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Abstract
We consider a multivalued equation of the form Ay + ∂ϕ(y) 3 f

in a real Hilbert space, where A is a linear operator and ∂ϕ repre-
sents the (Clarke) subdifferential of the function ϕ. We prove existence
and uniqueness results of the solution by using the control variational
method. The main idea in this method is to minimize the energy func-
tional associated to the nonlinear equation by arguments of optimal
control theory. Then we consider a general mathematical model de-
scribing the contact between a linearly elastic body and an obstacle
which leads to a variational formulation as above, for the displacement
field. We apply the abstract existence and uniqueness results to prove
the unique weak solvability of the corresponding contact problem. Fi-
nally, we present examples of contact and friction laws for which our
results work.
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1 Introduction

The control variational method was introduced in [1, 18] in the study of
differential equations. A comprehensive presentation of this new variational
method, together with various examples and applications, may be found in
the monograph [10]. Its use in the study of various models which describe
the equilibrium of an Euler-Bernoulli beam in contact with an obstacle was
presented in [17]. The main new idea in this method is to perform the
minimization of the energy of the system via the optimal control theory,
which represents an extension of the arguments via the calculus of variations,
used in the classical variational method. This new general framework is
very flexible and may offer several different solutions for the same problem,
as shown in [20]. Moreover, it is relevant both from the theoretical and
the numerical point of view. In particular, in many applications, the control
variational method replaces the solution of nonlinear differential equations of
order four by the solution of linear equations of lower order and, in addition,
it provides regularity results, as shown in [10] and the references therein.

Phenomena of contact between deformable bodies abound in industry
and everyday life. Contact of braking pads with wheels, tires with roads,
pistons with skirts are just a few simple examples. Common industrial pro-
cesses such as metal forming and metal extrusion involve contact evolutions.
Owing to their inherent complexity, contact phenomena lead to mathemat-
ical models expressed in terms of strongly nonlinear elliptic or evolutionary
equations.

Considerable progress has been achieved recently in modeling, mathe-
matical analysis and numerical simulations of contact processes and, as a
result, a general mathematical theory of Contact Mechanics is currently
emerging. It is concerned with the mathematical structures which under-
lie general contact problems with different constitutive laws, i.e. materials,
various geometries and different contact conditions. Its aim is to provide a
sound, clear and rigorous background to the constructions of models for con-
tact, proving existence, uniqueness and regularity results, assigning precise
meaning to solutions, among others. To this end, it operates with vari-
ous mathematical concepts which include variational and hemivariational
inequalities and multivalued inclusions, as well. The variational analysis of
contact problems, including existence and uniqueness results, can be found
in the monographs [3, 4, 5, 6, 11, 12, 15, 16]. Computational methods for
problems in Contact Mechanics can be found in the works [7, 21, 23] and in
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the extensive lists of references therein. The state of the art in the field can
also be found in the proceedings [8, 13, 22] and in the special issue [14].

The aim of this paper is twofold. The first one is to illustrate the use
of the control variational method in the study of nonlinear equations with
multivalued operators in a Hilbert space and to obtain existence and unique-
ness results of the solution. The second one is to apply these results in the
study of mathematical models which describe the frictional or frictionless
contact between a linearly elastic body and a foundation. In our examples
the contact is either bilateral or is modeled with the Signorini condition or
with the normal compliance condition. Friction is modeled with versions of
Coulomb’s law, including Tresca’s law, or with a power-law. In a variational
form, the models lead to a nonlinear equation for the displacement field.
Thus, we apply the abstract existence and uniqueness results to prove the
unique weak solvability of the corresponding contact problems. The abstract
results obtained by using of the control variational method and their use in
the study of contact problems with linearly elastic materials represent the
main trait of novelty of the present paper.

The paper is structured as follows. In Section 2 we present our existence
and uniqueness results in the study of nonlinear equations with multivalued
operators. In Section 3 we use these results in the study of a general mathe-
matical model which describe the frictional contact of a linearly elastic body
with an obstacle. Then, we present examples of contact and friction laws for
which our results work.

2 Abstract existence and uniqueness results

In this section we apply the control variational method in the study of mul-
tivalued equations in abstract Hilbert spaces. We denote by V and H two
real Hilbert spaces with norms ‖ · ‖V and ‖ · ‖H , respectively. The dual
space of V is denoted by V ∗, 〈·, ·〉V ∗×V will represent the duality pairing of
between V ∗ and V and notation 2V

∗
will be used to denote the set of parts

of V ∗. Moreover, everywhere in this section we assume that V ⊂ H ⊂ V ∗

with compact and dense embeddings.

Let A : V → V ∗ be a linear operator and ϕ : V → IR be a locally Lipschitz
function. We recall that the generalized directional derivative of ϕ at x ∈ X
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in the direction v ∈ V , denoted ϕ0(x; v), is defined by

ϕ0(x; v) = lim sup
y→x, λ↓0

ϕ(y + λv)− ϕ(y)
λ

, (1)

see [2] for details. Also, the generalized gradient of ϕ at x, denoted ∂ϕ(x),
is a subset of a dual space V ∗ given by

∂ϕ(x) = { ζ ∈ V ∗ | ϕ0(x; v) ≥ 〈ζ, v〉V ∗×V for all v ∈ X }, (2)

and the application ∂ϕ : V → 2V
∗

is called the Clarke subdifferential of ϕ.
We start with the study of the nonlinear stationary equation

Ay + ∂ϕ(y) 3 f (3)

where ∂ϕ is the Clarke subdifferential of ϕ and f ∈ V ∗. To this end we
assume that

A is a linear continuous symmetric and coercive operator i.e. (4)
there exists m > 0 such that 〈Ax, x〉V ∗×V ≥ m‖x‖2V ∀x ∈ V.

