
VIABILITY FOR MULTI-VALUED

SEMILINEAR REACTION-DIFFUSION

SYSTEMS∗

Monica Burlică†
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The aim of this paper is to prove some viability results for semi-
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perturbations of infinitesimal generators of C0−semigroups.
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1 Introduction

The purpose of this paper is to prove some viability results referring to
a class of semilinear reaction-diffusion systems, results announced without
proofs in Burlică [1]. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real Banach spaces,
A : D(A) ⊆ X → X and B : D(B) ⊆ Y → Y the infinitesimal generators of
two C0-semigroups, {SA(t) : X → X; t ≥ 0} and {SB(t) : Y → Y ; t ≥ 0}
respectively, K a nonempty and locally closed subset in X ×Y, F : K → Xa
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given function and G : K ; Y a given multi-function. We consider a semi-
multi-valued reaction-diffusion system of the form:

u′(t) = Au(t) + F (u(t), v(t)), t ≥ 0
v′(t) ∈ Bv(t) +G(u(t), v(t)), t ≥ 0
u(0) = ξ, v(0) = η,

(1)

where ξ ∈ X, η ∈ Y.

Definition 1. By a mild solution of the multi-valued Cauchy problem (1)
on [ 0, T ] we mean a continuous function (u, v) : [ 0, T ]→ K, for which there
exists g ∈ L1( 0, T ;Y ) such that g(s) ∈ G(u(s), v(s)) a.e. for s ∈ [ 0, T ] and

u(t) = SA(t)ξ +
∫ t

0
SA(t− s)F (u(s), v(s)) ds

v(t) = SB(t)η +
∫ t

0
SB(t− s)g(s) ds

(2)

for each t ∈ [ 0, T ].

Definition 2. The set K is viable with respect to (A+F,B+G) if for each
(ξ, η) ∈ K there exists T > 0 such that the Cauchy problem (1) has at least
one mild solution (u, v) : [ 0, T ]→ K.

2 Preliminaries

We assume that the reader is familiar with the basic concepts and results
concerning multi-functions, linear evolution and semilinear differential inclu-
sions in Banach spaces and we refer to Cârjă [4] and Vrabie [9] for details.

In the sequel (X, ‖ · ‖) will always be a Banach space. For ξ ∈ X and
ρ > 0, D(ξ, ρ) denotes the closed ball in X of radius ρ centered in ξ and
dist(E,K) denotes the usual distance between the subsets E and K, i.e.
dist(E,K) = inf(x,y)∈E×K ‖x− y‖.

We begin by recalling some definitions and basic results concerning u.s.c.
multi-functions, the Hausdorff measure of noncompactness and uniqueness
functions.

Let K be a subset in X and F : K ; X a given multi-function, i.e a
function F : K → 2X .
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Definition 3. The multi-function F : K ; X is upper semicontinuous
(u.s.c.) at ξ ∈ K if for every open neighborhood V of F (ξ) there exists an
open neighborhood U of ξ such that F (η) ⊆ V for each η ∈ U ∩K. We say
that multi-function F : K ; X is upper semicontinuous (u.s.c.) on K if it
is u.s.c. at each ξ ∈ K.

In all that follows, strongly-weakly u.s.c. designates a multi-function
which is u.s.c. if its domain is endowed with the strong (norm) topology and
its range is endowed with the weak topology.

Lemma 1. Let X be a Banach space, K a nonempty subset in X and
F : K ; X a nonempty and ( weakly ) compact valued, ( strongly-weakly )
u.s.c. multi-function. Then, for each compact subset C of K, ∪ξ∈CF (ξ) is
(weakly) compact and, in particular, there exists M > 0 such that ‖η‖ ≤M
for each ξ ∈ C and each η ∈ F (ξ).

See Cârjă-Necula-Vrabie [6], Lemma 2.6.1, p.47.

Lemma 2. Let X be a Banach space, K a nonempty subset in X and
F : K ; X be a nonempty, closed and convex valued, strongly-weakly u.s.c.
multi-function. Let um : [ 0, T ] → X and fm ∈ L1(0, T ;X) be such that
fm(t) ∈ F (um(t)) for each m ∈ N and a.e. for t ∈ [ 0, T ]. If limm um(t) =
u(t) a.e. for t ∈ [ 0, T ] and limm fm = f weakly in L1(0, T ;X), then f(t) ∈
F (u(t)) a.e. for t ∈ [ 0, T ].

See Cârjă-Necula-Vrabie [6], Lemma 2.6.2, p. 47-48.
Let B(X) be the family of all bounded subsets of X.

Definition 4. The function β : B(X)→ R+, defined by

β(B) = inf

ε > 0;∃x1, x2, ...xn(ε) ∈ X,B ⊆
n(ε)⋃
i=1

D(xi, ε)


is called the Hausdorff-measure of noncompactness on X.

Remark 1. We have β(B) = 0 if and only if B is a relatively compact
set. If X is finite dimensional, the class of relatively compact subsets of X
coincides with B(X), so, in this case, β ≡ 0.
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Lemma 3. Let Y be a subspace in X, let B ∈ B(X) and let

βY (B) = inf

ε > 0;∃x1, x2, . . . xn(ε) ∈ Y, B ⊆
n(ε)⋃
i=1

D(xi, ε)

 .

Then for each B ∈ B(Y ) we have

β(B) ≤ βY (B) ≤ 2β(B).

For details, see Cârjă-Necula-Vrabie [6], Problem 2.7.2, p.49.

Definition 5. A function ω : R+ → R+ which is continuous, nondecreasing
and the only solution of the Cauchy problem{

x′(t) = ω(x(t))
x(0) = 0

is x ≡ 0 is called a uniqueness function.

Remark 2. If ω : R+ → R+ is a uniqueness function, then, for each k > 0,
kω is a uniqueness function too.

