) +
r∑

k=1

wk(t)Ak(ηt))x(t) (3)

are exponentially stable in mean square (ESMS) for all uncertainties ∆A(t, i)
in a neighborhood of the origin in Rn×n.

It is known that if the zero state equilibrium of the nominal system (2)
is ESMS then the zero state equilibrium of the perturbed system (3) is still
ESMS for some "small perturbations"∆A(t, i). In a robust stability problem,
as well as in a robust stabilization problem, the goal is to preserve the stability
of the nominal system for the perturbed systems in the case of the variation
of the coefficients of the system which are not necessarily small.

In this paper we shall investigate different aspects of the problem of robust
stability and robust stabilization of discrete-time linear stochastic systems (1)
with structured parametric uncertainties of the form:

∆A(t, ηt) = (G0(ηt) +
r∑

k=1

wk(t)Gk(ηt))∆(ηt)C(ηt)

where the matrices Gk(i), 0 ≤ k ≤ r, C(i), 1 ≤ i ≤ N are assumed to
be known, and ∆(i), 1 ≤ i ≤ N are unknown matrices of appropriate di-
mensions. We shall see that in the definition of the set of the uncertainties
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∆ = (∆(1), ...,∆(N)) for which the exponential stability in mean square is
preserved, an important role is played by the norm of linear operator ade-
quately chosen, named input-output operator.

For this reason we shall start with the proof of the stochastic version of
the Bounded Real Lemma. This result allows us to obtain information about
the norm of an input-output operator. Further we shall prove a stochastic
version of the Small Gain Theorem which is a powerful tool in the estimation
of the stability radius of a perturbed system, with structured parametric
uncertainties.

Bounded Real Lemma and other H∞ control problems for discrete-time
linear systems affected by independent random perturbations were considered
in [1, 4, 5, 11, 12, 13, 15, 17, 19] while in the Markovian case in [2, 3, 14, 16,
18, 20, 21]. The proof of the Bounded Real Lemma in this paper follows the
ideas in [1, 16]. In fact, the result of this paper is the discrete-time counter
part of the ones developed in chapter 6 in [6].

2 Input-output operators

Let us consider the system (G) with the state space representation:

x(t+1) = (A0(ηt)+
r∑

k=1

wk(t)Ak(ηt))x(t)+(B0(ηt)+
r∑

k=1

wk(t)Bk(ηt))v(t) (4)

z(t) = C(ηt)x(t) +D(ηt)v(t)

where x(t) ∈ Rn is the state of the system, v(t) ∈ Rmv is the external input
and z(t) ∈ Rnz is the output; {w(t)}t≥0,

(
w(t) = (w1(t), w2(t), ..., wr(t))T

)
is a sequence of independent random vectors and the triple ({ηt}t≥0, P,D) is
an homogeneous Markov chain, on a given probability space (Ω,F ,P) with
the set of the states D = {1, 2, ..., N} and the transition probability matrix
P = (p(i, j))Ni,j=1.

Concerning the processes {ηt}t≥0, {w(t)}t≥0 the following assumptions
are made:

H1) {w(t)}t≥0 is a sequence of independent random vectors with the
following properties:

E[w(t)] = 0, E[w(t)wT (t)] = Ir, t ≥ 0,

Ir being the identity matrix of size r.
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H2) The stochastic processes {w(t)}t≥0 and {η(t)}t≥0 are independent.

Throughout the paper we assume that together with the hypotheses
H1)−H2), the Markov chain verifies the additional assumption:

H3) (i) The transition probability matrix P is a nondegenerate stochas-
tic matrix, that is

N∑
j=1

p(j, i) > 0, (∀) 1 ≤ i ≤ N.

(ii) π0(i) = P{η0 = i} > 0, 1 ≤ i ≤ N .

It is easy to verify by induction that the assumption H3) holds iff πt(i) =
P{ηt = i} > 0 for all t ∈ Z+ and i ∈ D.

In (4) Ak(i), Bk(i), 0≤k≤r, C(i), D(i), 1 ≤ i ≤ N are given matrices of
appropriate dimensions.

For each t ≥ 0 we denote Ft=σ(w(s); 0≤s≤ t) and Gt = σ(ηs; 0≤s≤ t).
Let Ht = Ft ∨ Gt, t ∈ Z+. H̃t = Ft−1 ∨ Gt if t ≥ 1 and H̃0 = σ(η0).

In the following `2H̃{0, τ ; Rm} stands for the space of all finite sequences
{v(t)}0≤t≤τ of m-dimensional random vectors with the properties that for all
0 ≤ t ≤ τ , v(t) is H̃t-measurable and E[|v(t)|2] < ∞. Also `2H̃{0,∞; Rm} is
the space of all sequences {v(t)}t≥0 of m-dimensional random vectors with the
properties that for all t ≥ 0, v(t) is H̃t-measurable and

∑∞
t=0E[|v(t)|2] <∞.

In this paper, the inputs v = {v(t)}t≥0 are stochastic processes either
in `2H̃{0, τ ; Rmv} for τ > 0 or in `2H̃{0,∞; Rmv}. Both `2H̃{0, τ ; Rmv} and
`2H̃{0,∞; Rmv} are real Hilbert spaces.

The norms induced by the usual inner product on each of this Hilbert
space are:

||v||`2
H̃
{0,τ ;Rmv} = (

τ∑
t=0

E[|v(t)|2])
1
2

for all v ∈ `2H̃{0, τ ; Rmv} and

||v||`2
H̃
{0,∞;Rmv} = (

∞∑
t=0

E[|v(t)|2])
1
2

respectively, for all v ∈ `2H̃{0,∞; Rmv}.
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Let x(t, 0, v) be the solution of the system (4) corresponding to the input
v = {v(t)}t≥0 with the initial condition x(0, 0, v) = 0. Let

z(t, 0, v) = C(ηt)x(t, 0, v) +D(ηt)v(t) (5)

the corresponding output. One can see that if v ∈ `2H̃{0, τ ; Rmv} for some
τ ≥ 1, then x(t, 0, v) is Ht−1-measurable and E[|x(t, 0, v)|2] <∞.

Hence from (5) it follows that {z(t, 0, v)}0≤t≤τ ∈ `2H̃{0, τ ; Rnz}.
Consider the linear system:

x(t+ 1) = (A0(ηt) +
r∑

k=1

wk(t)Ak(ηt))x(t) (6)

Definition 2.1 We say that the zero state equilibrium of the system
(6) is exponentially stable in mean square (ESMS) if there exist β ≥ 1 and
q ∈ (0, 1) such that

E[|x(t, 0, x0)|2 ≤ βqt|x0|2

for all t ∈ Z+, x0 ∈ Rn, where x(t, 0, x0) is the solution of (6) starting from
x0 at time t = 0.