There exists c1 > 0, α ∈ (0, 2), β ∈ IR and c2 > 0 such that (5)
ϕ(x) ≥ −c1 ‖x‖αV + β ∀x ∈ V which satisfies ‖x‖V ≥ c2 > 0.

ϕ : V → R is lower semicontinuous in the topology of H. (6)

Note that the assumptions on ϕ are very general and a large number
of hemivariational inequalities can be cast on the form (3), see for instance
[9, 12] and the references therein. Moreover, using (13) it is easy to see that
if ϕ is a convex function, then the multivalued equation (3) is equivalent to
the elliptic variational inequality

〈Ay, v − y〉V ∗×V + ϕ(v)− ϕ(y) ≥ 〈f, v − y〉V ∗×V ∀ v ∈ V. (7)

Note also that the operator A may be nonlinear as well, of monotone type,
as the p-Laplacian, for instance. Nevertheless, in this paper we restrict
ourselves to the case of linear operators, as stated in (4). Finally, note that
it is possible to take α = 2 in the subquadratic descent hypothesis (5), if
the constant c1 > 0 is dominated by the coercivity constant of A, that is if
m > c1.
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Denote by g ∈ V the unique solution of Ag = f , guaranteed by (4). The
control variational method in the study of (3) associates to this nonlinear
equation the following optimal control problem:

min
y∈V

{
〈u, y〉V ∗×V − 3 〈u, g〉V ∗×V + 2ϕ(y)

}
, (8)

Ay = u− f. (9)

Note that problem (8)–(9) “decouples” in the cost (8) the nonlinear part
from equation (3) and it provides the solution of (3) in a constructive simple
way. Moreover, no constraints are imposed in solving problem (8)–(9). In
fact, in order to solve this problem, we need only the inverse of the operator
A. In practice, the solution of the control problem can be obtained by using
an iterative gradient method.

The connection between the optimal control problem (8)–(9) and the
nonlinear equation (3) is given by the following result.

Theorem 1. Assume that (4)–(6) hold. Then problem (8)–(9) has at least
one optimal pair [y∗, u∗] ∈ V × V ∗ and y∗ is a solution of (3). Moreover, if
the solution of (3) is unique, then there exists a unique optimal pair which
solves (8)–(9).

Proof. We use (9) and substitute u = Ay + f in (8). Then, the optimal
control problem becomes

min
y∈V

{
〈Ay, y〉V ∗×V + 〈f, y〉V ∗×V − 3 〈Ay, g〉V ∗×V − 3 〈f, g〉V ∗×V + 2ϕ(y)

}
.

(10)
We use assumptions (4)–(6) to see that any minimizing sequence for the
functional in (10) is relatively compact in H and weakly convergent in V .
By the lower semicontinuity in H of ϕ, this implies that (10) has at least
one solution y∗ ∈ V . Next, the optimal control is obtained by using (9),
i.e. u∗ = Ay∗ + f . We conclude from above that (8)–(9) has at least one
optimal pair [y∗, u∗]. We also note that, since ϕ is not assumed to be a convex
function, the control problem (8)–(9) could have more than one optimal pair.

Consider now admissible variations around [y∗, u∗] of the form [y∗ +
λξ, u∗ + λω] where λ ∈ IR+ and [ξ, ω] ∈ V × V ∗ satisfies

Aξ = ω. (11)



104 Mircea Sofonea, Dan Tiba

We obtain

〈u∗, y∗〉V ∗×V − 3 〈u∗, g〉V ∗×V + 2ϕ(y∗)
≤ 〈u∗ + λω, y∗ + λξ〉V ∗×V − 3 〈u∗ + λω, g〉V ∗×V + 2ϕ(y∗ + λξ).

We divide this inequality by λ > 0 and take the limit as λ→ 0 to find that

0 ≤ 〈ω, y∗〉V ∗×V + 〈u∗, ξ〉V ∗×V − 3 〈ω, g〉V ∗×V + 2ϕ0(y∗; ξ)

where the symbol ϕ0 denotes the generalized directional derivative, see (1).
We use now (9) and (11) to infer

0 ≤ 〈Aξ, y∗〉V ∗×V + 〈Ay∗ + f, ξ〉V ∗×V − 3 〈Aξ, g〉V ∗×V + 2ϕ0(y∗; ξ).

As ξ represents an arbitrary element in V and A is symmetric, the definition
of g ∈ V ∗ and the definition (2) of the Clarke subdifferential shows that
y∗ ∈ V is a solution of (3). This concludes the existence part. The uniqueness
part is obvious and is guaranteed by the unique solvability of the equation
(3). 2

We turn now to the convex case and, to this end, we assume that

ϕ : V → (−∞,+∞] is a convex, proper, (12)
lower semicontinuous function.

We still use the notation ∂ϕ for the subdifferential mapping defined in convex
analysis, i.e.

∂ϕ(x) = { ζ ∈ V ∗ | ϕ(v)− ϕ(x) ≥ 〈ζ, v − x〉V ∗×V for all v ∈ X }. (13)

for all x ∈ V . We replace assumptions (5) and (6) by assumption (12) to
obtain the following result.