Next, we recall for easy reference the basic viability results, established
in Cârjă-Necula-Vrabie [5] and [6], concerning the autonomous multi-valued
semilinear Cauchy problem{

u′(t) ∈ Au(t) + F (u(t)), t ≥ 0
u(0) = ξ,

(3)

where A : D(A) ⊆ X → X is the infinitesimal generator of C0-semigroup
{S(t) : X → X; t ≥ 0}, K is a nonempty subset in X and F : K ; X is a
given multi-function.

Definition 6. By a mild solution of the problem (3) on [ 0, T ] we mean a
continuous function u : [ 0, T ] → K, for which there exists f ∈ L1(0, T ;X)
such that f(s) ∈ F (u(s)) a.e. for s ∈ [ 0, T ] and

u(t) = S(t)ξ +
∫ t

0
S(t− s)f(s) ds (4)

for each t ∈ [ 0, T ].
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Definition 7. The set K ⊆ X is viable with respect to A + F if for each
ξ ∈ K, there exists T > 0 such that the Cauchy problem (3) has at least one
mild solution u : [ 0, T ]→ K.

In Cârjă-Necula-Vrabie [5] and [6] a new concept of tangent set is defined
and used in order to prove necessary and sufficient conditions for viability
with respect to A + F. We recall that the subset K ⊆ X is locally closed
if for each ξ ∈ K there exists ρ > 0 such that D(ξ, ρ) ∩K is closed. Each
subset in X which is either open or closed is locally closed. Moreover, each
subset K in X which is closed relative to some open subset D, i.e. for which
there exists a closed subset C ⊂ X such that K = C ∩D, is locally closed
in X.

If E is a nonempty subset in X, we denote by

E = {f ∈ L1(R+;X); f(s) ∈ E a.e. for s ∈ R+ }.

Definition 8. Let A : D(A) ⊆ X → X be the infinitesimal generator of a
C0−semigroup, {S(t) : X → X; t ≥ 0}, K a subset in X and ξ ∈ K. We say
that the set E ⊆ X is A− quasi-tangent to the set K at the point ξ if for
each ρ > 0, we have

lim inf
h↓0

1
h

dist (SE(h)ξ;K ∩D(ξ, ρ)) = 0, (5)

where

SE(h)ξ =
{
S(h)ξ +

∫ h

0
S(h− s)f(s) ds; f ∈ E

}
.

We denote by QT SAK(ξ) the class of all A-quasi-tangent sets to K at
ξ ∈ K.

Remark 3. Let K ⊆ X, ξ ∈ K and E ⊆ X. Then the following conditions
are equivalent:

(i) E ∈ QT SAK(ξ);

(ii) for each ε > 0, ρ > 0 and δ > 0 there exist h ∈ (0, δ), p ∈ D(0, ε) and
f ∈ E such that

S(h)ξ +
∫ h

0
S(h− s)f(s) ds+ hp ∈ K ∩D(ξ, ρ);
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(iii) there exist three sequences, (hn)n in R+ with hn ↓ 0, (pn)n in X with
limn pn = 0, and (fn)n ∈ E , with limn

∫ hn

0 S(hn − s)fn(s) ds = 0 and

S(hn)ξ +
∫ hn

0
S(hn − s)fn(s) ds+ hnpn ∈ K.

Before proceeding to the main results in this section,we introduce first:

Definition 9. A set C ⊆ X is quasi-weakly (relatively) compact if, for each
r > 0, C ∩D(0, r) is weakly (relatively) compact.

We present now a necessary condition for mild viability.

Theorem 1. Let X be a Banach space, A : D(A) ⊆ X → X the infinitesimal
generator of a C0-semigroup, {S(t) : X → X; t ≥ 0}, K a nonempty subset
in X and F : K ; X a nonempty valued multi-function. If K is viable
with respect to A+ F then, for each ξ ∈ K at which F is u.s.c. and F (ξ) is
convex and quasi-weakly compact, we have

F (ξ) ∈ QT SAK(ξ). (6)

The main sufficient condition for mild viability is:

Theorem 2. Let X be a Banach space, A : D(A) ⊆ X → X the infinites-
imal generator of a compact C0-semigroup, {S(t) : X → X; t ≥ 0}, K
a nonempty and locally closed subset in X and F : K ; X a nonempty,
weakly compact and convex valued, strongly-weakly u.s.c. multi-function. If
for each ξ ∈ K, the tangency condition (6) is satisfied, then K is viable with
respect to A+ F.

3 The main results

We focus our attention to the main necessary and sufficient conditions for
viability in the case of reaction diffusion systems of the form (1).

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) two real Banach spaces, K ⊆ X × Y, F :
K → X, G : K ; Y, and ξ ∈ X, η ∈ Y. We assume that the operators
A : D(A) ⊆ X → X and B : D(B) ⊆ Y → Y are the generators of two
C0-semigroups, {SA(t) : X → X; t ≥ 0} and {SB(t) : Y → Y ; t ≥ 0}
respectively.
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The system (1) can be written as a multi-valued semilinear Cauchy prob-
lem in a product space. Let X = X × Y be endowed with the norm ‖ · ‖,
defined by ‖(x, y)‖X = ‖x‖X + ‖y‖Y , for each (x, y) ∈ X . Let A = (A,B) :
D(A) ⊆ X → X be defined by D(A) = D(A) ×D(B), A(x, y) = (Ax,By )
for each (x, y) ∈ D(A) and let F : K ; X , F(z) = (F (z), G(z) ) for each
z = (x, y) ∈ K, where (F (z), G(z) ) = {F (z), η); η ∈ G(z)}. So, the system
(1) can be written as {

z′(t) ∈ Az(t) + F(z(t))
z(0) = ζ,

(7)

where ζ = (ξ, η). We notice that, in the hypotheses above, A is the infinites-
imal generator of a C0-semigroup { S(t) : X → X ; t ≥ 0}, given by

S(t)(ξ, η) = (SA(t)ξ, SB(t)η)

for each t ≥ 0 and (ξ, η) ∈ X . Let us remark that K is viable with respect
to (A + F,B + G) in sense of Definition 2 if and only if K is viable with
respect to A+F in sense of Definition 7, which means that for each ζ ∈ K,
there exists T > 0 such that the problem (7) has at least one mild solution
z : [ 0, T ]→ K.

