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Abstract

In this paper we investigate some dichotomy concepts for skew-
evolution semiflows in Banach spaces. Our main objective is to estab-
lish relations between these concepts. We motivate our approach by
illustrative examples.
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1 Introduction

In the qualitative theory of evolution equations, the exponential dichotomy
is one of the most important asymptotic properties, and in the last years it
was treated from various perspectives (see [1] –[16]).
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The notion of exponential dichotomy for linear differential equations was
introduced by O. Perron in 1930. The classic paper [12] of Perron served as
a starting point for many works on the stability theory.

The property of exponential dichotomy for linear differential equations
has gained prominence since the appereance of two fundamental monographs
due to J.L. Daleckĭi and M.G. Krĕin (see [6]) and J.L. Massera and J.J.
Schäffer (see [8]).

The notion of linear skew-product semiflow arises naturally when one
considers the linearization along an invariant manifold of a dynamical system
generated by a nonlinear differential equation (see [14], Chapter 4).

Diverse and important concepts of dichotomy for linear skew-product
semiflows were studied by C. Chicone and Y. Latushkin in [4], S.N. Chow
and H. Leiva in [5], R.J. Sacker and G.R. Sell in [13].

The particular cases of exponential stability and exponential instability
for linear skew-product semiflows have been considered in [9] and [10] .

In this paper we consider the general case of skew-evolution semiflows
(introduced in our paper [11]) as a natural generalization of skew-product
semiflows. The major difference consists in the fact that a skew-evolution
semiflow depends on three variables t, t0 and x, while the classic concept
of skew-product semiflow depends only on t and x, thus justifying a further
study of asymptotic behaviors for skew-evolution semiflows in a more general
case, the nonuniform setting (relative to the third variable t0).

The aim of this paper is to define and exemplify various concepts of di-
chotomies as exponential dichotomy, Barreira-Valls exponential dichotomy,
uniform exponential dichotomy, polynomial dichotomy, Barreira-Valls poly-
nomial dichotomy and uniform polynomial dichotomy, and to emphasize con-
nections between them. Thus we consider generalizations of some asymptotic
properties for differential equations studied by L. Barreira and C. Valls in
[1], [2] and [3].

Some results concerning the properties of stability and instability for
skew-evolution semiflows were published by us in [11], in [15] and in [16].

The obtained results clarify the difference between uniform dichotomies
and nonuniform dichotomies.
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2 Skew-evolution semiflows

Let us consider a metric space (X, d), a Banach space V and B(V ) the
space of all bounded linear operators from V into itself. I is the identity
operator on V . We denote Y = X × V and we consider the following sets
∆ =

{
(t, t0) ∈ R2

+ : t ≥ t0
}
and T =

{
(t, s, t0) ∈ R3

+ : t ≥ s ≥ t0 ≥ 0
}
.

Definition 1. A mapping ϕ : ∆ ×X → X is called evolution semiflow on
X if the following relations hold:

(s1) ϕ(t, t, x) = x, ∀(t, x) ∈ R+ ×X;
(s2) ϕ(t, s, ϕ(s, t0, x)) = ϕ(t, t0, x), ∀(t, s), (s, t0) ∈ ∆,x ∈ X.

Definition 2. A mapping Φ : ∆×X → B(V ) is called evolution cocycle over
an evolution semiflow ϕ if:

(c1) Φ(t, t, x) = I, ∀(t, x) ∈ R+ ×X;
(c2) Φ(t, s, ϕ(s, t0, x))Φ(s, t0, x) = Φ(t, t0, x), ∀(t, s), (s, t0) ∈ ∆,x ∈ X.

Definition 3. The mapping C : ∆× Y → Y defined by the relation

C(t, s, x, v) = (Φ(t, s, x)v, ϕ(t, s, x)),

where Φ is an evolution cocycle over an evolution semiflow ϕ, is called skew-
evolution semiflow on Y .

Remark 1. The concept of skew-evolution semiflow generalizes the notion
of skew-product semiflow, considered and studied by M. Megan, A.L. Sasu
and B. Sasu in [9] and [10], where the mappings ϕ and Φ do not depend on
the variables t ≥ 0 and x ∈ X.