Theorem 2. Assume that (4) and (12) hold. Then, both the nonlinear
equation (3) and the optimal control problem (8)–(9) have a unique solution.
Moreover, y∗ ∈ V is the solution of (3) if and only if [y∗, Ay∗ + f ] is the
optimal pair of (8)–(9).

Proof. It follows from (12) that ϕ is bounded by below by an affine mapping.
Then, using arguments of monotonicity and the lower semicontinuity of ϕ it
is easy to see that the nonlinear equation (3) has a unique solution.



The control variational method for contact problems 105

We turn now to the equivalence part. We note that one implication
is proved by arguments similar to those used in the proof of Theorem 1.
Therefore, we have to prove just the converse implication. Thus, we assume
in what follows that y∗ is the unique solution of (3). Then, there exists
ζ∗ ∈ ∂ϕ(y∗) such that Ay∗ + ζ∗ = f , i.e.

ζ∗ −Ag +Ay∗ = 0V ∗ (14)

We take in (14) the inner product with 2ξ, where the pair [ξ, ω] ∈ V × V ∗
satisfies (11) and, as a result, we obtain

0 = 2 〈ζ∗, ξ〉V ∗×V − 2 〈Ag, ξ〉V ∗×V + 2 〈Ay∗, ξ〉V ∗×V (15)
= 2 〈ζ∗, ξ〉V ∗×V − 2 〈ω, g〉V ∗×V + 〈y∗, ω〉V ∗×V

+〈u∗, ξ〉V ∗×V − 〈f, ξ〉V ∗×V .

Consider another admissible pair [y, u] ∈ V × V ∗ for the optimal control
problem (8)–(9). Note that ξ = y∗−y, ω = u∗−u satisfy (11) and, therefore,
the pair [ξ, ω] may be used as test element in (15). Since ϕ is convex, (15)
and (13) yield

0 = 〈u∗, y∗ − y〉V ∗×V + 〈u∗ − u, y∗〉V ∗×V − 3 〈u∗ − u, g〉V ∗×V (16)
+2 〈ζ∗, y∗ − y〉V ∗×V ≥ 〈u∗, y∗ − y〉V ∗×V + 〈u∗ − u, y∗〉V ∗×V
−3 〈u∗ − u, g〉V ∗×V + 2ϕ(y∗)− 2ϕ(y).

Note also that

〈u∗, y〉V ∗×V + 〈u, y∗〉V ∗×V − 〈u∗, y∗〉V ∗×V − 〈u, y〉V ∗×V (17)
= 〈u∗ − u, y − y∗〉V ∗×V = −〈ω, ξ〉V ∗×V = −〈Aξ, ξ〉V ∗×V ≤ 0.

Combining (16) and (17) we infer that [y∗, Ay∗ + f ] is the optimal pair of
(8)–(9), which concludes the proof. 2

Note that Theorem 1 and Theorem 2 provide, implicitly, existence and
uniqueness results for the nonlinear multivalued equation (3), comparable
with other similar results from the literature, see for instance [9], [10] and
the references therein. Moreover, note that the results in Theorem 2 still
hold in the case when ϕ represents the indicator function of a nonempty,
closed, convex subset K ⊂ X. In this case, the control problem includes
implicitly the constraint y ∈ K.
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We provide now some comments on the control variational method de-
scribed in Theorem 1. First, note that minimization of the cost functional
(8) subject to (9) is equivalent with the minimization of the usual energy
associated to (3), as the following computation shows :

〈u, y〉V ∗×V − 3 〈u, g〉V ∗×V + 2ϕ(y)
= 〈Ay + f, y〉V ∗×V − 3 〈Ay + f, g〉V ∗×V + 2ϕ(y)
= 〈Ay, y〉V ∗×V + 〈f, y〉V ∗×V − 3 〈y,Ag〉V×V ∗ − 3 〈f, g〉V ∗×V + 2ϕ(y)
= 〈Ay, y〉V ∗×V + 2ϕ(y)− 2 〈y, f〉V ∗×V − 3 〈f, g〉V ∗×V .

Note that the last term in the formula above has no importance, since it is a
constant. Nevertheless, the advantage of problem (8)–(9) with respect to the
classical variational method is that (9) involves just the “good” operator A.
Also, the optimal control approach described above has the advantage that
it may put into evidence new properties of the solution, see [10, Ch VI] for
examples and details. It is flexible and offers a large variety of choices. For
this reason, performant numerical algorithms are expected to be associated
with the control variational method presented above.

We consider now a version of (3) of the form

A1y +A2y + ∂ϕ(y) 3 f (18)

where ∂ϕ represents the Clarke subdifferential of the locally Lipschitz func-
tion ϕ : V → R, f ∈ V ∗, and A = A1 +A2 is a decomposition of the operator
A such that

A1 : V → V ∗ is a linear continuous symmetric (19)
and coercive operator.