From Theorem 1 we deduce the necessary condition for viability.

Theorem 3. Let X and Y be Banach spaces, K a nonempty subset in X×Y,
A : D(A) ⊆ X → X, B : D(B) ⊆ Y → Y the infinitesimal generators of
two C0-semigroups, {SA(t) : X → X; t ≥ 0} and {SB(t) : Y → Y ; t ≥ 0}
respectively, F : K → X a continuos function and G : K ; Y a nonempty,
convex and quasi-weakly compact valued, u.s.c. multi-function. If K is viable
with respect to (A+ F,B +G) then, for each ζ ∈ K we have:

(F (ζ), G(ζ)) ∈ QT SAK(ζ). (8)

In order to state and prove some sufficient conditions for viability, we
need the hypotheses below.

(H1) A : D(A) ⊆ X → X, B : D(B) ⊆ Y → Y are the generators of two
C0-semigroups, {SA(t) : X → X; t ≥ 0} and {SB(t) : Y → Y ; t ≥ 0}
respectively;

(H2) K ⊆ X × Y is nonempty and locally closed;
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(H3) F : X × Y → X is continuous and globally Lipschitz with respect to
its first argument, i.e. there exists L > 0 such that

‖F (u, v)− F (ũ, v)‖ ≤ L‖u− ũ‖

for each (u, v), (ũ, v) ∈ X × Y ;

(H4) A+F is Y−uniformly locally of βX−compact type, which means that
F is continuous and, for each ζ = (ξ, η) ∈ K, there exist ρ > 0,
a continuous function l : R+ → R+ and a uniqueness function ω :
R+ → R+ such that, for each subset C ⊆ DX×Y (ζ, ρ) ∩K, with ΠY C
relatively compact, and for each t > 0, we have

βX(SA(t)F (C)) ≤ l(t)ω(βX×Y (C));

(H5) {SB(t) : Y → Y, t ≥ 0} is compact;

(H6) G : K ; Y is strongly-weakly u.s.c. multi-function with nonempty,
convex and weakly compact values.

Theorem 4. Assume that (H1), (H2), (H3), (H5) and (H6) are satisfied.
If, for each ζ ∈ K the tangency condition (8) is satisfied, then K is viable
with respect to (A+ F,B +G).

Theorem 5. Assume that (H1), (H2), (H4), (H5) and (H6) are satisfied.
If, for each ζ ∈ K the tangency condition (8) is satisfied, then K is viable
with respect to (A+ F,B +G).

A nonautonomous variant of Theorem 4 is stated below. Let us consider
the quasi-autonomous semilinear system

u′(t) = Au(t) + F (t, u(t), v(t)), t ≥ τ
v′(t) ∈ Bv(t) +G(t, u(t), v(t)), t ≥ τ
u(τ) = ξ, v(τ) = η

(9)

where K ⊆ R×X × Y, F : R×X × Y → X and G : K; Y.

Let X = R×X endowed with the norm ‖(t, x)‖X = |t|+ ‖x‖X , for each
(t, x) ∈ X . Let A = (0, A), z(s) = (s+ τ, u(s+ τ)), w(s) = v(s+ τ) and let
F : X × Y → X, F(z, w) = ( 1, F (z, w) ) for each (z, w) ∈ X × Y. With the
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notation above the system (9) can be written as an autonomous one in the
space X × Y 

z′(s) = Az(s) + F(z(s), w(s)), s ≥ 0
w′(s) ∈ B(s) +G(z(s), w(s)), s ≥ 0
z(0) = (τ, ξ), w(0) = η

(10)

From Theorem 4 we deduce:

Theorem 6. Assume that X and Y are Banach spaces and (H1), (H5) are
satisfied. Let K ⊆ R×X × Y be a nonempty and locally closed set, F : R×
X×Y → X be continuous and G : K; Y be locally bounded, strongly-weakly
u.s.c. multi-function with nonempty, convex and weakly compact values. Let
us assume that F is globally Lipschitz with respect to its first and second
arguments i.e. there exists L > 0 such that

‖F (t, u, v)− F (t̃, ũ, v)‖ ≤ L(|t− t̃|+ ‖u− ũ‖).

If, for each (τ, ξ, η) ∈ K the next tangency condition

(1, F (τ, ξ, η), G(τ, ξ, η)) ∈ QT S(A,B)
K (τ, ξ, η) (11)

is satisfied, then K is viable with respect to (A+ F,B +G).

The nonautonomous case was studied in Necula-Vrabie [8] in the case
when A and B are m-dissipative possibly nonlinear operators, while both F
and G are single-valued, F is jointly continuous and locally Lipschitz with
respect to its second variable, G is continuous and the semigroup generated
by B is compact.

4 Proofs of Theorem 4 and Theorem 5

The proofs are essentially based on the construction of an ε−approximate
solution for the Cauchy problem (3), i.e. a 5−uple (σ, θ, g, f, u ) given by
lemma below.