Applying Lemma 4.3 in [9] we deduce that if the zero state equilibrium
of (6) is ESMS, then there exists γ > 0 such that

∞∑
t=0

E[|z(t, 0, v)|2] ≤ γ2
∞∑
t=0

E[|v(t)|2] (7)

for all v ∈ `2H̃{0,∞; Rmv}.
It can be remarked that in the absence of the property of the exponential

stability in mean square of the linear system (6) one can prove that for each
τ ≥ 1 there exists γ(τ) > 0 such that

τ∑
t=0

E[|z(t, 0, v)|2] ≤ γ2(τ)
τ∑
t=0

E[|v(t)|2] (8)

for all v ∈ `2H̃{0, τ ; Rmv}.
Since v → z(t, 0, v) is a linear dependence, we deduce that if the state

equilibrium of (6) is ESMS, we may define a linear operator T : `2H̃{0,∞; Rmv}
→ `2H̃{0,∞; Rnz} by:

(T v)(t) = z(t, 0, v) (9)

for all v ∈ `2H̃{0,∞; Rmv}.
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In the absence of the assumption of exponential stability for each τ ≥ 1,
the equality (9) defines a linear operator Tτ : `2H̃{0, τ ; Rmv} → `2H̃{0, τ ; Rnz}.

From (7) and (8) one obtains that T and Tτ are bounded operators.
The linear operator T introduced by (9) will be called input-output oper-

ator defined by the system (4) while, the system (4) is known as a state space
representation of the operator T . From the definition of the input-output
operator one sees that a such operator maps only finite-energy disturbance
signal v into the corresponding finite energy output signal z of the considered
system.

To obtain an estimate of a robustness radius of the stabilization achieved
by a control law, an important role is played by the norm of an input-output
operator. It is well known, from the deterministic context, that the norm
of an input-output operator cannot be explicitly computed as in the case of
H2-norms. That is why, we are looking for necessary and sufficient conditions
which guarantee the fact that the norm of an input-output operator is smaller
than a prescribed level γ > 0.

Such conditions are provided by the well known Bounded Real Lemma.
In the last part of this section we present several auxiliary results useful

in the developments of the next sections.
Firstly, we remark that it is easy to prove the next inequality:

‖Tτ‖ ≤ ‖T ‖ (10)

for all τ ≥ 1.

Let γ > 0, 0 < τ ∈ Z ∪ {∞} and x0 ∈ Rn be arbitrary but fixed. We
consider the following cost functionals

Jγ(τ, x0, i, v) =
τ∑
t=0

E[|z(t, x0, v)|2 − γ2|v(t)|2|η0 = i] (11)

i ∈ D and

J̃γ(τ, x0, v) =
τ∑
t=0

E[|z(t, x0, v)|2 − γ2|v(t)|2] (12)

for all v = {v(t)}0≤t≤τ ∈ `2H̃{0, τ ; Rmv}.
It should be noted that if (11) and (12) are written for τ = +∞ we

assume tacitly that the zero state equilibrium of the system (6) is ESMS. It
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is clear that ‖Tτ‖ ≤ γ if and only if J̃γ(τ, 0, v) ≤ 0 for all v ∈ `2H̃{0, τ ; Rmv}
and ‖T ‖ ≤ γ if and only if J̃γ(∞, 0, v) ≤ 0 for all v ∈ `2H̃{0,∞; Rmv}.

Throughout this paper SNn = Sn ⊕ Sn ⊕ .... ⊕ Sn,Sn being the Hilbert
space of n× n symmetric matrices. If X(t) = (X(t, 1), ..., X(t,N)) ∈ SNn we
shall use the notations:

[ΠX(t+ 1)](i) =
(

Π1iX(t+ 1) Π2iX(t+ 1)
(Π2iX(t+ 1))T Π3iX(t+ 1)

)
= (13)

r∑
k=0

(
Ak(i) Bk(i)

)TEi(X(t+1))
(
Ak(i) Bk(i)

)

with Ei(X(t+ 1)) =
N∑
j=1

p(i, j)X(t+ 1, j), 1 ≤ i ≤ N .

Let F (t) = (F (t, 1), ..., F (t,N)), F (t, i) ∈ Rmv×n, 0 ≤ t ≤ τ , τ ≥ 1.
LetXγ

F (t) = (Xγ
F (t, 1), ..., Xγ

F (t,N)) be the solution of the following prob-
lem with the given final value

X(t, i) =
r∑

k=0

(Ak(i) +Bk(i)F (t, i))TEi(X(t+ 1))(Ak(i) + (14)

+Bk(i)F (t, i)) + (C(i) +D(i)F (t, i))T (C(i) +
+D(i)F (t, i))− γ2F T (t, i)F (t, i)

X(τ + 1, i) = 0, 1 ≤ i ≤ N.

Let xF = {xF (t)}0≤t≤τ+1 be the solution of the following problem with
the initial given value:

x(t+ 1) = [A0(ηt) +B0(ηt)F (t, ηt) +
r∑

k=1

wk(t)(Ak(ηt) + (15)

+Bk(ηt)F (t, ηt))]x(t) + [B0(ηt) +

+
r∑

k=1

wk(t)Bk(ηt)]v(t)

x(0) = x0.
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Applying Lemma 3.2 in [9] we obtain:
Lemma 2.1. Let F = {F (t)}0≤t≤τ , F (t) = (F (t, 1), ..., F (t,N)), F (t, i) ∈

Rmv×n be a sequence of gain matrices. If {Xγ
F (t)}0≤t≤τ+1 is the solution of

the problem (14), then we have:

Jγ(τ, x0, i, v + FxF ) = xT0X
γ
F (0, i)x0+

τ∑
t=0

E[vT (t)Hγ(Xγ
F (t+ 1), ηt)v(t) + 2vT (t)N(Xγ

F (t+ 1), ηt)xF (t)|η0 = i]

for all i ∈ D, x0 ∈ Rn, v ∈ `2H̃{0, τ ; Rmv}, xF (t) being the solution of the
problem (15) corresponding to the input v and

Hγ(Xγ
F (t+ 1), i) = Π3iX

γ
F (t+ 1) +DT (i)D(i)− γ2Imv (16)

N(Xγ
F (t+1), i)=(Π2iX

γ
F (t+1)+CT (i)D(i))T +Hγ(Xγ

F (t+1), i)F (t, i). (17)

Proof may be done by direct calculations. It is omitted for shortness.
Now we prove:
Proposition 2.2. If for an integer τ ≥ 1 and a real number γ > 0,

‖Tτ‖ < γ, then

r∑
k=0

BT
k (i)Ei(Xγ

F (t+ 1))Bk(i) +DT (i)D(i)− γ2Imv ≤ −ε0Imv (18)

for all 0 ≤ t ≤ τ , with ε0 ∈ (0, γ2 − ‖Tτ‖2).
Proof. Let us remark that (18) can be rewritten

Hγ(Xγ
F (t+ 1), i) ≤ −ε0Imv , 0 ≤ t ≤ τ. (19)

We prove (19) in two steps. First we show that

Hγ(Xγ
F (t+ 1), i) ≤ 0 (20)

for all 0 ≤ t ≤ τ , i ∈ D.
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In the second step, using (20), we shall show the validity of (19). Let
us assume by contrary that (20) is not true. This implies that there exist
0 ≤ t0 ≤ τ , i0 ∈ D and v ∈ Rmv with |v| = 1, such that

vTHγ(Xγ
F (t0 + 1), i0)v = ν0 > 0 (21)

for a ν0 > 0.
Let v̂ = {v̂(t)}0≤t≤τ defined as follows:

v̂(t) =
{
χ{ηt0=i0}v, if t = t0
0, if t 6= t0

It is clear that v̂ ∈ `2H̃{0, τ ; Rmv}.
Let also x̂ = {x̂(t)}0≤t≤τ+1 be the solution of (15) with zero initial value

and corresponding to the input v̂.
Let v̌(t) = v̂(t) + F (t, ηt)x̂(t). It is clear that v̌ = {v̌(t)}0≤t≤τ lies in

`2H̃{0, τ ; Rmv}.
Hence

J̃γ(τ, 0, v̌) = ‖Tτ v̌‖2`2
H̃
{0,τ ;Rnz} − γ

2‖v̌‖2`2
H̃
{0,τ ;Rmv} ≤ 0. (22)

Since x̂(t) = 0 for t ≤ t0 and J̃γ(τ, x0, v) =
N∑
i=1

π0(i)Jγ(τ, x0, i, v) we

obtain via Lemma 2.1 and the inequality (22) that

0 ≥
N∑
i=1

π0(i)Jγ(τ, 0, i, v̌) =
N∑
i=1

π0(i)E[vTHγ(Xγ
F (t0 + 1), i0)vχ{ηt0=i0}|η0 = i] = (23)

ν0

N∑
i=1

π0(i)E[χ{ηt0=i0}|η0 = i] = ν0πt0(i0) > 0.