A2 : V → V ∗ is a linear bounded and symmetric operator. (20)

Note that, without additional assumptions on A2, the sum A1 + A2 may
not be coercive. Also, note that it is not possible to include A2 in the sub-
differential operator ∂ϕ since the term 〈A2y, y〉V ∗×V may have a quadratic
decrease, and this would violate condition (5). Therefore, we conclude from
above that the existence and uniqueness result in Theorem 1 cannot be used
to solve the nonlinear multivalued equation (18). For this reason, we solve
(18) by using a different method that we describe in what follows.
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First, we consider a real Hilbert space of controls U with dual U∗ and,
as usual, we denote by 〈·, ·〉U∗×U the duality pairing between U∗ and U .
Assume that

G : V → U∗ is a linear continuous operator, (21)

and denote by G∗ : U → V ∗ its adjoint operator. Let u ∈ U be the control
parameter and let g1 denote the unique solution of the linear equation A1g1 =
f , guaranteed by (19). We associate to (18) the following optimal control
problem:

min
u∈U

{
〈u,Gy〉U×U∗ − 3 〈u,Gg1〉U×U∗ + 〈A2y, y〉V ∗×V + 2ϕ(y)

}
, (22)

〈A1y, v〉V ∗×V = 〈u,Gv〉U×U∗ − 〈f, v〉V ∗×V ∀ v ∈ V. (23)

One of the main features of the the problem (22)–(23) arises from the fact
that the operators involved in the nonlinear equation (18) are decoupled.
Also, it is obvious to see that the state equation (23) may be written in the
equivalent form

A1y = G∗u− f,

which is more familiar with those working in the optimal control theory.
Nevertheless, in what follows we prefer to use the weak formulation (23), as
it avoids the computation of the adjoint operator which, in practice, could
lead to some difficulties.

Note that the properties (19) of A1 ensure the existence of a unique
solution of the variational equation (23). Moreover, we have the following
result.

Theorem 3. Assume that ϕ : V → R is a locally Lipschitz function and
(19)–(21) hold. If [y∗, u∗] ∈ V × U is an optimal pair of the problem (22)–
(23), then y∗ is a solution of the nonlinear equation (18).

Proof. We take variations around [y∗, u∗] of the form [y∗ + λξ, u∗ + λω]
where λ ∈ IR and [ξ, ω] ∈ V × U satisfies

〈A1ξ, v〉V ∗×V = 〈w,Gv〉U×U∗ ∀ v ∈ V. (24)

We use the optimality of [y∗, u∗], divide the corresponding inequality by
λ > 0 and then pass to the limit as λ → 0 by using (1). As a result we
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obtain

0 ≤ 〈u∗, Gξ〉U×U∗ + 〈ω,Gy∗〉U×U∗ + 2 〈A2y
∗, ξ〉V ∗×V

−3 〈ω,Gg1〉U×U∗ + 2ϕ0(y∗; ξ).

Since 〈A1ξ, g1〉V ∗×V = 〈ξ, f〉V×V ∗ and ξ is an arbitrary element of V , the
previous inequality combined with the definition (2) and the state equation
show that y∗ is a solution of the nonlinear equation (18), which concludes
the proof. 2

We end this section with the remark that both problems (8)–(9) and (22)–
(23) solve the nonlinear multivalued equation (3). These two optimal control
problems represent distinct versions of the control variational method and,
therefore, illustrate the flexibility of this method in the study of nonlinear
equations.

3 Applications to elastic contact problems

A large number of contact problems with elastic materials can be cast into
the form of a variational inequality as in (7) in which the unknown is the dis-
placement field. In this section we illustrate the use of the control variational
method in the study of such problems.

The physical setting is the following. An elastic body occupies, in the
reference configuration, an open bounded connected set Ω ⊂ R3 with Lip-
schitz continuous boundary Γ, decomposed into three parts Γ1, Γ2 and Γ3,
with Γ1, Γ2 and Γ3 being relatively open and mutually disjoint. The body
is clamped on Γ1 and we assume that meas (Γ1) > 0. Surface traction of
density f2 act on Γ2 and volume forces of density f0 act in Ω. Here and in
the rest of the paper we use bold face letters for vectors and tensors. The
body is in contact on Γ3 with an obstacle, the so-called foundation.

We are interested to describe the mathematical model of the equilibrium
of the elastic body in the physical setting above. To this end we use the
notation x = (xi) for a typical point in Ω and we denote by ν = (νi)
the outward unit normal at Γ3. Here and below the indices i, j, k, l run
between 1 and 3 and, unless stated otherwise, the summation convention
over repeated indices is used. Also, the index that follows a coma indicates
a partial derivative with the corresponding component of the spatial variable
x. We denote by y = (yi), σ = (σij), and e(y) = (eij(y)) the displacement
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vector, the stress tensor, and the linearized strain tensor, respectively. We
note that sometimes we do not indicate the dependence of the variables on
the spacial variable x and we recall that the components of the linearized
strain tensor e(y) are given by

eij(y) =
1
2

(yi,j + yj,i) (25)

where yi,j = ∂yi/∂xj . The state of the system is completely determined by
(y,σ), in other words, the displacement field y and the stress field σ will
play the role as the unknowns in elastic contact problems.

We denote by Rd the d-dimensional real linear space and the symbol Sd
stands for the space of second order symmetric tensors on Rd or, equivalently,
the space of symmetric matrices of order d. The canonical inner products
and the corresponding norms on Rd and Sd are given by

u · v = uivi, ‖v‖ = (v · v)1/2 ∀u = (ui), v = (vi) ∈ Rd, (26)

σ · θ = σijθij , ‖θ‖ = (θ · θ)1/2 ∀σ = (σij), θ = (θij) ∈ Sd, (27)

respectively, and note that below we use the space Rd for d = 3 and d = 9
and the space Sd for d = 3. Finally, we use standard notation for the spaces
Lp spaces and Sobolev spaces associated to Ω and Γ.

