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Abstract

A unilateral frictionless contact model, under the small deforma-
tions hypothesis, for static processes is considered. We model the be-
havior of the material by a constitutive law stated in a subdifferential
form. The contact is described with Signorini’s condition. Our study
focuses on the weak solvability of the model, based on a weak formu-
lation with dual Lagrange multipliers.
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1 Introduction

The purpose of this paper is to investigate the weak solvability of a unilateral
frictionless contact problem using a technique with dual Lagrange multipli-
ers. The weak formulations with dual Lagrange multipliers allow to write
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efficient algorithms in order to approximate the weak solutions; see for ex-
ample [6, 7, 8, 9] where contact problems involving linearly elastic materials
were considered. An investigation of the weak solvability via dual Lagrange
multipliers for a class of elasto-piezoelectric or viscoplastic contact problems,
can be found in [6, 12, 13, 17].

In the present work, the behavior of the materials is described by using
the subdifferential of a proper, convex, lower semicontinuous functional and
the contact is modelled with Signorini’s condition with zero gap. The results
extend and improve the results obtained in the recent paper [13], where
a unilateral frictionless contact model for nonlinearly elastic materials is
analyzed.

Our investigation requires a background of convex analysis, functional
analysis, variational calculus, mechanics of solids and contact mechanics;
the reader can consult [3, 4, 5, 11, 14, 15, 16, 18].

The rest of the paper is structured as follows. In Section 2 we indicate
some notation and preliminaries. In Section 3 we state the mechanical model
and its weak formulation via dual Lagrange multipliers. In Section 4 we
deliver two abstract results. These abstract results will be applied in Section
5 in order to prove the weak solvability of the considered model.

2 Notation and preliminaries

Let us denote by S3 the space of second order symmetric tensors on R3.
Every field in R3 or S3 will be typeset in boldface. By · and | · | we will
denote the inner product and the Euclidean norm on R3 and S3, respectively.
Thus,

u · v = uivi, |v| = (v · v)1/2, u,v ∈ R3,

σ · τ = σijτij , |τ | = (τ · τ )1/2, σ, τ ∈ S3.

Here and below, the indices i and j run between 1 and 3 and the summation
convention over repeated indices is adopted.

Let Ω ⊂ R3 be a bounded domain. We introduce the following functional
spaces on Ω,

H = {u = (ui) | ui ∈ L2(Ω)}, H = {σ = (σij) | σij = σji ∈ L2(Ω)},
H1 = {u ∈ H | ε(u) ∈ H}, H1 = {σ ∈ H | Divσ ∈ H}
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where

ε(u) = (εij(u)), εij(u) =
1
2

(ui,j + uj,i), Divσ = (σij,j).

The index that follows a comma indicates a partial derivative with respect
to the corresponding component of the independent variable. The spaces H,
H, H1 and H1 are real Hilbert spaces endowed with the inner products,

(u,v)H =
∫

Ω
uivi dx, (u,v)H1 = (u,v)H + (ε(u), ε(v))H,

(σ, τ )H =
∫

Ω
σijτij dx, (σ, τ )H1 = (σ, τ )H + (Divσ, Div τ )H .

The associated norms on the spaces H, H, H1 and H1 are denoted by ‖ · ‖H ,
‖ · ‖H, ‖ · ‖H1 and ‖ · ‖H1 , respectively.

We assume that the boundary of Ω, denoted by Γ, is Lipschitz continuous.
We denote by ν the unit outward normal vector on the boundary, defined
almost everywhere.

Let us denote by γ the Sobolev trace operator,

γ : H1 → L2(Γ)3,

and by HΓ, the image of H1 by γ, i.e., HΓ = γ(H1). We recall that γ is
a linear, continuous and compact operator. Moreover, it is known that the
space HΓ is a Hilbert space. In addition, we recall that there exists a linear
and continuous operator Z,

Z : HΓ → H1,

such that
γ(Z(ζ)) = ζ ∀ζ ∈ HΓ. (1)

The operator Z is called the inverse to the right of the operator γ. We
consider the Hilbert space

V = {v ∈ H1 | γv = 0 a.e. on Γ1}. (2)

We underline that
γ(Z(γv)) = γv ∀v ∈ V.
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For a vectorial field v, we denote by vν and vτ the normal and the
tangential components on the boundary, defined as follows,

vν = γv · ν, vτ = γv − vνν.