Lemma 4. Let X,Y be real Banach spaces, A : D(A) ⊆ X × Y → X × Y
the infinitesimal generator of a C0-semigroup, {S(t) : X × Y → X × Y ; t ≥
0 }, K a nonempty and locally closed subset in X × Y and F : K ; X × Y
a given nonempty-valued and locally bounded multi-function satisfying the
tangency condition (6). Let ζ ∈ K be arbitrary and let r > 0 be such that
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DX×Y (ζ, r)∩K is closed. Then, there exist ρ ∈ (0, r ] and T > 0 such that, for
each ε ∈ (0, 1), there exist σ : [ 0, T ]→ [ 0, T ] nondecreasing, θ : { (t, s); 0 ≤
s < t ≤ T} → [ 0, T ] measurable, G : [ 0, T ] → X × Y, f̃ : [ 0, T ] → X × Y
Bochner integrable and z : [ 0, T ]→ X × Y continuous such that:

(i) s− ε ≤ σ(s) ≤ s for each s ∈ [ 0, T ];

(ii) z(σ(s)) ∈ DX×Y (ζ, r)∩K for each s ∈ [ 0, T ] and z(T ) ∈ DX×Y (ζ, r)∩
K;

(iii) ‖G(s)‖ ≤ ε for each s ∈ [ 0, T ] and f̃(s) ∈ F(z(σ(s)) a.e. for s ∈
[ 0, T ];

(iv) θ(t, s) ≤ t for each 0 ≤ s < t ≤ T and t 7→ θ(t, s) is nonexpansive on
( s, T ];

(v) z(t) = S(t)ζ +
∫ t

0
S(t− s)f̃(z(s)) ds+

∫ t

0
S(θ(t, s))G(s) ds

for each t ∈ [ 0, T ];

(vi) ‖z(t)− z(σ(t)) ‖ ≤ ε for each t ∈ [ 0, T ].

See Cârjă-Necula-Vrabie [5] and [6], Lemma 9.3.1, p.185.

Remark 4. Let K ⊆ X×Y be a nonempty, locally closed set and G : K; Y
be a strongly-weakly u.s.c. multi-function with nonempty, convex and weakly
compact valued, then G is locally bounded.

See Remark 7.1 in Cârjă-Necula-Vrabie [7].
Proof of Theorem 4 Let ζ = (ξ, η) ∈ K and r > 0 such that DX (ζ, r)∩

K be closed. Let us choose ρ ∈ ( 0, r ], N > 0, M ≥ 1 and a ≥ 0 such that
‖F (z)‖X ≤ N and ‖y‖Y ≤ N for every z ∈ DX (ζ, ρ)∩K and every y ∈ G(z)
and ‖S(t)‖L(X ) ≤ Meat, for every t ≥ 0. Since t 7→ S(t)ζ is continuous in
t = 0 and S(0)ζ = ζ, we may find a sufficiently small T > 0 such that

sup
t∈[ 0,T ]

‖S(t)ζ − ζ‖X + TMeaT (N + 1) ≤ ρ

and all the conclusions of Lemma 4, for the Cauchy problem (7), be satisfied.
Let (εn)n ↓ 0 be a sequence in (0, 1) and let ((σn, θn,Gn, f̃n, zn))n be a

sequence of (εn)n− approximate solutions defined on [ 0, T ] whose existence
is ensured by the Lemma 4. This means that f̃n = (fn, gn) is Lebesque
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integrable, fn(s) = F (zn(σn(s))) and gn(s) ∈ G(zn(σn(s))) a.e. for s ∈
[ 0, T ], and zn(σn(t)) ∈ DX (ζ, ρ) ∩ K, for n = 1, 2, . . . and each t ∈ [ 0, T ],
and

zn(t) = S(t)ζ +
∫ t

0
S(t− s)f̃n(s)ds+

∫ t

0
S(θn(t, s))Gn(s)ds

for each n ∈ N and t ∈ [ 0, T ]. Put zn = (un, vn). So, (un, vn) satisfies
un(t) = SA(t)ξ +

∫ t

0
SA(t− s)F (zn(σn(s)))ds+

∫ t

0
SA(θn(t, s))GXn (s)ds

vn(t) = SB(t)η +
∫ t

0
SB(t− s)gn(s)ds+

∫ t

0
SB(θn(t, s))GYn (s)ds,

(12)
where Gn(t) = (GXn (t),GYn (t)) for each n = 1, 2, ... and t ∈ [ 0, T ]. Since
‖gn(s)‖Y ≤ N for each n = 1, 2, ... and for a.a. s ∈ [ 0, T ], the family
{gn(·); n ∈ N} is uniformly integrable subset in L1(0, T ;Y ). Since the C0-
semigroup {SB(t) : Y → Y ; t ≥ 0} is compact and ‖GYn (s)‖Y ≤ εn < 1, from
Theorem 8.4.2 in Vrabie [9] it follows that {vn; n = 1, 2, ...} is relatively
compact in C([ 0, T ];Y ). As limn σn(t) = t uniformly for t ∈ [ 0, T ] we
deduce that there exists v ∈ C([ 0, T ];Y ) such that, on a subsequence at
least, limn vn(t) = v(t) and limn vn(σn(t)) = v(t) uniformly for t ∈ [ 0, T ].

At this point let us consider the problem:{
u′(t) = Au(t) + F (u(t), v(t)), t ≥ 0
u(0) = ξ,

(13)

where v ∈ C([ 0, T ];Y ) is as above. Since A is the infinitesimal generator of
a C0-semigroup and F is continuous on X × Y and globally Lipschitz with
respect to its first argument, it follows that the problem (13) has an unique
mild solution u : [ 0, T ]→ X, i.e.

u(t) = SA(t)ξ +
∫ t

0
SA(t− s)F (u(s), v(s))ds (14)

for each t ∈ [ 0, T ]. We will prove next that limn un(t) = u(t) uniformly for
t ∈ [ 0, T ]. Indeed, we have

‖un(σn(t))− u(t)‖X ≤ ‖un(σn(t))− un(t)‖X + ‖un(t)− u(t)‖X . (15)
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From (12) and (14), it follows that

‖un(t)− u(t)‖X ≤
∫ t

0
‖SA(θn(t, s))‖L(X)‖GXn (s)‖Xds

+
∫ t

0
‖SA(t− s)‖X‖F (un(σn(s)), vn(σn(s)))− F (u(s), v(s))‖Xds

.

for each t ∈ [ 0, T ]. Using (iii)1, (vi) and the Lipschitz’s condition for F, from
(15) we obtain

‖un(σn(t))− u(t)‖X ≤MeaT εn

+MeaT
∫ t

0
‖F (u(s), vn(σn(s)))− F (u(s), v(s))‖Xds

+LMeaT
∫ t

0
‖un(σn(s))− u(s)‖Xds,

(16)

for each t ∈ [ 0, T ]. On the other hand, εn ↓ 0, vn(σn(s)) → v(s) uniformly
for s ∈ [ 0, T ] and F is continuous. So, for each ε > 0 there exists n0 = n0(ε)
such that, for each n ∈ N, n ≥ n0 and for each t ∈ [ 0, T ] we have:

MeaT εn +MeaT
∫ t

0
‖F (u(s), vn(σn(s)))− F (u(s), v(s))‖Xds ≤ ε.