The classical formulation of the problem we consider in this section is the
following: find a displacement field y : Ω→ R3 and a stress field σ : Ω→ S3

such that

σ = Ae(y) in Ω, (28)
Divσ + f0 = 0 in Ω, (29)

y = 0 on Γ1, (30)
σν = f2 on Γ2, (31)

y ∈ K, −σν · (v − y) ≤ j(v)− j(y) ∀v ∈ K on Γ3. (32)

Here (28) represents the linear elastic constitutive law constitutive law, i.e.

σij = aijkl ekl(y)

with A = (aijkl) being the elasticity tensor. Equation (29) represents the
equation of equilibrium and we use it since we assume that the process is
static. Conditions (30) and (31) represent the displacement and traction
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boundary conditions, respectively. Finally, inequality (32) is the contact
condition in which K represents the set of admissible displacement fields and
j : Γ3 × R3 → R is a given function to be precised in the sequel. Examples
and detailed explanations of inequality problems in Contact Mechanics which
lead to boundary conditions of this subdifferential form will be presented at
the end of this section.

We turn now to the variational formulation of the contact problem (28)–
(32). To this end we consider the closed space of the space H1(Ω)3 given
by

V (Ω) = { v ∈ H1(Ω)3 : v = 0 on Γ1 }.

Since meas(Γ1) > 0, Korn’s inequality implies that V (Ω) is a Hilbert space
with the inner product

(y,v)V (Ω) =
∫

Ω
e(y) · e(v) dx

and the associated norm ‖ · ‖V (Ω). As usual, we denote by V (Ω)∗ the dual of
the space V (Ω) and let 〈·, ·〉V (Ω)∗×V (Ω) be the duality pairing between V (Ω)∗

and V (Ω). We note that we have V (Ω) ⊂ L2(Ω)3 ⊂ V (Ω)∗ with compact
and dense embeddings.

We assume in what follows that the components aijkl of the elasticity ten-
sor are bounded and satisfy the usual properties of symmetry and ellipticity,
that is 

(a) aijkl ∈ L∞(Ω).

(b) aijkl = ajikl = aklij .

(c) There exists m > 0 such that
aijklξijξkl ≥ m‖ξ‖2 ∀ ξ = (ξij) ∈ S3, a.e. in Ω.

(33)

Then, we consider the elasticity operator A : V (Ω)→ V (Ω)∗ defined by

〈Ay,v〉V (Ω)∗×V (Ω) =
∫

Ω
Ae(y) · e(v) dx (34)

=
∫

Ω
aijkl eij(y)ekl(v) dx ∀y, v ∈ V (Ω).

We also assume that the set of admissible displacements fields satisfies

K is a nonempty, closed, convex subset of V (Ω). (35)
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Let ϕ : V (Ω)→ (−∞,+∞] be the functional

ϕ(v) =


∫

Γ3

j(v) da if v ∈ K,

+∞ otherwise
(36)

where j(.) is a real functional to be defined in the sequel and such that

ϕ : K → R is a convex, proper, lower semicontinuous (37)
function such that ϕ(v) < +∞ ∀v ∈ K.

Finally, for the body force and surface tractions we assume

f0 ∈ L2(Ω)3, f2 ∈ L2(Γ2)3, (38)

and we denote by f the element of V (Ω)∗ given by

〈f ,v〉V (Ω)∗×V (Ω) =
∫

Ω
f0 · v dx+

∫
Γ2

f2 · v da ∀v ∈ V (Ω). (39)

It is straightforward to show that if (y,σ) is a pair of sufficiently regular
functions satisfying (29)–(32) then y ∈ K and, moreover,∫

Ω
σ · (e(v)− e(y)) dx+

∫
Γ3

j(v) da−
∫

Γ3

j(y) da

≥
∫

Ω
f0 · (v − y) dx+

∫
Γ2

f2 · (v − y) da ∀v ∈ K.

Combining this inequality with the constitutive law (28) and using the no-
tation (34), (36), (39) we obtain the following variational formulation of the
problem (28)–(32) with the displacement as the unknown: find a displace-
ment field y ∈ V (Ω) such that

〈Ay,v − y〉V (Ω)∗×V (Ω) + ϕ(v)− ϕ(y) ≥ 〈f ,v − y〉V (Ω) ∀v ∈ V (Ω). (40)

Note that inequality (40) includes implicitly the constraint y ∈ K, see (36),
(37).

In what follows we use the abstract results in Section 2 with the choice
V = V (Ω). To this end we consider the optimal control problem.

min
y∈V (Ω)

{
〈u,y〉V (Ω)∗×V (Ω) − 3 〈u, g〉V (Ω)∗×V (Ω) + 2ϕ(y)

}
, (41)

Ay = u− f . (42)
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Here u = (ui) ∈ V (Ω)∗ is the control parameter, A : V (Ω) → V (Ω)∗ is the
linear elasticity differential operator, (34), and g ∈ V (Ω) is the solution of the
linear equation Ag = f . We note that the advantage of the transformation
of the variational inequality (40) into the optimal control problem (41)–(42)
arises from the fact that it “decouples” the nonlinear part corresponding to
ϕ(·), which has just to be computed, after solving (42).