Let Γ1 be a measurable part of Γ such that meas(Γ1) > 0. Let us re-
member Korn’s inequality: there exists cK = cK(Ω,Γ1) > 0 such that

‖ε(v)‖H ≥ cK‖v‖H1 , ∀v ∈ V.

Using Korn’s inequality, it can be proved that the space V is a Hilbert space
endowed with the following scalar product,

(·, ·)V : V × V → R; (u,v)V = (ε(u), ε(v))H.

Keeping in mind (1), it is straightforward to verify that

Z(ζ) ∈ V ∀ζ ∈ γ(V ).

Furthermore,

R : γ(V )→ V, R(ζ) = Z(ζ), (3)

is a linear and continuous operator.
According to [13], the space γ(V ) is a closed subspace of HΓ. Thus, γ(V )

is a Hilbert space endowed with the inner product

(·, ·)γ(V ) : γ(V )× γ(V )→ R, (ζ,φ)γ(V ) = (ζ,φ)HΓ
∀ζ, φ ∈ γ(V ).

For a regular (say C1) stress field σ, the application of its trace on the
boundary to ν is the Cauchy stress vector σν. Furthermore, we define the
normal and tangential components of the Cauchy vector on the boundary
by the formulas

σν = (σν) · ν, στ = σν − σνν

and we note that the following identity takes place,

σν · v = σν vν + στ · vτ .

Finally, we recall the useful Green formula,

(σ, ε(v))H + (Divσ,v)H =
∫

Γ
σν · v da ∀v ∈ H1. (4)

For a proof of the formula (4) and more details related to this section, we
send the reader to [4]. In order to facilitate the reading, we recall some
elements of convex analysis.
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Theorem 1. Let (X, (·, ·)X , ‖ · ‖X), (Y, (·, ·)Y , ‖ · ‖Y ) be two Hilbert spaces
and let A ⊆ X, B ⊆ Y be non-empty, closed, convex subsets. Assume that a
real functional L : A×B → R satisfies the following conditions

∀µ ∈ B, v → L(v, µ) is convex and lower semicontinuous;
∀v ∈ A, µ→ L(v, µ) is concave and upper semicontinuous.

Moreover,

A is bounded or lim
‖v‖X→∞,v∈A

L(v, µ0) =∞ for some µ0 ∈ B

and
B is bounded or lim

‖µ‖Y→∞,µ∈B
inf
v∈A
L(v, µ) = −∞.

Then, the functional L has at least one saddle point.

For the proof of this theorem see [3]; more details on the saddle point
theory and its applications can be found in [1, 2, 3, 5]. We also recall the
definition of Gâteaux differentiable functions.

Definition 1. Let (X, (·, ·)X , ‖ · ‖X) be a Hilbert space. Let φ : X → R and
let u ∈ X. Then φ is Gâteaux differentiable at u if there exists an element
∇φ(u) ∈ X such that

lim
t→0

φ(u+ tv)− φ(u)
t

= (∇φ(u), v)X , ∀v ∈ X.

The element ∇φ(u) which satisfies the relation above is unique and is
called the gradient of φ at u. The function φ : X → R is said to be Gâteaux
differentiable if it is Gâteaux differentiable at every point of X. In this case,
the operator ∇φ : X → X that maps every element u ∈ X into the ele-
ment ∇φ(u) is called the gradient operator of φ. The convexity of Gâteaux
differentiable functions can be characterized as follows.

Theorem 2. Let (X, (·, ·)X , ‖ · ‖X) be a Hilbert space and let φ : X → R be
a Gâteaux differentiable function. Then, φ is convex if and only if

φ(v)− φ(u) ≥ (∇φ(u), v − u)X , ∀v ∈ X.

For the proof of this theorem we refer e.g. to [10, 16].
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3 The model and its weak formulation

We consider a body that occupies the bounded domain Ω ⊂ R3, with the
boundary partitioned into three measurable parts, Γ1, Γ2 and Γ3, such that
meas(Γ1) > 0. The unit outward normal to Γ is denoted by ν and is defined
almost everywhere. The body Ω is clamped on Γ1, body forces of density f0

act on Ω and surface traction of density f2 act on Γ2. On Γ3 the body can
be in contact with a rigid foundation. In order to describe the behavior of
the materials, we use a nonlinear constitutive law expressed by the subdiffer-
ential of a proper, convex, lower semicontinuous functional and the contact
will be modelled using Signorini’s condition with zero gap. We denote by
u = (ui) the displacement field, by ε = (εij) the infinitesimal strain tensor
and by σ = (σij) the Cauchy stress tensor. To resume, we are interested to
study the following problem.