This is a contradiction, hence (20) is correct. Note that πt0(i0) > 0 is a
consequence of the assumption H3).

Let 0 < ε0 < γ2 − ‖Tτ‖2. Set γ̃ = (γ2 − ε0)
1
2 . We have ‖Tτ‖ < γ̃. Hence

(20) is fulfilled for γ replaced by γ̃. This means that

Hγ̃(X γ̃
F (t+ 1), i) ≤ 0, i ∈ D, 0 ≤ t ≤ τ. (24)
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We deduce recursively that

X γ̃
F (t, i) ≥ Xγ

F (t, i), 0 ≤ t ≤ τ, i ∈ D. (25)

Therefore
Hγ̃(Xγ

F (t+ 1), i) ≤ Hγ̃(X γ̃
F (t+ 1), i) ≤ 0.

Having in mind the definition of γ̃ we obtain that

Hγ(Xγ
F (t+ 1), i) ≤ −ε0Imv , 0 ≤ t ≤ τ, i ∈ D

which completes the proof.
LetXγ(t) = (Xγ(t, 1), ..., Xγ(t,N)) be the solution of the problem (14) in

the special case F (t) = 0. One obtains recursively for t ∈ {τ+1, τ, ..., 0}, i ∈
D that Xγ(t, i) ≥ 0. Applying Proposition 2.2 for Xγ(t) instead of Xγ

F (t)
one obtains:

Corollary 2.3 If there exists an integer τ ≥ 1 such that ‖Tτ‖ < γ, then

γ2Imv −DT (i)D(i) > 0, i ∈ D.

3 Stochastic version of Bounded Real Lemma

In the developments of this section an important role is played by the follow-
ing backward discrete-time stochastic generalized Riccati equations (DTS-
GRE):

X(t, i) =
r∑

k=0

ATk (i)Ei(X(t+ 1))Ak(i) + CT (i)C(i)−

−(
r∑

k=0

ATk (i)Ei(X(t+ 1))Bk(i) +

+CT (i)D(i))(
r∑

k=0

BT
k (i)Ei(X(t+ 1))Bk(i) + (26)

+DT (i)D(i)− γ2Imv)−1 × (
r∑

k=0

BT
k (i)Ei(X(t+ 1))Ak(i)

+DT (i)C(i)), 1 ≤ i ≤ N.
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Using the notation introduced in (13) we may rewrite (26) in the following
compact form:

X(t)=Π1X(t+1)+M−(Π2X(t+1)+L)(Π3X(t+1)+R)−1(Π2X(t+1)+L)T (27)

where

M = (M(1),M(2), ...,M(N)) ∈ SNn , M(i) = CT (i)C(i),

L = (L(1), L(2), ..., L(N)) ∈MN
n,mv

, L(i) = CT (i)D(i),

R = (R(1), R(2), ..., R(N)) ∈ SNmv
, R(i) = DT (i)D(i)− γ2Imv .

For each integer τ ≥ 1, let Xτ (t) = (Xτ (t, 1), ..., Xτ (t,N)) be the solution
of DTSGRE (26) with the final value

Xτ (τ + 1, i) = 0, i ∈ D. (28)

By using Proposition 2.2 we can prove by induction the next result:
Lemma 3.1 If for an integer τ ≥ 1 and a real number γ > 0 we have

‖Tτ‖ < γ, then the solution Xτ (t) of the problem (26)-(28) is well defined
for all 0 ≤ t ≤ τ and it has the properties:

Xτ (t, i) ≥ 0 and

r∑
k=0

BT
k (i)Ei(Xτ (t+ 1))Bk(i) +DT (i)D(i)− γ2Imv ≤ −ε0Imv (29)

for all 0 ≤ t ≤ τ , i ∈ D, where ε0 ∈ (0, γ2 − ‖Tτ‖2).
Lemma 3.2 Assume: a) the zero state equilibrium of the system (6) is

ESMS,
b) the input-output operator T associated to the system (4) satisfies

‖T ‖ < γ.
Then there exists ρ > 0 such that J̃γ(∞, x0, v) ≤ ρ|x0|2 for all x0 ∈ Rn and
v ∈ `2H̃{0,∞; Rmv}.

Proof. Under the assumption a) and Theorem 3.5 in [7] it follows that
the linear equation

Z(i) =
r∑

k=0

ATk (i)Ei(Z)Ak(i) + CT (i)C(i), 1 ≤ i ≤ N. (30)
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has a unique solution Z = (Z(1), Z(2), ..., Z(N)) ∈ SN+
n . We recall that

under the assumption a), if v ∈ `2H̃{0,∞; Rmv} then, from Lemma 4.3 in [9],
we have lim

t→∞
E[|x(t, x0, v)|2] = 0.

Applying Lemma 2.1 in the special case F (t, i) = 0, X(t, i) = Z(i) and
taking the limit for τ →∞, one gets:

J̃γ(∞, x0, v) =
N∑
i=1

π0(i)xT0 Z(i)x0 +
∞∑
t=0

E[vT (t)Hγ(Z, ηt)v(t) +

+2xT (t, x0, v)NT (Z, ηt)v(t)] (31)

for all v ∈ `2H̃{0,∞; Rmv} and all x0 ∈ Rn, where N(Z, i) and Hγ(Z, i) are
as in (16) and (17) with Z(i) instead of Xγ

F (t, i).
Let ε be such that ‖T ‖2 < γ2 − ε2. Thus we may write:

J̃γ(∞, 0, v) = ‖T v‖2`2
H̃
{0,∞;Rnz} − γ

2‖v‖2`2
H̃
{0,∞;Rmv} ≤ −ε

2‖v‖2`2
H̃
{0,∞;Rmv}.

Therefore

J̃γ(∞;x0, v) ≤
N∑
i=1

π0(i)xT0 Z(i)x0+
∞∑
t=0

E[2xT (t, x0, 0)NT (Z, ηt)v(t)−ε2|v(t)|2]

or

J̃γ(∞;x0, v) ≤
N∑
i=1

λmax(Z(i))|x0|2 +
1
ε2

∞∑
t=0

E[|N(Z, ηt)x(t, x0, 0)|2]

−
∞∑
t=0

E[|εv(t)− 1
ε
N(Z, ηt)x(t, x0, 0)|2].