Using assumptions (33) it is easy to see that the operator A satisfies as-
sumption (4) and, using (35)–(37) it follows that (12) holds, too. Therefore,
we may apply Theorem 2 to see that both the variational inequality (40)
and the optimal control problem (41)–(42) have a unique solution. More-
over, y∗ ∈ V (Ω) is the solution of (40) if and only if [y∗, Ay∗ + f ] is the
optimal pair of (41)–(42). And, again, the constraint y∗ ∈ K is implicitly
included.

Next, we consider the case of linear isotropic materials. It is well know
that in this case the elasticity tensor is characterized by only two constants,
the Lamé coefficients, denoted λ and µ, which satisfy the inequalities λ > 0
and µ > 0. The constitutive law is given by

σ = 2µ e(y) + λ tr(e(y)) I

where tr(e(y)) denotes the trace of the tensor e(y) defined by tr(e(y)) =
eii(y), and I denotes the identity tensor on IR3. It follows from above that
the elasticity operator is

A(e) = 2µ e + λ tr(e) I.

In components, we have

σij = 2µ eij(y) + λ ekk(y) δij

where δij is the Kronecker symbol, i.e., δij are the components of the unit
matrix 3× 3. As a consequence, the operator (34) becomes

〈Ay,v〉V (Ω)∗×V (Ω) =
∫

Ω

[
λeii(y)ejj(v)+2µeij(y)(eij(v)

]
dx ∀y, v ∈ V (Ω)

and, therefore, the variational inequality (40) reads∫
Ω

[
λeii(y)(ejj(v)− ejj(y)) + 2µeij(y)(eij(v)− eij(y)

]
dx (43)

+ϕ(v)− ϕ(y) ≥
∫

Ω
f0 · (v − y) dx+

∫
Γ2

f2 · (v − y) da ∀v ∈ V (Ω).



The control variational method for contact problems 113

We turn now to a formulation of inequality (43) which will allow the use
of Theorem 3 with the linear continuous operator G : V (Ω)→ L2(Ω)9 which
associates to each vector its Jacobian matrix, that is

G(v) = ∇v.

We consider the following optimal control problem:

min
y∈V (Ω)

{∫
Ω
w · ∇y dx− 3

∫
Ω
w · ∇g1 dx+ λ

∫
Ω

(div y)2 dx (44)

+µ
∫

Ω

[(∂y1

∂x1

)2
+
(∂y2

∂x2

)2
+
(∂y3

∂x3

)2]
dx

+2µ
∫

Ω

(∂y1

∂x2

∂y2

∂x1
+
∂y1

∂x3

∂y3

∂x1
+
∂y2

∂x3

∂y3

∂x2

)
dx+ 2ϕ(y)

}
,

µ

∫
Ω
∇y · ∇v dx =

∫
Ω
w · ∇v dx−

∫
Ω
f0 · v dx (45)

−
∫

Γ3

f2 · v da ∀v ∈ V (Ω).

Here w ∈ L2(Ω)9 is the control parameter and note that no constraints are
imposed in the problem (44)–(45). Also, the function g1 in (44) is defined
by

µ

∫
Ω
∇g1 · ∇v dx =

∫
Ω
f · v dx ∀v ∈ V (Ω). (46)

Relations (45) or (46) are equivalent with the solution of three indepen-
dent Laplace equations that define the operator A1 appearing in Theorem
3. The operator A2 : V (Ω)→ V (Ω)∗ is defined by the equality

〈A2y,v〉V (Ω)×V (Ω)∗ = λ

∫
Ω

(div y) (div v) dx (47)

+µ
∫

Ω

(∂y1

∂x1

∂v1

∂x1
+
∂y2

∂x2

∂v2

∂x2
+
∂y3

∂x3

∂v3

∂x3

)
dx

+2µ
∫

Ω

(∂y1

∂x2

∂v2

∂x1
+
∂y1

∂x3

∂v3

∂x1
+
∂y2

∂x3

∂v3

∂x2

)
dx ∀y, v ∈ V (Ω).
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We have all the ingredients to state and prove the following result.

Theorem 4. Assume that [y∗,w∗] ∈ V (Ω) × L2(Ω)9 is an optimal pair of
the problem (44)–(45). Then y∗ is a solution of the variational inequality
(43).

To prove Theorem 4 we use computations and arguments similar to those
from the proofs of Theorems 1–3. Nevertheless, for the convenience of the
reader we present below a sketch of the proof.

Proof. Let [y∗,w∗] ∈ V (Ω) × L2(Ω)9 be an optimal pair of (44)–(45) and
take variation of the form [y∗ + θξ,w∗ + θω] where θ ∈ R and [ξ,ω] ∈
V (Ω)×L2(Ω)9 satisfies the homogeneous variant of (45). After same lengthly
but standard computation we get

0 =
∫

Ω
ω · ∇y∗ dx+

∫
Ω
w∗ · ∇ξ dx− 3

∫
Ω
ω : ∇g1 dx (48)

+2λ
∫

Ω
(div y) (div ξ) dx+ 2µ

∫
Ω

(∂y∗1
∂x1

∂ξ1

∂x1
+
∂y∗2
∂x2

∂ξ2

∂x2
+
∂y∗3
∂x3

∂ξ3

∂x3

)
dx

+2µ
∫

Ω

(∂y∗1
∂x2

∂ξ2

∂x1
+
∂ξ1

∂x2

∂y∗2
∂x1

+
∂y∗1
∂x3

∂ξ3

∂x1

+
∂ξ1

∂x3

∂y∗3
∂x1

+
∂y∗2
∂x3

∂ξ3

∂x2
+
∂ξ2

∂x3

∂y3

∂x2

)
dx

+2 〈ζ∗, ξ〉V (Ω)∗×V (Ω)

where ζ∗ ∈ ∂ϕ(y∗). We eliminate now w, ω and g1 from (48) by using (45)
with v = ξ, the corresponding equation in variations and the definition of
g1, respectively. As a result we obtain

0 = 2
∫

Ω

[
λeii(y∗)ejj(ξ) + 2µeij(y∗)eij(ξ)

]
dx

−2
∫

Ω
f0 · ξ dx− 2

∫
Γ3

f2 · ξ da+ 2 〈ζ∗, ξ〉V (Ω)∗×V (Ω).