Problem 1. Find u : Ω̄→ R3 and σ : Ω̄→ S3, such that

Divσ(x) + f0(x) = 0 in Ω,
σ(x) ∈ ∂ω(ε(u(x))) in Ω,

u(x) = 0 on Γ1,
σν(x) = f2(x) on Γ2,

στ = 0, uν(x) ≤ 0, σν(x) ≤ 0, σν(x)uν(x) = 0 on Γ3.

Let us assume that the densities of the volume and surface forces verify

f0 ∈ H; f2 ∈ L2(Γ2)3. (5)

Concerning the constitutive function ω we assume:

ω : S3 → [0,∞) is a convex, lower semicontinuous functional,
there exists α1, α2 > 0 : α1|ε|2 ≥ ω(ε) ≥ α2|ε|2 ∀ε ∈ S3.

}
(6)

To give an example of such a function, we can consider

ω : S3 → [0,∞), ω(ε) =
1
2
Aε · ε+

β

2
|ε− PKε|2 (7)

where A is a fourth order symmetric tensor satisfying the ellipticity condi-
tion, β is a strictly positive constant, K ⊂ S3 denotes a closed, convex set
containing the element 0S3 and PK : S3 → K is the projection operator.

We are interested to write a weak formulation of Problem 1.
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Let us define a functional as follows,

W : H → [0,∞), W (τ ) =
∫

Ω
ω(τ (x))dx.

Since σ(x) ∈ ∂ω(ε(u(x)), we have

ω(ε(v(x)))− ω(ε(u(x))) ≥ σ(x) · (ε(v(x))− ε(u(x))),
a.e. in Ω, ∀v ∈ H1.

For regular enough functions involved in the writing of Problem 1, after
integration on Ω and using Green’s formula (4), we get

W (ε(v))−W (ε(u)) ≥
∫

Γ
σν · (γv − γu)da

−(Divσ,v − u)H , ∀v ∈ H1,

and from this

W (ε(v))−W (ε(u)) ≥
∫

Γ2

f2 · (γv − γu)da

+
∫

Γ3

σν · (γv − γu)da+ (f0,v − u)H ∀v ∈ V,

where V is the functional space defined by (2).
Next, we define the functional

J : V → [0,∞), J(v) = W (ε(v)). (8)

Using Riesz’s representation theorem, we define f ∈ V as follows,

(f ,v)V =
∫

Γ2

f2 · γvda+
∫

Ω
f0 · vdx, ∀v ∈ V.

Let us denote by D the dual of the space γ(V ). We define the following
subset of D,

Λ = {µ ∈ D : 〈µ,γv〉 ≤ 0,∀γv ∈ K} , (9)

where
K = {γv ∈ γ(V ) : vν ≤ 0 a.e. on Γ3}.

Here and everywhere below, 〈·, ·〉 denotes the duality pairing between D and
γ(V ).
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In addition, we define the bilinear form

b : V ×D → R, b(v,µ) = 〈µ,γv〉 ∀v ∈ V, µ ∈ D (10)

and the Lagrange multiplier λ ∈ D,

〈λ,γv〉 = −
∫

Γ3

σνvνda, ∀γv ∈ γ(V ).

Thus, we are led to the following weak formulation.

Problem 2. Find u ∈ V and λ ∈ Λ such that

J(v)− J(u) + b(v − u,λ) ≥ (f ,v − u)V , ∀v ∈ V
b(u,µ− λ) ≤ 0, ∀µ ∈ Λ.

The solvability of this weak formulation of Problem 2 will be analyzed
in Section 5, based on the abstract results in Section 4 .

4 Abstract results

Let (X, (·, ·)X , || · ||X) and (Y, (·, ·)Y , || · ||Y ) be Hilbert spaces. We consider
a functional J as follows,

J : X → [0,∞) convex, lower semicontinuous,
there exists m1, m2 > 0 : m1‖v‖2X ≥ J(v) ≥ m2‖v‖2X ∀v ∈ X.

}
(11)

In addition, we consider

b : X × Y → R a bilinear form such that
i) there exists Mb > 0 : |b(v, µ)| ≤Mb‖v‖X‖µ‖Y ∀v ∈ X, µ ∈ Y,

ii) there exists α > 0 : inf
µ∈Y,µ 6=0Y

sup
v∈X,v 6=0X

b(v, µ)
‖v‖X‖µ‖Y

≥ α.