Let ν > 0 such that max|N(Z, i)| ≤ ν. Thus we have

J̃γ(∞;x0, v) ≤
N∑
i=1

λmax(Z(i))|x0|2 +
ν2

ε2

∞∑
t=0

E[|x(t, x0, 0)|2]. (32)

From the assumption a) we deduce that there exists ρ1 > 0 not depend-

ing upon x0 such that
∞∑
t=0

E[|x(t, x0, 0)|2] ≤ ρ1|x0|2. Introducing the last
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inequality in (32) one obtains the inequality from the statement with ρ =
N∑
i=1

λmaxZ(i) + ρ1
ν2

ε2
. Thus the proof is complete.

If Xτ (t), 0 ≤ t ≤ τ + 1 is the solution of the problem with given final
value (26)-(28) we define K(t) = (K(t, 1), ...,K(t,N)) by

K(t, i) = Xτ (τ + 1− t, i). (33)

We see that K(0, i) = Xτ (τ + 1, i) = 0, 1 ≤ i ≤ N . Also, by direct calcula-
tion one obtains that K = {K(t)}t≥0 solves the following forward nonlinear
equation on SNn :

K(t+ 1, i) = Π1iK(t) + CT (i)C(i)− (Π2iK(t) + CT (i)D(i))(Π3iK(t) (34)
+DT (i)D(i)− γ2Imv)−1(Π2iK(t) + CT (i)D(i))T .

Let us denote K0(t) = (K0(t, 1), ...,K0(t,N)) the solution of (34) with given
initial value K0(0, i) = 0, 1 ≤ i ≤ N .

Several properties of the solutionK0(t) are summarized in the next result:
Proposition 3.3 Assume: a) the zero state equilibrium of (6) is ESMS.
b) ‖T ‖ < γ.
Then the solution K0(t) of the forward equation (34) with the given initial

value K0(0, i) = 0 is defined for all t ≥ 0. It has the properties:
(i)

r∑
k=0

BT
k (i)Ei(K0(t))Bk(i) +DT (i)D(i)− γ2Imv ≤ −ε0Imv (35)

where ε0 ∈ (0, γ2 − ‖T ‖2).
(ii) 0 ≤ K0(τ, i) ≤ K0(τ + 1, i) ≤ cIn, (∀) t, i ∈ Z+×D, where c > 0 is

a constant not depending upon t, i.
Proof. Based on (10) we obtain that ‖Tτ‖ ≤ ‖T ‖ < γ for all τ ≥ 1.

Therefore, we deduce, via Lemma 3.1, that for any integer τ ≥ 1 the solution
Xτ (t) of the problem with given final value (26), (28) is well defined for
0 ≤ t ≤ τ + 1 and it verifies (29). Thus we deduce via (33) that K0(t) is well
defined for all t ≥ 0. If 0 < ε0 < γ2 − ‖T ‖2 it follows that ε0 < γ2 − ‖Tτ‖2
for all τ ≥ 1.

Hence in (29) we may choose ε0 independent of τ . Writing (29) for t = 0
and taking into account thatK0(τ, i) = Xτ (1, i) we obtain that (i) is fulfilled.
Further, from (35) and (34) we deduce thatK0(t, i) ≥ 0 for all (t, i) ∈ Z+×D.
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Let Xτ (t) and Xτ+1(t) be the solutions of the DTSGRE (26) with the
final value Xτ (τ + 1) = 0 and Xτ+1(τ + 2) = 0 in SNn . Under the considered
assumptions we know that these two solutions are well defined for 0 ≤ t ≤
τ + 1 and 0 ≤ t ≤ τ + 2, respectively.

Let Zτ (t, i) = Xτ+1(t, i)−Xτ (t, i), 0 ≤ t ≤ τ + 1, 1 ≤ i ≤ N .
We can deduce recursively that Zτ (t, i) ≥ 0 for 0 ≤ t ≤ τ + 1.
This means that Xτ (t, i) ≤ Xτ+1(t, i), 0 ≤ t ≤ τ + 1, i ∈ D. Particularly

Xτ (1, i) ≤ Xτ+1(1, i), i ∈ D.
Using (33) we see that the above inequality is equivalent to K0(τ, i) ≤

K0(τ + 1, i), i ∈ D, τ ≥ 1. Further we consider vτ = {vτ (t)}0≤t≤τ defined
by vτ (t) = Fτ (t, ηt)xτ (t) where xτ (t) is the solution of (4) corresponding to
vτ (t) and Fτ is defined by

Fτ (t, i) = −(
r∑

k=0

BT
k (i)Ei(Xτ (t+ 1))Bk(i) +DT (i)D(i)− γ2Imv)−1 (36)

×(
r∑

k=0

BT
k (i)Ei(Xτ (t+ 1))Ak(i) +DT (i)C(i)), i ∈ D.

Let vτ = {vτ (t)}t≥0 ∈ `2H{0,∞; Rmv} be the natural extension of vτ taking
vτ (t) = 0 for t ≥ τ + 1.

Applying Lemma 3.2 from above and Lemma 3.2 in [9] we may write
successively

π0(i)xT0Xτ (0, i)x0≤E[xT0Xτ (0, η0)x0]= J̃γ(τ, x0, vτ ) ≤ J̃γ(∞;x0, vτ )≤ρ|x0|2

for all x0 ∈ Rn, i ∈ D. Hence

π0(i)xT0Xτ (0, i)x0 ≤ ρ|x0|2 (37)

for all x0 ∈ Rn, i ∈ D and for all initial distribution π0 = (π0(1), ..., π0(N))
with π0(i) > 0. Particulary, (37) is valid for the special case π0(i) = 1

N .
This leads to xT0Xτ (0, i)x0≤Nρ|x0|2 for all i ∈ D. Thus xT0K0(τ+1, i)x0 ≤

c|x0|2 (∀) τ ≥ 1, i ∈ D, x0 ∈ Rn where c = Nρ. Thus the proof is complete.
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Let us consider the following system of discrete-time coupled algebraic
Riccati equations (DTSARE):

X(i) =
r∑

k=0

ATk (i)Ei(X)Ak(i) + CT (i)C(i)−

−(
r∑

k=0

ATk (i)Ei(X)Bk(i) + CT (i)D(i))

×(
r∑

k=0

BT
k (i)Ei(X)Bk(i) +DT (i)D(i)− γ2Imv)−1

(
r∑

k=0

BT
k (i)Ei(X)Ak(i) +DT (i)C(i)). (38)

We have:
Corollary 3.4 Under the assumptions of the Proposition 3.3 the DT-

SARE (38) has a solution X̃ = (X̃(1), ..., X̃(N)) ∈ SN+
n with the additional

property:
r∑

k=0

BT
k (i)Ei(X)Bk(i) +DT (i)D(i)− γ2Imv < 0, 1 ≤ i ≤ N. (39)

Proof. From Proposition 3.3 one obtains that the sequences {K0(τ, i)}τ≥1,
1 ≤ i ≤ N are convergent. Let X̃(i) = lim

τ→∞
K0(τ, i). Taking the limit for

t → ∞ in (34) one obtains that X̃ = (X̃(1), ..., X̃(N)) is a solution of DT-
SARE (38). Finally, taking the limit for t→∞ in (35) we deduce that (39)
is fulfilled. The proof ends.