In view of (16) and the last inequality, we deduce

‖un(σn(t))− u(t)‖X ≤ ε+ LMeaT
∫ t

0
‖un(σn(s))− u(s)‖Xds

for all n ∈ N, n ≥ n0 and t ∈ [ 0, T ]. Gronwall’s Lemma implies

‖un(σn(t))− u(t)‖X ≤ εeLMTeaT

for each n ∈ N, n ≥ n0 and each t ∈ [ 0, T ]. Therefore limn un(σn(t)) = u(t)
uniformly for t ∈ [ 0, T ]. Taking into account (i) we deduce that limn un(t) =

1Throughout this section, reference to (i)–(vi) are to the corresponding items in
Lemma 4.
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u(t) uniformly for t ∈ [ 0, T ]. Since (un(σn(t)), vn(σn(t))) ∈ DX (ζ, ρ)∩K, for
n = 1, 2, . . . and each t ∈ [ 0, T ] and DX (ζ, ρ) ∩ K is closed, it follows that
(u(t), v(t)) ∈ DX (ζ, ρ) ∩ K for each t ∈ [ 0, T ].

Next, we will prove that (gn)n is weakly convergent in L1(0, T ;Y ) to
some function g. Indeed, since G is strongly-weakly u.s.c. with weakly com-
pact values and since {(un(σn(s)), vn(σn(s))); n = 1, 2, . . . , s ∈ [ 0, T ]} is
relatively compact in X ×Y, from Lemma 1 and using by Theorem 1.3.2. in
Cârjă-Necula-Vrabie [6] , it follows that the set

C = conv
∞⋃
n=1

⋃
s∈[ 0,T ]

G(un(σn(s)), vn(σn(s)))

is weakly compact. Since gn(s) ∈ C for n = 1, 2, . . . and a.e. for s ∈
[ 0, T ], we obtain that {gn(·); n = 1, 2, . . .} is weakly relatively compact
in L1(0, T ;Y ). So, on a subsequence at least, (gn)n is weakly convergent
in L1(0, T ;Y ) to some function g. From Lemma 2 it follows that g(s) ∈
G(u(s), v(s)) a.e. for s ∈ [ 0, T ].

Now, let us consider the mild solution operator Q : L1(0, T ;Y ) →
C([ 0, T ];Y ), defined by

(Qg)(t) = SB(t)η +
∫ t

0
SB(t− s)g(s) ds,

for each t ∈ [ 0, T ] and for each g ∈ L1(0, T ;Y ). As the graph of Q is
strongly×strongly closed and convex, it is weakly×strongly closed. So, we
may pass to the limit in the second relation of (12) and, taking into account
‖GYn (s)‖Y ≤ εn, we obtain

v(t) = SB(t)η +
∫ t

0
SB(t− s)g(s) ds.

Thus (u, v) is a mild solution of (1). The proof is complete.
We prove now, that, in the hypotheses of Theorem 5, there exists at least
one sequence (εn)n, with εn ↓ 0 such that the εn-approximate mild solutions
sequence ((σn, θn,Gn, f̃n, zn))n has the property that zn = (un, vn) is, on
a subsequence at least, uniformly convergent on [ 0, T ] to some function
(u, v) : [ 0, T ]→ K which is the mild solution of (1).

Proof of Theorem 5 Let ζ = (ξ, η) ∈ K be arbitrary and let r >
0, ρ ∈ (0, r ], N > 0, M ≥ 1, a ≥ 0 and T > 0 as in proof of Theorem 4.
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Since A + F is Y -uniformly locally of βX -compact type, diminishing ρ > 0
and T > 0, if necessary, it follows that there exist a continuous function
l : R+ → R+ and a uniqueness function ω : R+ → R+ such that

βX(SA(t)F (C)) ≤ l(t)ω(βX(ΠXC)) (17)

for each subset C ⊆ DX (ζ, ρ) ∩ K, with ΠY C relatively compact, and
for each t > 0. Let (εn)n with εn ↓ 0 be a sequence in (0, 1) and let
((σn, θn,Gn, f̃n, zn))n be a sequence of (εn)n− approximate mild solutions
for (7), defined on [ 0, T ]. Put f̃n = (fn, gn) and zn = (un, vn). So fn(s) =
F (zn(σn(s))), gn(s) ∈ G(zn(σn(s))) a.e. for s ∈ [ 0, T ], and zn(σn(t)) ∈
DX (ζ, ρ) ∩ K, for n = 1, 2, . . . and each t ∈ [ 0, T ]. From (v), we have

zn(t) = S(t)ζ +
∫ t

0
S(t− s)f̃n(s)ds+

∫ t

0
S(θn(t, s))Gn(s)ds, (18)

for each n = 1, 2, . . . and t ∈ [ 0, T ]. This means that (un, vn) satisfies
un(t) = SA(t)ξ +

∫ t

0
SA(t− s)F (zn(σn(s)))ds+

∫ t

0
SA(θn(t, s))GXn (s)ds

vn(t) = SB(t)η +
∫ t

0
SB(t− s)gn(s)ds+

∫ t

0
SB(θn(t, s))GYn (s)ds,

(19)
where 

Gn(s) = (GXn (s),GYn (s))

S(θn(t, s))Gn(s) = (SA(θn(t, s))GXn (s), SB(θn(t, s))GYn (s)),

for each n ∈ N and 0 ≤ s < t ≤ T.
Since the family {gn(·); n ∈ N} and {GYn (·); n ∈ N} are uniformly integrable
subsets in L1(0, T ;Y ) and the C0-semigroup {SB(t) : Y → Y ; t ≥ 0} is
compact, from Theorem 8.4.2 in Vrabie [9] it follows that {vn; n = 1, 2, ...} is
relatively compact in C([ 0, T ];Y ). As limn σn(t) = t uniformly for t ∈ [ 0, T ]
we deduce that there exists v ∈ C([ 0, T ];Y ) such that, on a subsequence at
least, limn vn(t) = v(t) and limn vn(σn(t)) = v(t) uniformly for t ∈ [ 0, T ].
We will prove that {un; n = 1, 2, . . .} is relatively compact in C( [ 0, T ];X ).