 (12)

Finally,

Λ is a closed, convex, unbounded subset of Y that contains 0Y . (13)

We are interested to prove the existence of the solutions of the following
variational problem.
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Problem 3. Find u ∈ X and λ ∈ Λ such that

J(v)− J(u) + b(v − u, λ) ≥ (f, v − u)X ∀v ∈ X
b(u, µ− λ) ≤ 0 ∀µ ∈ Λ.

Theorem 3. Assume (11), (12) and (13). Then, Problem 3 has at least one
solution.

The proof of this theorem will be carried out in several steps.
We underline that Λ is an unbounded subset of the space Y. Let us define

Λn = {µ ∈ Λ, ‖µ‖Y ≤ n},

a bounded subset of Λ, for every n ∈ N∗.
We state the following auxiliary problem.

Problem 4. Find un ∈ X and λn ∈ Λn such that

J(v)− J(un) + b(v − un, λn) ≥ (f, v − un)X ∀v ∈ X, (14)
b(un, µ− λn) ≤ 0 ∀µ ∈ Λn. (15)

Lemma 1. Problem 4 has at least one solution.

Proof. Let us define

L : X × Λn → R , L(v, µ) := J(v)− (f, v)X + b(v, µ).

A pair (un, λn) is a solution of Problem 4 if and only if it is a saddle point
of the functional L, i. e.

L(un, µ) ≤ L(un, λn) ≤ L(v, λn), ∀v ∈ X,∀µ ∈ Λn. (16)

Indeed, the first of the inequalities above is equivalent to the inequality

b(un, µ− λn) ≤ 0, ∀µ ∈ Λn.

After replacing L from its definition, the second of the two inequalities (16)
becomes

J(v)− J(un) + b(v − un, λn) ≥ (f, v − un)X , ∀v ∈ X,

so the equality between the set of solutions of the Problem 4 and the set of
saddle points of the functional L is proved.
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Now we prove that the functional L has at least one saddle point.
Keeping in mind the definition of the functional L , as J is convex and

lower semicontinuous and the functional b is bilinear and continuous, it is
straightforward to deduce that, for all µ ∈ Λ, v → L(v, µ) is convex and
lower semicontinuous, and, for all v ∈ X, µ→ L(v, µ) is concave and upper
semicontinuous. In addition, we note that

L(v, 0Y ) = J(v) + b(v, 0Y )− (f, v)X ≥ m2‖v‖2X − ‖f‖X‖v‖X ,

which allows us to say that

lim
‖v‖X→∞

L(v, 0Y ) =∞.

Then, also taking into account that Λn is a bounded subset of the space
Y, we apply Theorem 1 to deduce that the functional L has at least one
solution. Since the set of the solutions of Problem 4 is the same with the set
of the saddle points of the functional L , we conclude that Problem 4 has at
least one solution.

Lemma 2. There is some n0 > 0 such that ‖λn0‖Y < n0.

Proof. Let us assume that ‖λn‖Y = n, ∀n ≥ 1. By using the inf-sup property
of the form b, see (12), we get

α‖λn‖Y ≤ sup
w∈X,w 6=0X

b(w, λn)
‖w‖X

.

Let us take w ∈ X w 6= 0X , arbitrarily chosen. Putting v = un − tw with
t > 0 in (14), we have

b(tw, λn) ≤ (f, tw)X + J(un − tw)− J(un).

Therefore, taking into account (11) we reach to

tb(w, λn) ≤ t(f, w)X +m1‖un − tw‖2X .

Consequently, we get

b(w, λn)
‖w‖X

≤ ‖f‖X +
m1‖un − tw‖2X

t‖w‖X

≤ ‖f‖X +
2m1(‖un‖2X + t2‖w‖2X)

t‖w‖X
.
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As we have considered t > 0, now we put t = 1
‖w‖X and so

b(w, λn)
‖w‖X

≤ ‖f‖X + 2m1(‖un‖2X + 1). (17)

If v = 0X in (14), then

J(un) ≤ −b(un, λn) + (f, un)X .

Then, if we put µ = 0Y in (15),

−b(un, λn) ≤ 0.

So,

J(un) ≤ (f, un)X ≤ ‖f‖X‖un‖X .