The choice ξ = y∗ − v, with v being an arbitrary element in ∈ V (Ω), is
admissible in the above equation. Therefore, by using the definition (13) we
deduce that y∗ satisfies (43) which concludes the proof. 2
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We recall that the control variational method was used in [19] in the study
of a simpler displacement-traction boundary value problem with linearly
elastic materials. There, a direct existence argument was used in solving an
optimal control problem of the form (44)–(45) and the coercivity property of
the operator A2 defined in (47) is open. Theorem 4 shows that the solution
of the elasticity system is reduced to solving iteratively several independent
Laplace equations. The nonlinearity and the “unconvenient” part of the
linear operator may be moved in the cost functional. It has just to be
computed and is not involved in the solution of the linear state equation
associated to the control problem. This is the advantage of the control
variational method presented above.

Examples of subdifferential boundary conditions. We turn now to
present examples of frictionless or frictional contact conditions which lead
to an inequality of the form (32) such that assumptions (35) and (37) hold.
We conclude that the control variational method described above can be
applied in the study of the contact problems for each of the examples below.
Everywhere in this section we denote by vν and vτ the normal and the
tangential components of a vector field v ∈ H1(Ω)3, respectively, defined by

vν = v · ν, vτ = v − vνν.

In particular, we use the notation yν and yτ for the normal and the tangential
components of the displacement field y. We also denote by σν and στ the
normal and tangential components of the stress field σ on the boundary,
that is

σν = (σν) · ν, στ = σν − σνν.

The list of examples below is far from being exhaustive since many other
examples can be considered by combining the different contact conditions
and friction laws. Details and mechanical interpretations on the boundary
conditions described below can be found in [4, 15] and the references therein.

Example 1. (Signorini frictionless condition.) This contact condition is of
the form

yν ≤ 0, σν ≤ 0, σνyν = 0, στ = 0 on Γ3. (49)

The equality στ = 0 in (50) shows that the friction force vanishes, i.e. the
contact is frictionless. This represents an idealization of the process, since
even completely lubricated surfaces generate shear resistance to tangential
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motions. The rest of conditions in (49) represent the well know Signorini
conditions which describe the contact with a rigid obstacle.

The set of admissible test functions K consists of those elements of V (Ω)
whose normal component is negative on Γ3, i.e.

K = {v ∈ V (Ω) : vν ≤ 0 on Γ3 }.

It is straightforward to show that if (y,σ) is a pair of regular functions
satisfying (49) then

σ ν · (v − y) ≥ 0 ∀v ∈ K,

a.e. on Γ3. Thus, the contact condition (32) holds with j(v) = 0 and,
therefore, the functional ϕ of (36) is the indicator function of the set K, i.e.

ϕ(v) =
{

0 if v ∈ K,
+∞ otherwise.

It is easy to see that in this case conditions (35) and (37) hold.

Example 2. (Bilateral contact with Tresca’s friction law.) This contact
condition is of the form

yν = 0, ‖στ‖ ≤ g,
‖στ‖ < g ⇒ yτ = 0,
‖στ‖ = g ⇒ ∃ ξ ≥ 0 such that στ = −ξyτ

 on Γ3. (50)

The equality yν = 0 in (50) shows that contact is bilateral, i.e., there is no
loss of contact during the process. The rest of condition represents the Tresca
friction law in which g ∈ L∞(Γ3) is a positive function which represents the
friction bound, i.e., the magnitude of the limiting friction traction at which
slip begins.

The set of admissible test functions K consists of those elements of V (Ω)
whose normal component vanishes on Γ3, i.e.

K = {v ∈ V (Ω) : vν = 0 on Γ3 }. (51)

It is straightforward to show that if (y,σ) is a pair of regular functions
satisfying (50) then

σ ν · (v − y) ≥ g ‖yτ‖ − g ‖vτ‖ ∀v ∈ K,
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a.e. on Γ3. Thus, the frictional contact condition (32) holds with j(v) =
g ‖vτ‖ and, therefore, the functional ϕ defined by (36) satisfies

ϕ(v) =
∫

Γ3

g ‖vτ‖ da ∀v ∈ K.

It is easy to see that in this case conditions (35) and (37) hold, too.

Example 3. (Bilateral contact with regularized friction.) We consider the
boundary conditions

yν = 0, στ = −g yτ√
‖yτ‖2 + ρ2

on Γ3, (52)

where ρ > 0 is a regularization parameter and, again, g ∈ L∞(Γ3) is a
positive function. The frictional contact condition in (52) represents a regu-
larization of the Tresca friction law in Example 2 and is used in the literature
mainly for numerical reasons. Note that, formally, we can recover (50) from
(52) in the limit as ρ→ 0.