Example 1. Let E : ∆ → B(V ) be an evolution operator on V . If there
exists P : X → B(V ) with the properties

P (x)2 = P (x) and P (x)E(t, s) = E(t, s)P (x),

for all (t, s, x) ∈ ∆×X, then C = (Φ,ϕ), where

Φ(t, s, x) = P (x)E(t, s), ϕ(t, s, x) = x

is a linear skew-evolution semiflow.
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Example 2. Let us consider a skew-evolution semiflow C = (Φ,ϕ) and a
parameter λ ∈ R. We define the mapping

Φλ : ∆×X → B(V ), Φλ(t, t0, x) = eλ(t−t0)Φ(t, t0, x).

One can remark that Cλ = (Φλ, ϕ) also satisfies the conditions of Definition
3, being called λ-shifted skew-evolution semiflow on Y .

Let us consider on the Banach space V the Cauchy problem{
v̇(t) = Av(t), t > 0
v(0) = v0

where A is an operator which generates a C0-semigroup S = {S(t)}t≥0.
Then Φ(t, s, x)v = S(t − s)v, where t ≥ s ≥ 0, (x, v) ∈ Y , defines an
evolution cocycle. Moreover, the mapping defined by Φλ : ∆ ×X → B(V ),
Φλ(t, s, x)v = Sλ(t−s)v, where Sλ = {Sλ(t)}t≥0 is generated by the operator
A− λI, is also an evolution cocycle.

Example 3. Let f : R+ → R∗+ be a decreasing function with the property
that there exists lim

t→∞
f(t) = a > 0. We denote by C = C(R+,R+) the set

of all continuous functions x : R+ → R+, endowed with the topology of
uniform convergence on compact subsets of R+, metrizable by means of the
distance

d(x, y) =
∞∑
n=1

1
2n

dn(x, y)
1 + dn(x, y)

, where dn(x, y) = sup
t∈[0,n]

|x(t)− y(t)|.

If x ∈ C, then, for all t ∈ R+, we denote xt(s) = x(t + s), xt ∈ C. Let
X be the closure in C of the set {ft, t ∈ R+}. It follows that (X, d) is a
metric space. The mapping ϕ : ∆×X → X, ϕ(t, s, x) = xt−s is an evolution
semiflow on X.

We consider V = R2, with the norm ‖v‖ = |v1| + |v2|, v = (v1, v2) ∈ V .
If u : R+ → R∗+, then the mapping Φu : ∆×X → B(V ) defined by

Φu(t, s, x)v =
(
u(s)
u(t)

e−
R t
s x(τ−s)dτv1,

u(t)
u(s)

e
R t
s x(τ−s)dτv2

)
,

is an evolution cocycle over ϕ and C = (Φu, ϕ) is a skew-evolution semiflow.
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Example 4. Let X be a metric space, ϕ an evolution semiflow on X and
A : X → B(V ) a continuous mapping, where V is a Banach space. If Φ(t, s, x)
is the solution of the Cauchy problem{

v′(t) = A(ϕ(t, s, x))v(t), t > s
v(s) = x,

then C = (Φ,ϕ) is a linear skew-evolution semiflow.

Other examples of skew-evolution semiflows are given in [15].

3 Exponential dichotomy

In this section we define three concepts of exponential dichotomy for skew-
evolution semiflows. We will establish connections between these notions and
we will emphasize that they are not equivalent.

Let C : ∆ × Y → Y , C(t, s, x, v) = (Φ(t, s, x)v, ϕ(t, s, x)) be a skew-
evolution semiflow on Y .

We recall that a mapping P : X → B(V ) with the property

P (x)2 = P (x), ∀x ∈ X

is called projections family on V .
The mapping Q : X → B(V ) defined by Q(x) = I−P (x) is a projections

family, which is called the complementary of P .

Definition 4. A projections family P : X → B(V ) is said to be compatible
with the skew-evolution semiflow C = (Φ,ϕ) iff:

Φ(t, s, x)P (x) = P (ϕ(t, s, x))Φ(t, s, x),

for all (t, s, x) ∈ ∆×X.

In what follows, if P is a given projections family, we will denote

ΦP (t, s, x) = Φ(t, s, x)P (x),

for every (t, s, x) ∈ ∆×X.
We remark that

(i) ΦP (t, t, x) = P (x), for all (t, x) ∈ R+ ×X;
(ii) ΦP (t, s, ϕ(s, t0, x))ΦP (s, t0, x) = ΦP (t, t0, x), for all (t, s, t0, x) ∈ T ×X.