Since

J(un) ≥ m2‖un‖2X

we infer that

‖un‖X ≤
‖f‖X
m2

, ∀n ≥ 1.

So, by (17) , we deduce

b(w, λn)
‖w‖X

≤ ‖f‖X + 2m1

(‖f‖2X
m2

2

+ 1
)
,

and then

sup
w∈X,w 6=0X

b(w, λn)
‖w‖X

≤ ‖f‖X + 2m1

(‖f‖2X
m2

2

+ 1
)
.

Thus, by our assumption, for all n ≥ 1,

α n ≤ ‖f‖X + 2m1

(‖f‖2X
m2

2

+ 1
)
,

which is impossible.



36 Andaluzia Matei, Raluca Ciurcea

[Proof of Theorem 3] Let n0 > 0 be a positive integer such that ‖λn0‖Y < n0

and let µ ∈ Λ be arbitrarily fixed. We define

σ = λn0 + ε(µ− λn0).

This element σ is an element of Λn0 . Indeed, if µ = λn0 , we can take ε = 1;
if µ 6= λn0 , then, we take ε such that |ε| < n0−‖λn0‖Y

‖µ−λn0‖Y
. Since

b(un0 , σ − λn0) ≤ 0,

we have

εb(un0 , µ− λn0) ≤ 0.

As µ was arbitrarily fixed, we deduce

b(un0 , µ− λn0) ≤ 0, ∀µ ∈ Λ.

It follows that (un0 , λn0) is a solution of Problem 3.

Under additional assumptions, we investigate the uniqueness and the
stability of the solution of Problem 3. More precisely, in addition to (11),
(12) and (13), we consider the following assumptions

J : X → [0,∞) is Gâteaux differentiable, (18)
there exists L > 0 : ‖∇J(u)−∇J(v)‖X ≤ L‖u− v‖X

∀u, v ∈ X, (19)
there exists m > 0 : (∇J(u)−∇J(v), u− v)X ≥ m‖u− v‖2X

∀u, v ∈ X. (20)

Theorem 4. Assume (11), (12), (13), (18) and (20). Then, Problem 3 has
a unique solution. If we assume in addition that (19) holds, then the solution
depends Lipschitz continuously on the data f.

Proof. The set of the solutions of Problem 3 coincide with the set of the
solutions of the following problem: find u ∈ X and λ ∈ Λ such that

(P ) :
{

(∇J(u), v)X + b(v, λ) = (f, v)X ∀v ∈ X,
b(u, µ− λ) ≤ 0 ∀µ ∈ Λ.
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Indeed, if (u, λ) is a solution of the problem (P ), then

(∇J(u), v − u)X + b(v − u, λ) = (f, v − u)X ∀v ∈ X.

As J is Gâteaux differentiable and convex we know that

(∇J(u), v − u)X ≤ J(v)− J(u), ∀v ∈ X.

Taking into account the last two relations, we conclude that

J(v)− J(u) + b(v − u, λ) ≥ (f, v − u)X ∀v ∈ X,

and due to the fact that b(u, µ − λ) ≤ 0 ∀µ ∈ Λ, this means that (u, λ) is
a solution of Problem 3.

Conversely, let (u, λ) be a solution of Problem 3. Consequently,

J(v)− J(u) + b(v − u, λ) ≥ (f, v − u)X ∀v ∈ X. (21)

Let t > 0 be arbitrarily chosen. Using the above inequality with u + tv
instead of v we get

J(u+ tv)− J(u)
t

≥ (f, v)X − b(v, λ) ∀v ∈ X.

By taking t→ 0 we have

(∇J(u), v)X ≥ (f, v)X − b(v, λ) ∀v ∈ X. (22)

On the other hand, if we put u− tv instead of v in (21) it follows

J(u+ (−t)v)− J(u)
−t

≤ (f, v)X − b(v, λ) ∀v ∈ X,

and taking again t→ 0 we have

(∇J(u), v)X ≤ (f, v)X − b(v, λ) ∀v ∈ X. (23)

The relations (22) and (23) lead to the equality

(∇J(u), v)X = (f, v)X − b(v, λ) ∀v ∈ X,
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which allows us to conclude that (u, λ) is a solution of the problem (P ). The
problem (P) has at least one solution since we already know that Problem
3 has at least one solution.