We say that a solution Xs = (Xs(1), ..., Xs(N)) of the DTSARE (38) is
a stabilizing solution if the zero state equilibrium of the closed-loop system

xs(t + 1) = [A0(ηt) + B0(ηt)Fs(ηt) +
r∑

k=1

wk(t)(Ak(ηt) + Bk(ηt)Fs(ηt))]xs(t)

is ESMS, where

Fs(i) = −(
r∑

k=0

BT
k (i)Ei(Xs)Bk(i) +DT (i)D(i)− γ2Imv)−1

×(
r∑

k=0

BT
k (i)Ei(Xs)Ak(i) +DT (i)C(i)) (40)

1 ≤ i ≤ N .
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Before to prove the main result of this section we recall several definitions
and results from [10].

Consider the discrete-time general Riccati equation

X = Π1X +M − (L+Π2X)(R+Π3X)−1(L+Π2X)T (41)

where

X → ΠX =
(

Π1X Π2X
(Π2X)T Π3X

)
(42)

is a linear and positive operator defined on SNn taking values in SNn+mv
and

Q =
(
M L
LT R

)
∈ SNn+mv

. To the pair Σ = (Π,Q) (which defines the

equation (41)) we associate the so called dissipation operator DΣ : SNn →
SNn+mv

by: DΣX = (DΣ
1 X, ...,D

Σ
NX) where

DΣ
i X =

(
Π1iX −X(i) +M(i) L(i) +Π2iX

(L(i) +Π2iX)T R(i) +Π3iX

)
(43)

for all X = (X(1), ..., X(N)) ∈ SNn .
If Π : SNn → SNn+mv

is a linear operator and F = (F (1), F (2), ..., F (N)),
F (i)∈Rmv×n then we denote ΠFX=((ΠFX)(1), (ΠFX)(2), ..., (ΠFX)(N))
with

(ΠFX)(i) =
(
In F T (i)

)( Π1iX Π2iX
(Π2iX)T Π3iX

)(
In
F (i)

)
. (44)

Definition 3.1 We say that a linear and positive operator Π : SNn →
SNn+mv

is stabilizable if there exists F = (F (1), F (2), ..., F (N)), F (i) ∈ Rmv×n

with the property that the eigenvalues of the operator ΠF are located in the
inside of the disk |λ| < 1.

It should be remarked that in the special case of Π introduced by (13)
the concept of stabilizability introduced in Definition 3.1 is equivalent to the
concept of stochastic stabilizability introduced in [8].

Definition 3.2 A solution Xs = (Xs(1), ..., Xs(N)) of (41) is a sta-
bilizing solution if the eigenvalues of the operator ΠFs are in the inside
of the disk |λ| < 1, where ΠFs is defined as in (44) with F replaced by
Fs = (Fs(1), ..., Fs(N)),

Fs(i) = −(R(i) +Π3iXs)−1(L(i) +Π2iXs)T . (45)
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The next result provides a set of necessary and sufficient conditions for
the existence of a stabilizing solution of (41).

Theorem 3.5 ([10]) With the considered notations, the following are
equivalent:

(i) the linear and positive operator Π is stabilizable and there exists X̂ ∈
SNn ,
X̂ = (X̂(1), X̂(2), ..., X̂(N)) such that

DΣ
i X̂ > 0, (∀) i ∈ {1, 2, ..., N}; (46)

(ii) the algebraic Riccati equation (41) has a stabilizing solution Xs = (Xs(1),
Xs(2), ..., Xs(N)) which satisfies

R(i) +Π3iXs > 0, 1 ≤ i ≤ N. (47)

The main result of this section is:
Theorem 3.6 (Bounded Real Lemma) Under the considered assump-

tions, for a given scalar γ > 0, the following are equivalent:
(i) the zero state equilibrium of (6) is ESMS and the input-output operator

T defined by the system (4) satisfies ‖T ‖ < γ.
(ii) there exists X = (X(1), ..., X(N)) ∈ SNn , X(i) > 0, 1 ≤ i ≤ N ,

which solves the following system of LMI’s:(
Π1iX −X(i) + CT (i)C(i) Π2iX + CT (i)D(i)

(Π2iX + CT (i)D(i))T Π3iX +DT (i)D(i)− γ2Imv

)
< 0,

1 ≤ i ≤ N, (48)

where the operators Πli are introduced by (13);
(iii) the DTSARE (38) has a stabilizing solution X̃ = (X̃(1), ..., X̃(N)) ∈

SNn with X̃(i) ≥ 0, 1 ≤ i ≤ N which satisfies (39);
(iv) there exists Y = (Y (1), Y (2), ..., Y (N)) ∈ SNn , Y (i) > 0, 1 ≤ i ≤ N ,

which solves the following system of LMIs

−Y (i) Ψ0i(Y ) Ψ1i(Y ) ... Ψri(Y ) Y (i)CT (i)
ΨT0i(Y ) G00(i)−Y G01(i) ... G0r(i) G0r+1(i)
ΨT1i(Y ) GT

01(i) G11(i)−Y ... G1r(i) G1r+1(i)
... ... ... ... ... ...

ΨTri(Y ) GT
0r(i) GT

1r(i) ... Grr(i)− Y Grr+1(i)
C(i)Y (i) GT

0r+1(i) GT
1r+1(i) ... GT

rr+1(i) D(i)DT (i)−γ2Inz

 < 0(49)
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where

Ψki(Y ) =
( √

p(i, 1)Y (i)ATk (i)
√
p(i, 2)Y (i)ATk (i) ...

√
p(i,N)Y (i)ATk (i)

)
,

Y = diag(Y (1), ..., Y (N)) ∈ SnN

Glk(i) = IT (i)Bl(i)BT
k (i)I(i), 0 ≤ l ≤ k ≤ r,

Glr+1(i) = IT (i)Bl(i)DT (i)

and
I(i) =

( √
p(i, 1)In

√
p(i, 2)In ...

√
p(i,N)In

)
.

Proof. Let us assume that (i) holds. If δ>0 denote Tδ :`2H̃{0,∞; Rmv} →
`2H̃{0,∞; Rn+nz} the linear operator defined by v→(Tδv)(t)=Cδ(ηt)x(t, 0, v)+
Dδ(ηt)v(t) where x(t, 0, v) is the zero initial value solution of (4) correspond-

ing to the input v and Cδ(i) =
(
C(i)
δIn

)
, Dδ(i) =

(
D(i)

0

)
. Based on

(7) we deduce that for δ > 0 sufficiently small we have ‖Tδ‖ < γ. Applying
Corollary 3.4 we deduce that there exists Xδ = (Xδ(1), ..., Xδ(N)), Xδ(i) ≥ 0
solving the DTSARE:

Xδ(i) = Π1iXδ−(Π2iXδ + CT (i)D(i))(Π3iXδ +DT (i)D(i)−γ2Imv)−1 (50)
(Π2iXδ + CT (i)D(i))T + CT (i)C(i) + δ2In , 1 ≤ 1 ≤ N,

with additional property

Π3iXδ +DT (i)D(i)− γ2Imv < 0, 1 ≤ 1 ≤ N. (51)

Since the right hand side of (50) is positive definite it follows that Xδ(i) >
0, 1 ≤ i ≤ N .

Also (50) implies

Π1iXδ −Xδ(i) + CT (i)C(i)− (Π2iXδ +
+CT (i)D(i))(Π3iXδ +DT (i)D(i)− γ2Imv)−1 (52)

(Π2iXδ + CT (i)D(i))T < 0, 1 ≤ 1 ≤ N.