130 Mihail Megan, Codruţa Stoica

Definition 5. The skew-evolution semiflow C = (Φ,ϕ) is exponentially di-
chotomic relative to the projections family P : X → B(V ) (and we de-
note P.e.d.) iff there exist a constant α > 0 and a nondecreasing mapping
N : R+ → [1,∞) such that:

(ed1) eα(t−s) ‖ΦP (t, t0, x0)v0‖ ≤ N(s) ‖ΦP (s, t0, x0)v0‖ ;
(ed2) eα(t−s) ‖ΦQ(s, t0, x0)v0‖ ≤ N(t) ‖ΦQ(t, t0, x0)v0‖ ,

for all (t, s, t0, x0, v0) ∈ T × Y , where Q is the complementary of P .

Remark 2. The skew-evolution semiflow C = (Φ,ϕ) is P.e.d. if and only if
there exist a constant α > 0 and a nondecreasing mapping N : R+ → [1,∞)
such that:

(ed′1) e
α(t−s) ‖ΦP (t, s, x)v‖ ≤ N(s) ‖P (x)v‖ ;

(ed′2) e
α(t−s) ‖Q(x)v‖ ≤ N(t) ‖ΦQ(t, s, x)v‖ ,

for all for all (t, s, x, v) ∈ ∆× Y .

A particular case of P.e.d. is given by

Definition 6. The skew-evolution semiflow C = (ϕ,Φ) is called Barreira-
Valls exponentially dichotomic relative to the projections family P : X →
B(V ) (and we denote P.B.V.e.d.) iff there exist N ≥ 1, α > 0 and β ≥ 0
such that:

(BV ed1) eα(t−s) ‖ΦP (t, t0, x0)v0‖ ≤ Neβs ‖ΦP (s, t0, x0)v0‖;
(BV ed2) eα(t−s) ‖ΦQ(s, t0, x0)v0‖ ≤ Neβt ‖ΦQ(t, t0, x0)v0‖ ,

for all (t, s, t0, x0, v0) ∈ T × Y .

Remark 3. The skew-evolution semiflow C = (Φ,ϕ) is P.B.V.e.d. if and
only if there exist N ≥ 1, α > 0 and β ≥ 0 such that:

(BV ed′1) e
α(t−s) ‖ΦP (t, s, x)v‖ ≤ Neβs ‖P (x)v‖

(BV ed′2) e
α(t−s) ‖Q(x)v‖ ≤ Neβt ‖ΦQ(t, s, x)v‖ ,

for all for all (t, s, x, v) ∈ ∆× Y .

Remark 4. It is obvious that if C is P.B.V.e.d., then it is P.e.d.

The converse is not true, fact illustrated by

Example 5. We consider the metric space (X, d), the Banach space V and
the evolution semiflow ϕ defined as in Example 3. Let us consider the
complementary projections families P,Q : X → B(V ), P (x)v = (v1, 0),
Q(x)v = (0, v2), for all x ∈ X and all v = (v1, v2) ∈ V , compatible with C.
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Let g : R+ → [1,∞) be a continuous function with

g(n) = en·2
2n

and g
(
n+

1
22n

)
= e4, for all n ∈ N.

The mapping Φ : ∆×X → B(V ), defined by

Φ(t, s, x)v =
(
g(s)
g(t)

e−(t−s)−
R t
s x(τ−s)dτv1,

g(s)
g(t)

et−s+
R t
s x(τ−s)dτv2

)
is an evolution cocycle over the evolution semiflow ϕ.

We observe that for α = 1 + a we have that

eα(t−s) ‖ΦP (t, s, x)v‖ ≤ g(s) ‖P (x)v‖

and

eα(t−s) ‖Q(x)v‖ ≤ g(s)eα(t−s) ‖Q(x)v‖ ≤ g(t) ‖ΦQ(t, s, x)v‖ ,

for all (t, s, x, v) ∈ ∆× Y. Thus, conditions (ed′1) and (ed′2) are satisfied for

α = 1 + a and N(t) = sup
s∈[0,t]

g(s)

and, hence, C = (Φ,ϕ) is P.e.d.
If we suppose that C is P.B.V.e.d., then there exist N ≥ 1, α > 0 and

β ≥ 0 such that
g(s)eαt ≤ Ng(t)eβs+t−s+

R t
s x(τ−s)dτ ,

for all (t, s, x) ∈ ∆×X.
From here, for t = n+

1
22n

and s = n, it follows that

en(22n+α−β) ≤ 81Ne
1−α+f(0)

22n ,

which, for n→∞, implies a contradiction.