We prove now that the solution of the problem (P) is unique. For this
purpose we consider (u1, λ1) and (u2, λ2) solutions of the problem (P ). Thus,

(∇J(u1)−∇J(u2), v)X + b(v, λ1 − λ2) = 0 ∀v ∈ X,

and for v = u2 − u1

(∇J(u1)−∇J(u2), u2 − u1)X + b(u2 − u1, λ1 − λ2) = 0.

Since

b(u2 − u1, λ1 − λ2) ≤ 0,

we deduce that

(∇J(u1)−∇J(u2), u1 − u2)X ≤ 0.

Using (20), we obtain

m‖u1 − u2‖2X ≤ (∇J(u1)−∇J(u2), u1 − u2)X ≤ 0,

and from this, we conclude u1 = u2. Moreover, as

(∇J(u1)−∇J(u2), v)X + b(v, λ1 − λ2) = 0 ∀v ∈ X,

we get

b(v, λ1 − λ2) = 0 ∀v ∈ X.

Thus, by the inf-sup property of the form b we get

α‖λ1 − λ2‖Y ≤ sup
v∈X,v 6=0X

b(v, λ1 − λ2)
‖v‖X

= 0,
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and so it follows that λ1 = λ2. Finally, we conclude that the problem (P )
has a unique solution. Consequently, Problem 3 has a unique solution.

Next we prove that the solution of the problem (P ) depends Lipschitz
continuously on the data f. For this purpose we consider (u1, λ1) and (u2, λ2)
solutions of the problem (P ) corresponding to the data f1 and f2, respec-
tively. Therefore

(∇J(u1), v)X + b(v, λ1) = (f1, v)X ∀v ∈ X,
(∇J(u2), v)X + b(v, λ2) = (f2, v)X ∀v ∈ X,

and then

b(v, λ1 − λ2) = (f1 − f2, v)X + (∇J(u2)−∇J(u1), v)X ∀v ∈ X,

which, for v = u1 − u2, leads to

(∇J(u1)−∇J(u2), u1−u2)X = (f1−f2, u1−u2)X+b(u2−u1, λ1−λ2). (24)

From the inf-sup property of the form b we get

α‖λ1 − λ2‖Y ≤ sup
v∈X,v 6=0X

b(v, λ1 − λ2)
‖v‖X

= sup
v∈X,v 6=0X

(f1 − f2, v)X + (∇J(u2)−∇J(u1), v)X
‖v‖X

≤ ‖∇J(u1)−∇J(u2)‖X + ‖f1 − f2‖X ,

and, using (19), it follows that

α‖λ1 − λ2‖Y ≤ L‖u1 − u2‖X + ‖f1 − f2‖X . (25)

Now, from (24) and b(u2 − u1, λ1 − λ2) ≤ 0, we can write

(∇J(u1)−∇J(u2), u1 − u2)X ≤ (f1 − f2, u1 − u2)X
≤ ‖f1 − f2‖X‖u1 − u2‖X .

This inequality together with (20) leads us to

m‖u1 − u2‖X ≤ ‖f1 − f2‖X . (26)

Thus, from (25) and (26), we conclude that there exists A = A(L,α,m) > 0
such that

‖u1 − u2‖X + ‖λ1 − λ2‖Y ≤ A‖f1 − f2‖X .
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5 The solvability of Problem 2

The purpose of this section is to study the solvability of Problem 2 using the
abstract results delivered in the previous section.

Theorem 5 ( An existence result ). Assume (5) and (6). Then, Problem 2
has at least one solution.

Proof. Using (5) and (6) we deduce that the functional J, see (8), has the
properties (11). As ω is a convex lower semicontinuous function, it follows
that J is also a convex lower semicontinuous function. In addition,

J(v) =
∫

Ω
ω(ε(v(x)))dx ≥ α2

∫
Ω
|ε(v(x))|2dx = α2(ε(v), ε(v))H = α2‖v‖2V .

Also,

J(v) =
∫

Ω
ω(ε(v(x)))dx ≤ α1‖v‖2V .

The bilinear form b, see (10), and the subset Λ, see (9), verify the required
properties (12) with X = V and Y = D. We can write

|b(v,µ)| ≤ ‖µ‖D‖v‖γ(V ),

and from this, due to the fact that γ is a linear and continuous operator, we
deduce that there exists Mb > 0 such that (12)-i) is verified.