We consider first the case when X is a separable space.
Since ΠY { (un(σn(t)), vn(σn(t)));n ≥ k } = {vn(σn(t));n ≥ k } is relatively
compact in Y, A+F is Y−uniformly locally of βX−compact type, from (17),
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we get
βX({SA(t− s)F (un(σn(s)), vn(σn(s)));n ≥ k})

≤ l(t− s)ω(βX({un(σn(s) );n ≥ k})),
(20)

for each k = 1, 2, . . . and 0 ≤ s < t ≤ T. Since ‖GXn (s)‖X ≤ εn for each s ∈

[ 0, T ] it follows that βX

({∫ t

0
SA(θn(t, s))GXn (s)ds;n ≥ k

})
= 0. Similarly,

from (vi) we have that {un(σn(s))− un(s);n ≥ k} is relatively compact, for
each k ∈ N and s ∈ [ 0, T ], and so β({un(σn(s))− un(s);n ≥ k}) = 0.

Using these arguments, the inequality (20), Lemma 2.7.2 and Problem
2.7.1 from Cârjă-Necula-Vrabie [6], we deduce that

βX({un(t);n ≥ k} ) ≤ βX
({∫ t

0
SA(t− s)F (zn(σn(s)))ds;n ≥ k

})

+βX

({∫ t

0
SA(θn(t, s))GXn (s)ds;n ≥ k

})

≤
∫ t

0
βX({SA(t− s)F (zn(σn(s)));n ≥ k})ds

≤
∫ t

0
l(t− s)ω(βX({un(σn(s));n ≥ k}))ds

≤
∫ t

0
l(t− s)ω(βX({un(s);n ≥ k}+ {un(σn(s))− un(s);n ≥ k}))ds

≤
∫ t

0
mω (βX({un(s);n ≥ k}) + βX({un(σn(s))− un(s);n ≥ k})) ds

where m = supt∈[ 0,T ] l(t). Hence

βX({un(t);n ≥ k} ) ≤
∫ t

0
mω (βX({un(s);n ≥ k})) ds,

for each k = 1, 2, . . . and t ∈ [ 0, T ].
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Since βX({un(t);n ≥ k}) = βX({un(t);n ≥ 1}) and we set x(t) =
βX({un(t);n ≥ 1}), ω0 = mω, we deduce that

x(t) ≤
∫ t

0
ω0(x(s))ds,

for all t ∈ [ 0, T ].
But ω0 is a uniqueness function, so by Lemma 1.8.2 in Cârjă-Necula-

Vrabie [6], we have x(t) = 0, for all t ∈ [ 0, T ], which means that

βX({un(t);n ≥ 1}) = 0,

for all t ∈ [ 0, T ]. It follows that for each t ∈ [ 0, T ], {un(t);n = 1, 2, . . .}
is relatively compact in X. Since (F (zn))n is bounded, it is uniformly inte-
grable, so, by Theorem 8.4.1 in Vrabie [9], there exists u ∈ C([ 0, T ];X) such
that, on a subsequence at least,

lim
n

(
un(t)−

∫ t

0
SA(θn(t, s))GXn (s)ds

)
= u(t),

uniformly for t ∈ [ 0, T ]. But, by (iii),

lim
n

∫ t

0
SA(θn(t, s))GXn (s)ds = 0,

uniformly for t ∈ [ 0, T ], so limn un(t) = u(t), uniformly for t ∈ [ 0, T ].
If X is not separable, in view of Theorem 1.1.3, p.3 and Remark 1.1.2,

p.4 in Vrabie [9], there exists a separable and closed subspace Z of X such
that

SA(t)ξ, SA(r)F (un(σn(s)), vn(σn(s))), SA(θn(r, s))GXn (s) ∈ Z

for n = 1, 2, . . . and a.e. for t, r, s ∈ [ 0, T ]. Using Lemma 2.1 and the
monotonicity of ω, we have

βZ(SA(t)F (C)) ≤ 2βX(SA(t)F (C)) ≤ 2l(t)ω(βX(ΠXC)) ≤ 2l(t)ω(βZ(ΠXC)),

for each t > 0 and for each set C ⊆ DX (ζ, ρ)∩K∩(Z×Y ) with ΠY C relatively
compact. Since the restriction of βZ to B(Z) is the Hausdorff measure of
noncompactness on Z, we repeat now the arguments in the separable case
with βX replaced by βZ and ω replaced by 2ω.

So, limn un(t) = u(t), uniformly for t ∈ [ 0, T ]. From now on the proof
follows the same lines as those of the proof of Theorem 4.
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Remark 5. We cannot deduce Theorem 3.2 from Theorem 11.1 in Cârjă-
Necula-Vrabie [5] because the multi-function G is only strongly-weakly u.s.c.,
so, in this case, A+ F it cannot be locally of compact type.