Another particular case of P.e.d. is introduced by

Definition 7. The skew-evolution semiflow C = (Φ,ϕ) is uniformly expo-
nentially dichotomic relative to the projections family P : X → B(V ) (and
we denote P.u.e.d.) iff there exist some constants N ≥ 1 and α > 0 such
that:

(ued1) eα(t−s) ‖ΦP (t, t0, x0)v0‖ ≤ N ‖ΦP (s, t0, x0)v0‖ ;
(ued2) eα(t−s) ‖ΦQ(s, t0, x0)v0‖ ≤ N ‖ΦQ(t, t0, x0)v0‖ ,

for all (t, s, t0, x0, v0) ∈ T × Y .
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Remark 5. The skew-evolution semiflow C = (Φ,ϕ) is P.u.e.d. if and only
if there exist some constants N ≥ 1 and α > 0 such that:

(ued′1) e
α(t−s) ‖ΦP (t, s, x)v‖ ≤ N ‖P (x)v‖ ;

(ued′2) e
α(t−s) ‖Q(x)v‖ ≤ N ‖ΦQ(t, s, x)v‖ ,

for all for all (t, s, x, v) ∈ ∆× Y .

Remark 6. It is obvious that if C is P.u.e.d., then it is P.B.V.e.d.

The following example shows that the converse implication is not valid.

Example 6. We consider the metric space (X, d), the Banach space V and
the evolution semiflow ϕ defined as in Example 3. Let us consider the
complementary projections families P,Q : X → B(V ), P (x)v = (v1, 0),
Q(x)v = (0, v2), for all x ∈ X and all v = (v1, v2) ∈ V , compatible with C.

The mapping Φ : ∆×X → B(V ), defined by

Φ(t, s, x)v =

=
(
v1e

t sin t−s sin s−2(t−s)−
R t
s x(τ−s)dτ , v2e

3(t−s)−2t cos t+2s cos s+
R t
s x(τ−s)dτ

)
is an evolution cocycle over the evolution semiflow ϕ.

We observe that for α = 1 + a we have that

eα(t−s) ‖ΦP (t, s, x)v‖ ≤ eα(t−s)e−(1+a)te(3+a)s ‖P (x)v‖ ≤ e2s ‖P (x)v‖ ,

for all (t, s, x, v) ∈ ∆× Y. Similarly,

eα(t−s) ‖Q(x)v‖ ≤ eα(t−s)e−3t+3s+2t cos t−2s cos s−
R t
s x(τ−s)dτ ‖ΦQ(t, s, x)v‖

≤ ‖ΦQ(t, s, x)v‖ ,

for all (t, s, x, v) ∈ ∆×Y. Thus, conditions (BV ed′1) and (BV ed′2) are satisfied
for

α = 1 + a, N = 1 and β = min{0, 2}.

This shows that C = (Φ,ϕ) is P.B.V.e.d.
If we suppose that C is P.u.e.d., then there exist N > 1 and α > 0 such

that
eα(t−s)et sin t−s sin s−2t+2s−

R t
s x(τ−s)dτ ≤ N,
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for all (t, s) ∈ ∆. In particular, for t = 2nπ +
π

2
and s = 2nπ, we obtain

2nπ + (α− 1)
π

2
≤ lnN

∫ 2nπ+π
2

2nπ
x(τ − 2nπ)dτ =

= lnN
∫ π

2

0
x(u)du ≤ f

(π
2

)
lnN,

which, for n→∞, leads to a contradiction.

4 Polynomial dichotomy

Let C : ∆×Y → Y , C(t, s, x, v) = (Φ(t, s, x)v, ϕ(t, s, x)) be a skew-evolution
semiflow on Y and let P : X → B(V ) be a projections family on V , com-
patible with C, and Q : X → B(V ) the complementary projections family of
P .

Definition 8. The skew-evolution semiflow C = (Φ,ϕ) is polynomially di-
chotomic with respect to P (and we denote P.p.d.) iff there exist α > 0,
t1 > 0 and a nondecreasing function N : R+ → [1,∞) such that:

(pd1) tα ‖ΦP (t, t0, x0)v0‖ ≤ N(s)sα ‖ΦP (s, t0, x0)v0‖ ;
(pd2) tα ‖ΦQ(s, t0, x0)v0‖ ≤ N(t)sα ‖ΦQ(t, t0, x0)v0‖ ,

for all (t, s, t0, x0, v0) ∈ T × Y with t0 ≥ t1.