By a Schur complement technique one obtains that (51) and (52) are
equivalent to (48) and thus the proof of the implication (i)→ (ii) is complete.
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To prove the converse implication, (ii)→ (i) we remark that if (ii) is fulfilled
then the (1;1) block of (48) is negative definite. Thus we obtained that
there exists X = (X(1), ..., X(N)) ∈ SNn with X(i) > 0, such that X(i) >
r∑

k=0

ATk (i)Ei(X)Ak(i), 1 ≤ i ≤ N . Applying Corollary 4.8 in [8] we deduce

that the zero state equilibrium of the system (6) is ESMS. Further, applying
Corollary 3.3 in[9] for X(t, i) = X(i), 0 ≤ t ≤ τ , τ ≥ 1, 1 ≤ i ≤ N , and
taking the limit for τ →∞ we have:

J̃γ(∞; 0, v) =
∞∑
t=0

E[
(
x(t, 0, v)
v(t)

)T
Q(X, ηt)

(
x(t, 0, v)
v(t)

)
] (53)

where Q(X, i) is the left hand side of (48). If X = (X(1), ..., X(N)) verifies
(48) then for ε > 0 small enough we have

Q(X, i) ≤ −ε2In+mv , 1 ≤ 1 ≤ N. (54)

Combining (53) and (54) we deduce

J̃γ(∞; 0, v) ≤ −ε2
∞∑
t=0

E[|x(t, 0, v)|2] + E[|v(t)|2]

or equivalently

J̃γ̃(∞; 0, v) ≤ −ε2
∞∑
t=0

E[|x(t, 0, v)|2] < 0

for all v ∈ `2H̃{0,∞; Rmv} where γ̃ = (γ2 − ε2)
1
2 .

The last inequality may be written:

‖T v‖2`2
H̃
{0,∞;Rnz} ≤ γ̃

2‖v‖2`2
H̃
{0,∞;Rmv}

for all v ∈ `2H̃{0,∞; Rmv}. This leads to ‖T ‖2 ≤ γ2 − ε2 and thus the
implication (ii)→ (i) is proved.

To prove the equivalence (ii)↔ (iii) let us consider the DTSGRE:

X = Π1X + M̂ − (Π2X + L̂)(Π3X + R̂)−1(Π2X + L̂)T (55)

where

M̂(i) = −CT (i)C(i), L̂(i) = −CT (i)D(i), R̂(i) = γ2Imv −DT (i)D(i),
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1 ≤ i ≤ N . One can sees that (55) is a nonlinear equation of type (41) defined

by the pair Σ = (Π, Q̂) with Q̂ =
(
M̂ L̂

L̂T R̂

)
∈ SNn+mv

. One can check

that if X = (X(1), X(2), ..., X(N)) solves (48) then X̂ = (X̂(1), ..., X̂(N))
with X̂(i) = −X(i), i ∈ D solves the corresponding LMIs (46).

Also if (ii) is fulfilled then from (1,1) block of (48) one obtains that
Π1iX −X(i) < 0, 1 ≤ i ≤ N . Using the implication (vii)→ (i) of Theorem
3.4 in [7] in the special case of the positive operator Π1 we deduce that the
eigenvalues of this operator are located in the inside of the disc |λ| < 1.

This means that the operator Π defined by ΠX =
(

Π1X Π2X
(Π2X)T Π3X

)
is stabilizable (in the sense of Definition 3.1 from above). Thus we obtain
that if (ii) is fulfilled then in the case of DTSGRE (55) the assertion (i)
in Theorem 3.5 is fulfilled. Hence, (55) has a stabilizing solution Xs =
(Xs(1), Xs(2), ..., Xs(N)) which satisfies

Π3iXs −R(i) > 0, 1 ≤ i ≤ N.x (56)

A simple computation shows that X̃ = (X̃(1), ..., X̃(N)) defined by X̃(i) =
−Xs(i) is the stabilizing solution of DTSARE (38) which satisfies (39). Since
the eigenvalues of the positive operator Π1 are located in the inside of the
disk |λ| < 1 from Theorem 3.5 in [7] it follows that X̃(i) ≥ 0, i ∈ D and then
(ii)→ (iii) is true.

Conversely, let X̃ = (X̃(1), ..., X̃(N)) be the stabilizing solution of the
DTSARE (38) which satisfies (39). If Xs(i) = −X̃(i), 1 ≤ i ≤ N , then
Xs = (Xs(1), ..., Xs(N)) is the stabilizing solution of (55) which satisfies the
condition (56). Applying Theorem 3.5 in the case of (55) one deduces that
there exists X̂ = (X̂(1), ..., X̂(N)) which solves(

Π1iX̂ − X̂(i) + M̂(i) Π2iX̂ + L̂(i)
(Π2iX̂ + L̂(i))T Π3iX̂ + R̂(i)

)
> 0, 1 ≤ i ≤ N. (57)

On the other hand from Proposition 5.1 in [10] we deduce that Xs coincides
with the maximal solution of (55). Therefore, X̂(i) ≤ Xs(i) = −X̃(i) ≤
0, 1 ≤ i ≤ N .

Let ∆i(X̂) be defined by ∆i(X̂) = Π1iX̂ − X̂(i) + M̂(i). Since ∆i(X̂)
is the (1,1) block of the matrix from the left hand side of (57) we have
∆i(X̂) > 0, 1 ≤ i ≤ N . Writing X̂(i) = Π1iX̂ + M̂(i) −∆i(X̂) and taking
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into account that M̂(i) ≤ 0, we conclude that X̂(i) < 0, 1 ≤ i ≤ N . Taking
X(i) = −X̂(i) one sees that X = (X(1), X(2), ..., X(N)) solves (48) and
X(i) > 0, 1 ≤ i ≤ N .

This completes the proof of the implication (iii)→ (ii).
The equivalence (ii)↔ (iv) follows immediately by a Schur complement

technique. This completes the proof of the theorem.
If the system (4) is either in the case N = 1 or N ≥ 2, with Ak(i) = 0,

Bk(i) = 0, 1 ≤ k ≤ r, i ∈ D, the result proved in Theorem 3.6 recover as spe-
cial cases the stochastic version of the Bounded Real Lemma for discrete-time
linear stochastic systems perturbed by independent random perturbations
and the discrete-time linear stochastic systems with Markovian switching,
respectively.

Let us remark that if the zero state equilibrium of (6) is ESMS from
Theorem 3.6, it follows that

‖T ‖ = inf{γ > 0, for which it exists X ∈ SNn , X > 0,

such that (48) holds} = inf{γ > 0,

DTSARE (38) has a positive semidefinite solution verifying (39)}

4 The small gain theorem and robust stability

One of the important consequence of the Bounded Real Lemma is the so
called Small Gain Theorem. It is known that this result is a powerful tool
in the derivation of some estimates of the stability radius with respect to
several classes of parametric uncertainties. We start with an auxiliary result
which is interesting in itself:

Theorem 4.1 Regarding the system (4) we assume that the following
assumptions are fulfilled:

a) the number of inputs equals the number of outputs (i.e. mv = nz = m);
b) the zero state equilibrium of the corresponding linear system (6) is

ESMS;
c) the input-output operator T associated to the system (4) satisfies

‖T ‖<1.
Under these assumptions we have:
(i) the matrices Im ±D(i), i ∈ {1, 2, ..., N} are invertible.
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(ii) the zero state equilibrium of the system

x(t+ 1) = (A(ηt) +
r∑

k=1

wk(t)Ak(ηt))x(t) (58)

is ESMS, where either Ak(i) = Ak(i) − Bk(i)(Im + D(i))−1C(i) or Ak(i) =
Ak(i) +Bk(i)(Im −D(i))−1C(i).