5 An example

Let Ω ⊆ Rn, n = 1, 2, . . . be a bounded domain with C2 boundary Γ, let
δ1 ≥ 0, δ2 > 0, p > 0, q > 0, let f : R × R → R+, gi : R × R → R−
for i = 1, 2 be given functions and let us consider the following general
semilinear predator-pray system

ut = δ1∆u− pu+ f(u, v) (t, x) ∈ Qτ,T
vt ∈ δ2∆v + qv + [g1(u, v), g2(u, v)] (t, x) ∈ Qτ,T
u(t, x) = v(t, x) = 0 (t, x) ∈ Στ,T ,
u(τ, x) = ξ(x), v(τ, x) = η(x) x ∈ Ω,

(21)

where 0 ≤ τ < T ≤ ∞, Qτ,T = (τ, T )× Ω, Στ,T = (τ, T )× Γ, ∆ is the usual

Laplace operator, i.e. ∆u =
n∑
i=1

∂2u

∂x2
i

and ξ, η ∈ L2(Ω). We assume that f is

continuous function, g1 is bounded and l.s.c. and g2 is bounded and u.s.c.
function on R×R and g1(u, v) ≤ g2(u, v) for each (u, v) ∈ R×R.
Let f̃ : R×R→ R+ and g̃ : R×R→ R− be two continuous functions such
that {

f(u, v) ≤ f̃(u, v)
g2(u, v) ≥ g̃(u, v)

(22)

for each (u, v) ∈ R×R. Let us consider also the comparison predator-pray
system 

ut = δ1∆u− pu+ f̃(u, v) (t, x) ∈ Q0,∞
vt = δ2∆v + qv + g̃(u, v) (t, x) ∈ Q0,∞
u(t, x) = v(t, x) = 0 (t, x) ∈ Σ0,∞,
u(0, x) = u0(x), v(0, x) = v0(x) x ∈ Ω,

(23)

where u0, v0 ∈ L2(Ω), u0(x) ≥ 0, v0(x) ≥ 0 a.e. for x ∈ Ω. Let (ũ, ṽ) :
R+ × Ω→ R+ ×R+ be a mild solution of (23).

Using the viability result, we are interested to show that, in the specific
hypotheses, for each (ξ, η) ∈ L2(Ω)× L2(Ω), with{

0 ≤ ξ(x) ≤ ũ(τ, x)
η(x) ≥ ṽ(τ, x)

(24)
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a.e. for x ∈ Ω, the system (21) has at least one solution (u, v) : R+ × Ω →
R+ ×R+, such that, for each t ∈ [ τ,∞), we have{

0 ≤ u(t, x) ≤ ũ(t, x)
v(t, x) ≥ ṽ(t, x)

(25)

a.e. for x ∈ Ω.
Let K ⊆ R× L2(Ω)× L2(Ω) be defined by

K =
{

(t, u, v) ∈ R+ × L2(Ω)× L2(Ω); (u, v) satisfies (27) below
}

(26){
0 ≤ u(x) ≤ ũ(t, x)
v(x) ≥ ṽ(t, x)

(27)

a.e. for x ∈ Ω.

Theorem 7. Let Ω ⊆ Rn, n = 1, 2, . . . , be a bounded domain with C2 boun-
dary Γ, δ1 ≥ 0, δ2 > 0 and let f : R ×R → R+ be continuous on R ×R
and globally Lipschitz with respect to its first argument, g1 : R ×R → R−
be bounded and l.s.c., g2 : R × R → R− be bounded and u.s.c. such that
g1(u, v) ≤ g2(u, v) for each (u, v) ∈ R × R. Let f̃ : R × R → R+, g̃ :
R ×R → R− be continuous such that (22) are satisfied. Assume that, for
each (u0, v0) ∈ R×R, u 7→ f̃(u, v0) and v 7→ g̃(u0, v) are nondecreasing, u 7→
g̃(u, v0) and v 7→ f̃(u0, v) are nonincreasing and there exist the constants ci ≥
0, i = 1, . . . , 5 such that |f̃(u, v)| ≤ c1|u|+c2, and |g̃(u, v)| ≤ c3|u|+c4|v|+c5
for each (u, v) ∈ R ×R. Let (u0, v0) ∈ L2(Ω) × L2(Ω) with u0(x) ≥ 0 and
v0(x) ≥ 0 a.e. for x ∈ Ω and let (ũ, ṽ) : R+ → L2(Ω) × L2(Ω) be a global
mild solution of (23) with ũ(t, x) ≥ 0 for each t ≥ 0 and a.e. for x ∈ Ω.
Let K be defined by (26). Then, for each (τ, ξ, η) ∈ K, the problem (21) has
at least one global mild solution (u, v) : [ τ,∞) → L2(Ω) × L2(Ω) satisfying
(t, u(t), v(t)) ∈ K, for each t ∈ [ τ,∞).

Proof. Let us denote by X = L2(Ω). We rewrite (21) and (23) as
an evolution systems in X × X. Let us define A : D(A) ⊆ X → X and
B : D(B) ⊆ X → X by

D(A) = H1
0 (Ω) ∩H2(Ω) and Au = δ1∆u− pu for u ∈ D(A)

and respectively by

D(B) = H1
0 (Ω) ∩H2(Ω) and Bv = δ2∆v + qv for v ∈ D(B).
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Let us define F : X ×X → X and G : X ×X ; X by

F (u, v)(x) = f(u(x), v(x)) for each (u, v) ∈ X ×X and a.e. for x ∈ Ω

and respectively by

G(u, v) = {g ∈ L2(Ω); g1(u(x), v(x)) ≤ g(x) ≤ g2(u(x), v(x)) a.e. forx ∈ Ω}

for each (u, v) ∈ X×X. Let us observe that F is well-defined, continuous on
X ×X and is globally Lipschitz with respect to its first argument. Since g1
is l.s.c., g2 is u.s.c. and both are bounded, we conclude that G is strongly-
weakly u.s.c. with nonempty, convex and weakly compact values. Let us
define F̃ : X ×X → X and G̃ : X ×X → X by

F̃ (u, v)(x) = f̃(u(x), v(x)) and G̃(u, v)(x) = g̃(u(x), v(x))

for each (u, v) ∈ X×X and a.e. for x ∈ Ω. Since f̃ and g̃ are continuous and
have sublinear growth, F̃ and G̃ are well-defined, continuous and have sub-
linear growth. With the notations above, the problem (21) can be rewritten
as the abstract system

u′(t) = Au(t) + F (u(t), v(t))
v′(t) ∈ Bv(t) +G(u(t), v(t))
u(τ) = ξ, v(τ) = η,

(28)

while (23) takes the abstract form
u′(t) = Au(t) + F̃ (u(t), v(t))
v′(t) = Bv(t) + G̃(u(t), v(t))
u(0) = u0, v(0) = v0.