Remark 7. The skew-evolution semiflow C = (Φ,ϕ) is P.p.d. if and only
if there exist α > 0, t0 > 0 and a nondecreasing function N : R+ → [1,∞)
such that:

(pd′1) t
α ‖ΦP (t, s, x)v‖ ≤ N(s)sα ‖P (x)v‖ ;

(pd′2) t
α ‖Q(x)v‖ ≤ N(t)sα ‖ΦQ(t, s, x)v‖ ,

for all for all (t, s, x, v) ∈ ∆× Y with s ≥ t0.

Example 7. We consider the metric space (X, d), the Banach space V and
the evolution semiflow ϕ defined as in Example 3. Let us consider the
complementary projections families P,Q : X → B(V ), P (x)v = (v1, 0),
Q(x)v = (0, v2), for all x ∈ X and all v = (v1, v2) ∈ V , compatible with C.

The mapping Φ : ∆×X → B(V ), defined by

Φ(t, s, x)v =
(
s+ 1
t+ 1

e−
R t
s x(τ−s)dτv1,

t+ 1
s+ 1

e
R t
s x(τ−s)dτv2

)
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is an evolution cocycle with

ta ‖ΦP (t, s, x)v‖ ≤ ta(s+ 1)e−a(t−s)

t+ 1
‖P (x)v‖ ≤ sa ‖P (x)v‖

and

ta ‖Q(x)v‖ ≤ saea(t−s) ‖Q(x)v‖ ≤ sa(t+ 1)
s+ 1

e
R t
s x(τ−s)dτ ≤ sa ‖ΦQ(t, s, x)v‖ ,

for all t ≥ s ≥ 1 and all (x, v) ∈ Y. It follows that C = (Φ,ϕ) is P.p.d.

Proposition 1. If C=(Φ,ϕ) is a P–exponentially dichotomic skew-evolution
semiflow, then it is P–polynomially dichotomic.

Proof. If C is P.e.d., then there exist α > 0 and N : R+ → [1,∞) such that
conditions (ed′1) and (ed′2) are satisfied.

We observe that the function

u : [1,∞)→ (0,∞), u(t) =
et

t

is nondecreasing on [1,∞) and, hence,

tα

sα
‖ΦP (t, s, x)v‖ ≤ eα(t−s) ‖ΦP (t, s, x)v‖ ≤ N(s) ‖P (x)v‖

and
tα

sα
‖Q(x)v‖ ≤ eα(t−s) ‖Q(x)v‖ ≤ N(t) ‖ΦQ(t, s, x)v‖ ,

for all t ≥ s ≥ t0 ≥ 1 and all (x, v) ∈ Y .
Finally, it results that conditions (pd′1) and (pd′2) are satisfied, which

proves that C is P.p.d.

The converse of the preceding proposition is not valid. This fact is illus-
trated by

Example 8. Let X = R+ and V = R2. The mapping ϕ : ∆ × X → X,
defined by ϕ(t, s, x) = x is an evolution semiflow on R+.

We define the evolution cocycle Φ : ∆×X → B(V ) by

Φ(t, s, x)(v1, v2) =
(
s+ 1
t+ 1

v1,
t+ 1
s+ 1

v2

)
,
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with (t, s, x, v) ∈ ∆ × Y. Then P : X → B(V ), P (x)(v1, v2) = (v1, 0) is a
projections family which is compatible with the skew-evolution semiflow C =
(Φ,ϕ). Q denotes the complementary projections family of P . Furthermore

t ‖ΦP (t, s, x)v‖ ≤ s2 ‖P (x)v‖

and
t ‖Q(x)v‖ ≤ ts ‖ΦQ(t, s, x)v‖

for all (t, s, x, v) ∈ ∆× Y.
Hence, the conditions (pd′1) and (pd′2) are satisfied for

α = 1, t0 = 1 and N(t) = t.

Thus, C is P.p.d.
If we suppose that C is P.e.d., then there exist α > 0 and a mapping

N : R+ → [1,∞) such that

(s+ 1)eα(t−s) ≤ (t+ 1)N(s),

for all t ≥ s ≥ 0. From here, for s fixed and t→∞, we obtain a contradiction.