Proof. Based on (10) and assumption c) we deduce that ‖Tτ‖ < 1
for any integer τ ≥ 1. Thus applying Corollary 2.3 one obtains that Im −
DT (i)D(i) > 0, i ∈ {1, 2..., N}. Therefore for each i the eigenvalues of the
matrix D(i) are located in the inside of the disk |λ| < 1. Hence det(Im ±
D(i)) 6= 0, 1 ≤ i ≤ N . Thus we obtain that (i) is true. To prove (ii) we use
the implication (i) → (ii) of Theorem 3.6. Thus if the assumptions b) and
c) are fulfilled, then there exist X = (X(1), ..., X(N)) ∈ SNn , X(i) > 0 such
that (48) hold with γ = 1.

Taking

F (i) = ±(Im ∓D(i))−1C(i) (59)

by direct calculation one obtains via (13) and (48) that

r∑
k=0

[Ak(i) +Bk(i)F (i)]TEi(X)[Ak(i) +Bk(i)F (i)]− (60)

X(i) + (C(i) +D(i)F (i))T (C(i) +D(i)F (i))− F T (i)F (i) < 0

1 ≤ i ≤ N .
If we take into account (59) we obtain C(i)+D(i)F (i)=(Im∓D(i))−1C(i).

Thus we have (C(i) +D(i)F (i))T (C(i) +D(i)F (i))−F T (i)F (i) = 0. Hence
(60) becomes:

r∑
k=0

A
T
k (i)Ei(X)Ak(i)−X(i) < 0, X(i) > 0, 1 ≤ i ≤ N. (61)

Applying Corollary 4.8 in [8] one deduces that the zero state equilibrium of
the system (58) is ESMS. This completes the proof.
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Consider the system

x(t+ 1) = [A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)]x(t) + [B0(ηt) +

+
r∑

k=1

wk(t)Bk(ηt)]u(t) (62)

z(t) = C(ηt)x(t)

with the input u(t) ∈ Rm and the output z(t) ∈ Rp.
Let D̂ = (D̂(1), ..., D̂(N)), D̂(i)∈Rm×p. By definition |D̂|=max{|D̂(i)|,

1 ≤ i ≤ N}.
Theorem 4.2 ( The small gain theorem). Assume:
a) The zero state equilibrium of the system (6) is ESMS.
b) ‖T̃ ‖ < γ where T̃ : `2H̃{0,∞; Rm} → `2H̃{0,∞; Rp} is the input-output

operator defined by the system (62).
c) |D̂| < γ−1.
Under these conditions the zero state equilibrium of the system

x(t+ 1) = [A0(ηt) +B0(ηt)D̂(ηt)C(ηt) +
r∑

k=1

wk(t)(Ak(ηt) +Bk(ηt)D̂(ηt)C(ηt))]x(t) (63)

is ESMS.
Proof.Definethelinearbounded operatorT̂ :`2H̃{0,∞,R

p}→`2H̃{0,∞,R
m}

by
(T̂ v)(t) = D(ηt)v(t)

with v(t) ∈ `2H̃{0,∞,R
p}. Reasoning as in the proof of Proposition 13 in [6]

page 234 one can prove that ‖T̂ ‖ = |D̂|.
Let us consider the system:

x̂(t+ 1) = [A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)]x̂(t) + [B0(ηt) +

+
r∑

k=1

wk(t)Bk(ηt)]D̂(ηt)v(t) (64)

z(t) = C(ηt)x̂(t).
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We observe that T̃ T̂ is the input output operator associated with the system
(64). Since ‖T̃ T̂ ‖ < 1, the conclusion follows via Theorem 4.1. Thus the
proof is complete.

In this section the problem of the robust stability is investigated for a
class of discrete-time linear stochastic systems subject to linear parametric
uncertainties.

Let us consider the discrete-time linear stochastic system described by:

x(t+ 1) = [A0(ηt) +B0(ηt)∆(ηt)C(ηt) +

+
r∑

k=1

wk(t)(Ak(ηt) +Bk(ηt)∆(ηt)C(ηt))]x(t) (65)

where Ak(i) ∈ Rn×n, Bk(i) ∈ Rn×m, 0 ≤ k ≤ r, C(i) ∈ Rp×n are assumed
to be known matrices, ∆(i) ∈ Rm×p are unknown matrices. The system (65)
is a perturbed model of the nominal system (6).

The matrices Bk(i), C(i) occurring in (65) determine the structure of the
parametric uncertainties presented in the perturbed model.

If the zero state equilibrium of the nominal system (6) is ESMS we will
analyze if the zero state equilibrium of the perturbed model (65) remains
ESMS for some ∆(i) 6= 0. This would be, in few words the formulation of
the problem of the robust stability. For a more precise formulation of the
robust stability problem we introduced a norm in the set of the uncertainties.

If ∆ = (∆(1), ∆(2), ...,∆(N)) ∈ MN
m,p i.e. ∆(i) are m× p real matrices,

we set

|∆| = max
i∈D
|∆(i)| = max

i∈D
(λmax(∆T (i)∆(i)))

1
2 . (66)

As a measure of the robustness of the stability we introduce the concept
of stability radius.

Definition 4.1 The stability radius of the nominal system (6), or equiv-
alently, the stability radius of the pair (A, P ) with respect to the structured
parametric uncertainties with the structure determined by the pair (B, C)
is the number ρL[A, P |B, C] = inf{ρ > 0|(∃)∆ = (∆(1), ...,∆(N)) ∈ MN

m,p

with |∆| ≤ ρ that the zero state equilibrium of the corresponding system
(4.8) is not ESMS}.

The next result provides a lower bound of the stability radius intro-
duced in the above definition. To this end, let us consider the fictitious
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system constructed based on the known matrices occurring in the perturbed
model (65):

x(t+ 1) = (A0(ηt) +
r∑

k=1

wk(t)Ak(ηt))x(t) + (B0(ηt) +

+
r∑

k=1

wk(t)Bk(ηt))v(t); z(t) = C(ηt)x(t) (67)

Theorem 4.3 Assume that the zero state equilibrium of the nominal system
(6) is ESMS. Let T : `2H̃{0,∞; Rm} → `2H̃{0,∞; Rp} be the input output
operator defined by the fictitious system (67). Then we have:

ρL[A, P |B, C] ≥ ‖T ‖−1 (68)

Proof. Let ρ < ‖T ‖−1 be arbitrary but fixed. We show that for any per-
turbation ∆ = (∆(1), ∆(2), ...,∆(N)) ∈ MN

m,p with |∆| < ρ, the zero state
equilibrium of the perturbed system (65) is ESMS. Let ∆ ∈MN

m,p be a per-
turbation with |∆| < ρ. Setting γ = ρ−1, we have ‖T ‖ < γ and |∆| < γ−1.
Hence the fictitious system (67) and the perturbation ∆ are in the conditions
of Theorem 4.2. Thus the prooof is complete.