(29)

We have to show first that K is viable with respect to (A + F,B + G)
and second that every mild solution (u, v) : [ τ, T ) → X × X, satisfying
(t, u(t), v(t)) ∈ K for each t ∈ [ τ, T ), can be extended to a global one obeying
the very same constraints. Let K̃ ⊆ R+ × L2(Ω)× L2(Ω) be defined by

K̃ =
{

(t, u, v) ∈ R+ × L2(Ω)× L2(Ω); (u, v) satisfy (31) below
}
. (30)

u(x) ≤ ũ(t, x), v(x) ≥ ṽ(t, x) (31)

a.e. for x ∈ Ω. To prove that K is viable with respect to (A + F,B + G)
it suffices to show that K̃ is viable with respect to (A + F,B + G). This is
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a direct consequence of the maximum principle for parabolic equations–see
Theorem 1.7.5. in Cârjă-Necula-Vrabie [6]– combined with the fact that F
and ũ are nonnegative. In view of Theorem 6, to show that K̃ is viable with
respect to (A+ F,B +G), we have merely to check the tangency condition

((τ + h, SA(h)ξ + hF (ξ, η), SB(h)η + hG(ξ, η)) ∈ QT SAeK(τ, ξ, η) (32)

for each (τ, ξ, η) ∈ K̃, where {SA(t) : X → X, t ≥ 0} is the C0-semigroup
generated by A and {SB(t) : X → X, t ≥ 0} is the compact C0-semigroups
generated by B and A = (A,B) .

Let (τ, ξ, η) ∈ K̃. To prove (32) it suffices that for each h > 0 there exist
(uh, vh) ∈ X ×X and gh ∈ G(ξ, η) with (τ + h, uh, vh) ∈ K̃ and

lim inf
h↓0

1
h
‖SA(h)ξ + hF (ξ, η)− uh‖ = 0

lim inf
h↓0

1
h
‖SB(h)η + hgh − vh‖ = 0.

(33)

Let us define gh(x) = g2(ξ(x), η(x)) a.e. for x ∈ Ω and uh and vh by

uh = SA(h)ξ +
∫ τ+h

τ
SA(τ + h− s)F (ξ, η) ds

+
∫ τ+h

τ
SA(τ + h− s)[ F̃ (ũ(s), ṽ(s))− F̃ (ũ(τ), ṽ(τ)) ] ds

and respectively by

vh = SB(h)η +
∫ τ+h

τ
SB(τ + h− s)gh ds

+
∫ τ+h

τ
SB(τ + h− s)[ G̃(ũ(s), ṽ(s))− G̃(ũ(τ), ṽ(τ)) ] ds.

Now let us observe that, inasmuch as ξ ≤ ũ(τ) and η ≥ ṽ(τ) a.e. on Ω, we
have both

SA(h)ξ ≤ SA(h)ũ(τ) and SB(h)η ≥ SB(h)ṽ(τ).

See Theorem 1.7.5 in Cârjă-Necula-Vrabie [6]. Recalling that f ≤ f̃ and
taking into account of the monotonicity properties of f̃ , we get

F (ξ, η) ≤ F̃ (ξ, η) ≤ F̃ (ũ(τ), ṽ(τ)).
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Using the fact that g2 ≥ g̃ and the monotonicity properties of g̃, we deduce

gh ≥ G̃(ξ, η) ≥ G̃(ũ(τ), ṽ(τ)).

So, we get both uh ≤ ũ(τ+h) and vh ≥ ṽ(τ+h) and thus (τ+h, uh, vh) ∈ K̃.
On the other hand

‖SA(h)ξ + hF (ξ, η)− uh‖ ≤
∫ τ+h

τ
‖SA(τ + h− s)F (ξ, η)− F (ξ, η)‖ ds

+Meah
∫ τ+h

τ
‖F̃ (ũ(s), ṽ(s))− F̃ (ũ(τ), ṽ(τ))‖ ds,

where M ≥ 1 and a > 0 are the growth constants of the C0-semigroups
{SA(t) : X → X, t ≥ 0} and {SB(t) : X → X, t ≥ 0}. Since F̃ , ũ and ṽ are
continuous we conclude that the first equality in (33) holds. Similarly, we
have

‖SB(h)η + hgh − vh‖ ≤
∫ τ+h

τ
‖SB(τ + h− s)gh − gh‖ ds

+Meah
∫ τ+h

τ
‖G̃(ũ(s), ṽ(s))− G̃(ũ(τ), ṽ(τ))‖ ds,

and we get the second equality from (33). This completes the proof of the
viability of K̃ and consequently the viability of K. Let us observe that
K satisfies the next property: for each sequence ((tn, ξn, ηn))n in K with
limn(tn, ξnηn) = (t, ξ, η) and t < TK, where TK is given by (34) below, it
follows that (t, ξ, η) ∈ K.

TK = sup{t ∈ R; there exist (ξ, η) ∈ X ×X, with (t, ξ, η) ∈ K}. (34)

Then it follows that each mild solution (u, v) : [ τ, T ] → X × X of (21)
satisfying (t, u(t), v(t)) ∈ K for each t ∈ [ τ, T ] can be continued up to a
global one (u∗, v∗) : [ τ, TK) → X × X satisfying the very same condition
on [ τ, TK). Since (ũ, ṽ) is defined on R+ and (t, ũ(t), ṽ(t)) ∈ K for each
t ∈ [ 0, ∞), we conclude that TK =∞ and this completes the proof.
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