A particular case of polynomial dichotomy is introduced by

Definition 9. The skew-evolution semiflow C = (Φ,ϕ) is polynomially di-
chotomic in the sense Barreira-Valls with respect to the projections family
P : X → B(V ) (and we denote P.B.V.p.d.) iff there exist N ≥ 1, t1 > 0,
α > 0 and β ≥ 0 such that:

(BV pd1) tα ‖ΦP (t, t0, x0)v0‖ ≤ Nsα+β ‖ΦP (s, t0, x0)v0‖ ;
(BV pd2) tα ‖ΦQ(s, t0, x0)v0‖ ≤ Nsαtβ ‖ΦQ(t, t0, x0)v0‖ ,

for all (t, s, t0, x0, v0) ∈ T × Y with t0 ≥ t1.

Remark 8. The skew-evolution semiflow C = (Φ,ϕ) is P.B.V.p.d. if and
only if there exist N ≥ 1, t0 > 0, α > 0 and β ≥ 0 such that:

(BV pd′1) t
α ‖ΦP (t, s, x)v‖ ≤ Nsα+β ‖P (x)v‖ ;

(BV pd′2) t
α ‖Q(x)v‖ ≤ Nsαtβ ‖ΦQ(t, s, x)v‖ ,

for all for all (t, s, x, v) ∈ ∆× Y with s ≥ t0.

Remark 9. It is obvious that if C is P.B.V.p.d. then it is P.p.d.

The following example shows that the converse is not true.
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Example 9. We consider the skew-evolution semiflow C = (Φ,ϕ) given in
Example 3 and the complementary projections families P,Q : X → B(V ),
P (x)v = (v1, 0), Q(x)v = (0, v2), for all x ∈ X and all v = (v1, v2) ∈ V ,
compatible with C. Because C is P.e.d., then it is also P.p.d.

If we suppose that C is P.B.V.p.d., then there exist N ≥ 1, t0 > 0, α > 0
and β ≥ 0 such that

tαg(s) ≤ Ng(t)sα+βet−s+
R t−s
0 x(u)du,

for all t ≥ s ≥ t0. From here, for t = n +
1

22n
and s = n → ∞, we obtain a

contradiction.

Another particular case of polynomial dichotomy is given by

Definition 10. The skew-evolution semiflow C = (Φ,ϕ) is uniformly poly-
nomially dichotomic in rapport with the projections family P : X → B(V )
(and we denote P.u.p.d.) iff there exist N ≥ 1, α > 0 and t1 > 0 such that:

(upd1) tα ‖ΦP (t, t0, x0)v0‖ ≤ Nsα ‖ΦP (s, t0, x0)v0‖ ;
(upd2) tα ‖ΦQ(s, t0, x0)v0‖ ≤ Nsα ‖ΦQ(t, t0, x0)v0‖ ,

for all (t, s, t0, x0, v0) ∈ T × Y with t0 ≥ t1.

Remark 10. The skew-evolution semiflow C = (Φ,ϕ) is P.u.p.d. if and only
if there exist N ≥ 1, α > 0 and t0 > 0 such that:

(upd′1) t
α ‖ΦP (t, s, x)v‖ ≤ Nsα ‖P (x)v‖ ;

(upd′2) t
α ‖Q(x)v‖ ≤ Nsα ‖ΦQ(t, s, x)v‖ ,

for all for all (t, s, x, v) ∈ ∆× Y with s ≥ t0.

Remark 11. If C is P.u.p.d. then it is P.B.V.p.d.

The reciprocal is not valid, fact illustrated by

Example 10. We consider the metric space (X, d), the Banach space V
and the evolution semiflow ϕ defined as in Example 3. Let us consider the
complementary projections families P,Q : X → B(V ), P (x)v = (v1, 0),
Q(x)v = (0, v2), for all x ∈ X and all v = (v1, v2) ∈ V , compatible with C.

We consider the function

g : R+ → R, g(t) =
(t+ 1)3

(t+ 1)sin ln(t+1)
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and the evolution cocycle Φ : ∆×X → B(V ) over ϕ defined by

Φ(t, s, x)v =
(
g(s)
g(t)

v1,
g(t)
g(s)

v2

)
.