It is straightforward to show that if (u,σ) is a pair of regular functions
satisfying (52), then the contact condition (32) holds with K given by (51)
and j is the convex function given by

j(v) = g
vτ√

‖vτ‖2 + ρ2
.

The corresponding contact functional ϕ satisfies

ϕ(v) =
∫

Γ3

g
vτ√

‖vτ‖2 + ρ2
da ∀v ∈ K.

Clearly, conditions (35) and (37) hold in this case.

Example 4. (Bilateral contact with power-law friction.) We consider now
the boundary conditions

yν = 0, στ = −µ ‖yτ‖p−1yτ on Γ3, (53)

where µ is the coefficient of friction and 0 < p ≤ 1. Here, the tangential
shear is proportional to the power p of the tangential displacement. Such a
boundary condition arises when the contact surface is lubricated with a thin
layer of non-Newtonian fluid.
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Assume that µ ∈ L∞(Γ3) is a positive function. Then, it is straightfor-
ward to show that if (y,σ) is a pair of regular functions satisfying (53), then
the condition (32) holds with K given by (51) and

j(v) =
µ

p+ 1
‖vτ‖p+1.

We deduce from the definition (36) of the functional ϕ that

ϕ(v) =
1

p+ 1

∫
Γ3

µ ‖vτ‖p+1da ∀v ∈ K.

We note that, again, conditions (35) and (37) are satisfied in this case.

Example 5. (Contact with imposed normal stress and Coulomb’s friction.)
We consider the boundary conditions

−σν = F, ‖στ‖ ≤ µ |σν |,
‖στ‖ < µ |σν | ⇒ yτ = 0,
‖στ‖ = µ |σν | ⇒ ∃ ξ ≥ 0 such that στ = −ξyτ

 on Γ3. (54)

Here F and µ are given positive functions which belong to L2(Γ3) and
L∞(Γ3), respectively. The first equality in (54) shows that the normal stress
is imposed on the contact surface and the rest of relations represent the
classical Coulomb’s law of dry friction in which µ denotes the coefficient of
friction.

It is straightforward to show that if (y,σ) is a pair of regular functions
satisfying (54), then the contact condition (32) holds with K = V (Ω) and

j(v) = F vν + µF ‖vτ‖.

Moreover, from the definition (36) we deduce that

ϕ(v) =
∫

Γ3

(F vν + µF‖vτ‖) da ∀v ∈ V (Ω).

We note that, again, conditions (35) and (37) are satisfied in this case.

Example 6. (Normal compliance frictionless condition.) We consider the
boundary conditions

−σν = κ (y+
ν )q, στ = 0 on Γ3. (55)
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in which κ ∈ L∞(Γ3) is a positive function, 0 < q ≤ 1 and r+ denotes the
positive part of r, i.e. r+ = max {r, 0}. The first equality in (55) represents
the so called normal compliance contact condition, in which κ denotes the
stiffness coefficient of the surface and q is the normal exponent. It assigns a
reactive normal pressure that depends on a power of the penetration of the
asperities on the body’s surface and on the foundation, which vanish when
there is separation, i.e. when yν < 0. The second equality in (55) represents,
again, the frictionless condition.

Using the inequality

(u+)q(v − u) ≤ 1
q + 1

(v+)q+1 − 1
q + 1

(u+)q+1 ∀u, v ∈ R

it is easy to see that, if (y,σ) is a pair of regular functions satisfying (55),
then almost everywhere on Γ3 the following inequality holds:

−σ ν · (v − y) ≤ κ

q + 1
(v+
ν )q+1 − κ

q + 1
(y+
ν )q+1 ∀v ∈ V (Ω).

So, the contact condition (32) holds with K = V (Ω) and j(v) = κ
q+1 (v+

ν )q+1.
Moreover, from the definition (36) we deduce that

ϕ(v) =
∫

Γ3

κ

q + 1
(v+
ν )q+1 da ∀v ∈ V (Ω).

It is easy to see that in this case conditions (35) and (37) hold.

Example 7. (Elastic contact with power-law friction.) In this example
the normal stress is proportional to a power of the normal displacement,
while the tangential shear is proportional to another power of the tangential
displacement. Thus, the boundary conditions are the following:

−σν = κ |yν |q−1yν , στ = −µ ‖yτ‖p−1yτ on Γ3. (56)

Here µ ∈ L∞(Γ3) and κ ∈ L∞(Γ3) are positive functions and the exponents
p, q, are such that 0 < p, q ≤ 1.

We choose K = V (Ω) and

j(v) =
κ

q + 1
|vν |q+1 +

µ

p+ 1
‖vτ‖p+1.
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Then, the contact condition (32) holds and, from the definition (36) we
deduce that

ϕ(v) =
∫

Γ3

κ

q + 1
|vν |q+1 +

µ

p+ 1
‖vτ‖p+1 da ∀v ∈ V (Ω).

It is easy to see that in this case conditions (35) and (37) hold, too.

We end this section with the remark that in Examples 2–7 above the
set of admissible displacement fields is a linear subspace of the space V (Ω).
This is dictated by the structure of the contact conditions which do not
involve unilateral restriction on the normal displacement field. Unlike this
situation, the Signorini contact problem presented in Example 1 involves
unilateral conditions for the normal displacement. And, therefore, in this
case the set K is a convex subset of V (Ω) which is not a subspace of V (Ω).
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