Using the operator R, see (3), it can be proved that there exists α > 0
such that the form b defined in (10), verifies (12)-ii). Indeed, there exists
c̄ > 0 such that

‖µ‖D = sup
w∈γ(V ),w 6=0γ(V )

< µ,w >

‖w‖γ(V )

≤ c̄ sup
w∈γ(V ),w 6=0γ(V )

b(Rw,µ)
‖Rw‖V

≤ c̄ sup
v∈V, v 6=0V

b(v,µ)
‖v‖V

,

and we can take α =
1
c̄
.
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We end the proof of this theorem by applying Theorem 3, thus getting
the existence of the solution of Problem 2.

Let us assume in addition to the hypotheses (5) and (6) the following
hypotheses.

ω is Gâteaux differentiable, (27)
there exists L > 0 : |∇ω(ε)−∇ω(τ )| ≤ L|ε− τ |

∀ε, τ ∈ S3, (28)
there exists m > 0 : (∇ω(ε)−∇ω(τ )) · (ε− τ ) ≥ m|ε− τ |2

∀ε, τ ∈ S3. (29)

Taking into account the properties of the projection operator, it can be
proved that the function ω given by example (7), verifies also (27)-(29).

Let us prove the following theorem.

Theorem 6 ( An existence, uniqueness and stability result ). Let us assume
(5), (6), (27)-(29). Then, Problem 2 has a unique solution. Moreover, if
(u1, λ1) and (u2, λ2) are two solutions of Problem 2 corresponding to the
data f1, f2 ∈ V, then there exists C > 0 such that

‖u1 − u2‖V + ‖λ1 − λ2‖D ≤ C‖f1 − f2‖V . (30)

Proof. The set of the solutions of Problem 2 coincides with the set of the
solutions of the following problem: find u ∈ V and λ ∈ Λ such that

(∇J(u),v)V + b(v,λ) = (f ,v)V ∀v ∈ V
b(u,µ− λ) ≤ 0 ∀µ ∈ Λ.

Using (27)-(29), we deduce that J : V → [0,∞) verifies (18)-(20). Indeed,

J(u+ tv)− J(u)
t

=
∫

Ω

ω(ε(u(x) + tv(x)))− ω(ε(u(x)))
t

dx,

and, as ω is Gâteaux differentiable, for any δ > 0 there exists some η > 0
such that for |t| < η we have

J(u+ tv)− J(u)
t

≥
∫

Ω
∇ω(ε(u(x))) · ε(v(x))dx− δmeas(Ω),

J(u+ tv)− J(u)
t

≤
∫

Ω
∇ω(ε(u(x))) · ε(v(x))dx+ δmeas(Ω).
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Consequently, J is Gâteaux differentiable and

(∇J(u),v)V =
∫

Ω
∇ω(ε(u(x))) · ε(v(x))dx.

Then, in order to prove (19) , we consider

‖∇J(u)−∇J(v)‖V = sup
w∈V,w 6=0V

(∇J(u)−∇J(v),w)V
‖w‖V

= sup
w∈V,w 6=0V

∫
Ω(∇ω(ε(u(x))−∇ω(ε(v(x)))) · ε(w(x))dx

‖w‖V

= sup
w∈V,w 6=0V

(∇ω(ε(u))−∇ω(ε(v)), ε(w))H
‖w‖V

≤ sup
w∈V,w 6=0V

‖∇ω(ε(u))−∇ω(ε(v))‖H‖ε(w)‖H
‖w‖V

,

which, together with ‖ε(w)‖H = ‖w‖V and (28), implies that the next
relations hold true:

‖∇J(u)−∇J(v)‖V ≤ ‖∇ω(ε(u))−∇ω(ε(v))‖H
≤ L‖ε(u)− ε(v)‖H
= L‖u− v‖V .

Now, using (29), we prove that J verifies (20):

(∇J(u)−∇J(v),u− v)V =

=
∫

Ω
(∇ω(ε(u(x)))−∇ω(ε(v(x)))) · (ε(u(x))− ε(v(x)))dx

≥ m
∫

Ω
|ε(u(x))− ε(v(x))|2dx =

= m‖u− v‖2V .

At this point, we recall that J is also convex and lower semicontinuous
and the form b verifies (12) with X = V and Y = D. Thus, we may ap-
ply Theorem 4, getting that Problem 2 has a unique solution and also, for
(u1, λ1) and (u2, λ2) two solutions of Problem 2 corresponding to the data
f1, f2 ∈ V, there exists C > 0 such that (30) holds.
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Hence, the weak solvability of Problem 1 is substantiated.
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