Then

t ‖ΦP (t, s, x)v‖ ≤ t(s+ 1)4

(t+ 1)2
‖P (x)v‖ ≤ s(s+ 1)2 ‖P (x)v‖ ≤ 4s3 ‖P (x)v‖

and

t ‖Q(x)v‖ ≤ t(t+ 1)2 ‖Q(x)v‖ ≤ s(t+ 1)4

(s+ 1)2
‖Q(x)v‖

≤ s ‖ΦQ(t, s, x)v‖ ≤ 4st2 ‖ΦQ(t, s, x)v‖ ,

for all t ≥ s ≥ 1 and all (x, v) ∈ Y. Thus, the conditions (BV pd′1) and
(BV pd′2) are satisfied for

α = 1, β = 2, N = 4 and t0 = 1.

If we suppose that C is P.u.p.d., then there are N ≥ 1, α > 0 and t0 > 0
such that

tα(s+ 1)3(t+ 1)sin ln(t+1) ≤ Nsα(t+ 1)3(s+ 1)sin ln(s+1),

for all t ≥ s ≥ t0. From here, for t = e2nπ+π
2 − 1 and s = e2nπ−

π
2 − 1 and

n→∞, we obtain a contradiction.

Proposition 2. If the skew-evolution semiflow C = (Φ,ϕ) is uniformly ex-
ponentially dichotomic with respect to the projections family P : X → B(V ),
then C is uniformly polynomially dichotomic with respect to P .

Proof. If C = (Φ,ϕ) is P.u.e.d., then there are N ≥ 1 and α > 0 such
that the conditions (ued1) and (ued2) are satisfied. Using the inequalities

t+ 1 ≤ et, e
s

s
≤ et

t
and

t

s
≤ t− s+ 1, for t ≥ s ≥ 1,

we obtain

tα ‖ΦP (t, s, x)v‖ ≤ Ntαe−α(t−s) ‖P (x)v‖ ≤ Ntα ‖P (x)v‖
(1 + t− s)α

≤ Nsα ‖P (x)v‖
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and

tα‖Q(x)v‖ ≤ Ntαe−α(t−s) ‖ΦQ(t, s, x)v‖ ≤ Nsα ‖ΦQ(t, s, x)v‖ ,

for all (t, s, x, v) ∈ ∆× Y with s ≥ t0 = 1.
Finally, we obtain that C is P.u.p.d.

Now, we give an example which shows that the converse of the preceding
result is not valid.

Example 11. We consider the metric space (X, d), the Banach space V
and the evolution semiflow ϕ defined as in Example 3. Let us consider the
complementary projections families P,Q : X → B(V ), P (x)v = (v1, 0),
Q(x)v = (0, v2), for all x ∈ X and all v = (v1, v2) ∈ V , compatible with C.

We consider the evolution cocycle Φ : ∆×X → B(V ), defined by

Φ(t, s, x)v =
(
s2 + 1
t2 + 1

e−
R t
s x(τ−s)dτv1,

t2 + 1
s2 + 1

e
R t
s x(τ−s)dτv2

)
,

for (t, s, x) ∈ ∆×X and v = (v1, v2) ∈ V = R2. Using the inequalities

s2 + 1
t2 + 1

≤ s

t
and

es

et
≤ s

t
, for t ≥ s ≥ 1,

we obtain

tα ‖ΦP (t, s, x)v‖ ≤ tα(s2 + 1)
t2 + 1

e−a(t−s) ‖P (x)v‖

≤ tα · s
t

(s
t

)a
= sα ‖P (x)v‖ ,

for all t ≥ s ≥ t0 = 1 and (x, v) ∈ Y , where α = 1 + a.
Similarly,

tα ‖Q(x)v‖ = t · ta ≤ tsaeate−as ‖Q(x)v‖ ≤ t

s
sαea(t−s) ‖Q(x)v‖

≤ sα(t2 + 1)
s2 + 1

ea(t−s) ‖Q(x)v‖ ≤ sα ‖ΦQ(t, s, x)v‖ ,

for all t ≥ s ≥ t0 = 1 and (x, v) ∈ Y , with α = 1 + a. Thus, C is P.u.p.d.
If we suppose that C is P.u.e.d., then there exist N ≥ 1, α > 0 and t0 > 0

such that
(s2 + 1)eα(t−s) ≤ N(t2 + 1)e−a(t−s),

for all t ≥ s ≥ t0. Then, for s = t0 and t → ∞, we obtain a contradiction,
which can be eliminated only if C is not P.u.e.d.
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