5 The disturbance attenuation problem and the ro-
bust stabilization

Consider the control system:

x(t+ 1) = A0(ηt)x(t) +G0(ηt)v(t) +B0(ηt)u(t) +
r∑

k=1

wk(t)[Ak(ηt)x(t) +Gk(ηt)v(t) +Bk(ηt)u(t)]

y(t) = x(t) (69)
z(t) = Cz(ηt)x(t) +Dzv(ηt)v(t) +Dzu(ηt)u(t).

If we take

u(t) = F (ηt)x(t). (70)
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the closed-loop system obtained when coupling (70) and (69) is:

x(t+ 1) = [A0(ηt) +B0(ηt)F (ηt)+
r∑

k=1

wk(t)(Ak(ηt) +Bk(ηt)F (ηt))]x(t) +

(G0(ηt) +
r∑

k=1

wk(t)Gk(ηt))v(t) (71)

z(t) = (Cz(ηt) +Dzu(ηt)F (ηt))x(t) +Dzv(ηt)v(t).

If F = (F (1), F (2), ..., F (N)) is a stabilizing feedback gain, that is (71)
with v(t) = 0 is ESMS, then the system (71) defines an input output op-
erator, TF : `2H̃{0,∞; Rmv} → `2H̃{0,∞; Rnz} by (TF v)(t) = (Cz(ηt) +
Dzu(ηt)F (ηt))x(t, 0, v) +Dzv(ηt)v(t), t ∈ Z+.

The disturbance attenuation problem with level of attenuation γ > 0 asks
for constructing a stabilizing feedback gain F , such that ‖TF ‖ < γ.

Remark 5.1 The disturbance attenuation problem (DAP) stated before
extends to this general framework the H∞ control problem from the deter-
ministic context. Therefore, this problem will be often named stochastic
H∞-problem.

The solution of the above problem is given in the next result:
Theorem 5.1 For the system (69) and a given scalar γ > 0, the following

are equivalent:
(i) there exists a control law u(t) = F (ηt)x(t) such that the zero state equi-

librium of the linear system x(t+1) = [A0(ηt)+B0(ηt)F (ηt)+
r∑

k=1

wk(t)(Ak(ηt)+

Bk(ηt)F (ηt))]x(t) is ESMS and ‖TF ‖ < γ.
(ii) there exist Y = (Y (1), Y (2), ..., Y (N)) ∈ SNn and Γ = (Γ (1), Γ (2), ...,

Γ (N)) ∈ MN
mn, Y (i) > 0, 1 ≤ i ≤ N , which solve the following system of

LMIs:



−Y (i) W0i(Y, Γ )W1i(Y, Γ ) ...Wri(Y, Γ ) Y(i)CTz (i)+Γ T(i)DT
zu(i)

WT
0i(Y, Γ ) G00−Y G01(i) ... G0r(i) G0r+1(i)
WT

1i(Y, Γ ) GT
01(i) G11(i)−Y ... G1r(i) G1r+1(i)

... ... ... ... ... ...
WT
ri(Y, Γ ) GT

0r(i) GT
1r(i) ... Grr(i)−Y Grr+1(i)

Cz(i)Y(i)+Dzu(i)Γ(i) GT
0r+1(i) GT

1r+1(i) ... GT
rr+1(i) DT

zv(i)D
T
zv(i)−γ2Inz

 < 0(72)
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where Wki(Y, Γ ) = (Y (i)ATk (i) + Γ T (i)BT
k (i))I(i), 0 ≤ k ≤ r,

I(i) =
( √

p(i, 1)In
√
p(i, 2)In ...

√
p(i,N)In

)
Glk(i) = IT (i)Gl(i)GTk (i)I(i), 0 ≤ l ≤ k ≤ r, (73)

Glr+1(i) = IT (i)Gl(i)DT
zv(i), 0 ≤ l ≤ r

Y = diag(Y (1), Y (2), ..., Y (N)).

Moreover, if (Y, Γ ) is a solution of the above LMI (72), then a solution of
the disturbance attenuation problem under consideration is given by F =
(F (1), F (2), ..., F (N)), F (i) = Γ (i)Y −1(i), 1 ≤ i ≤ N .

Proof. It follows immediately via the equivalence (i)↔ (iv) in Theorem
3.6 specialized in the case of the system (71) and taking Γ (i) = F (i)Y (i).

We shall apply Theorem 5.1 in order to solve a robust stabilization prob-
lem.

Consider the system described by:

x(t+ 1) = [A0(ηt) + Ĝ0(ηt)∆1(ηt)Ĉ(ηt)]x(t) +
+[B0(ηt) + B̂0(ηt)∆2(ηt)D̂(ηt)]u(t)

+
r∑

k=1

wk(t){[Ak(ηt) + Ĝk(ηt)∆1(ηt)Ĉ(ηt)]x(t) +

+[Bk(ηt)∆2(ηt)D̂(ηt)]u(t)} (74)

where Ak(ηt), Ĝk(i), Bk(i), Ĉ(i), D̂(i), 0 ≤ k ≤ r, i ∈ D are known ma-
trices of appropriate dimensions and ∆1 = (∆1(1), ...,∆1(N)) and ∆2 =
(∆2(1), ...,∆2(N)) are unknown matrices and they describe the magnitude
of the uncertainties of the system (74). It is assumed that the whole state
vector is accessible for measurements.

The robust stabilization problem considered here can be stated as follows:
For a given ρ > 0 find a control u(t) = F (ηt)x(t) stabilizing (74) for any

∆1 and ∆2 such that max(|∆1|, |∆2|) < ρ.
The closed-loop system obtained with u(t) = F (ηt)x(t) is given by

x(t+1) = {A0(ηt)+B0(ηt)F (ηt)+G0(ηt)∆(ηt)[C(ηt)+D(ηt)F (ηt)]}x(t)

+
r∑

k=1

wk(t){Ak(ηt)+Bk(ηt)F (ηt)+Gk(ηt)∆(ηt)[C(ηt)+D(ηt)F (ηt)]}x(t) (75)
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whereGk(i) =
(
Ĝk(i) B̂k(i)

)
, C(i) =

(
Ĉ(i)

0

)
, D(i) =

(
0

D̂(i)

)
, ∆(i) =(

∆1(i) 0
0 ∆2(i)

)
.

If the zero state equilibrium of the linear system obtained from (75)taking
∆ = 0 is ESMS, then from Theorem 4.3 it follows that the zero state equi-
librium of (75) is ESMS for all ∆ with |∆| < ρ, |∆| = max(|∆1|, |∆2|),
if the input-output operator TF associated to the system (71) with z(t) =
[C(ηt) +D(ηt)F (ηt)]x(t) satisfies the condition ‖TF ‖ < 1

ρ .
Therefore, F is a robust stabilizing feedback with the robustness radius

ρ if it is a solution of the DAP with level of attenuation γ = 1
ρ for the system

(69) with z(t) = C(ηt)x(t) + D(ηt)u(t) where the matrices C(i) and D(i)
were defined above.

The next result follows directly from Theorem 5.1:
Theorem 5.2 Suppose that there exist Y ∈ SNn and Γ ∈ MN

mn , Y >
0 verifying the system of LMIs (72) where Cz(i) = C(i), Dzu(i) = D(i),
Dzv(i) = 0, γ = 1

ρ . Then the state feedback gain F (i) = Γ (i)Y −1(i) is a
solution of the robust stabilization problem.
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