VIABILITY FOR MULTI-VALUED SEMILINEAR REACTION-DIFFUSION SYSTEMS*

Monica Burlică[†]

Abstract

The aim of this paper is to prove some viability results for semilinear reaction-diffusion systems governed by multi-valued continuous perturbations of infinitesimal generators of C_0 -semigroups.

MSC: Primary 47J35, 35K57, 35K45; Secondary 47D03, 47D60.

keywords: C_0 -semigroup, reaction-diffusion system, viability, tangency set, tangency condition.

1 Introduction

The purpose of this paper is to prove some viability results referring to a class of semilinear reaction-diffusion systems, results announced without proofs in Burlică [1]. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be real Banach spaces, $A: D(A) \subseteq X \to X$ and $B: D(B) \subseteq Y \to Y$ the infinitesimal generators of two C_0 -semigroups, $\{S_A(t): X \to X; t \ge 0\}$ and $\{S_B(t): Y \to Y; t \ge 0\}$ respectively, \mathcal{K} a nonempty and locally closed subset in $X \times Y$, $F: \mathcal{K} \to X$ a

^{*}Accepted for publication on 12.01.2010.

[†]monicaburlica@yahoo.com Department of Matematics Graduate School, "Al.I.Cuza" University Iaşi, România; This work was supported by the PN-II-ID-PCE-2007-1, Grant ID-397.

given function and $G : \mathcal{K} \rightsquigarrow Y$ a given multi-function. We consider a semimulti-valued reaction-diffusion system of the form:

$$\begin{cases} u'(t) = Au(t) + F(u(t), v(t)), & t \ge 0\\ v'(t) \in Bv(t) + G(u(t), v(t)), & t \ge 0\\ u(0) = \xi, & v(0) = \eta, \end{cases}$$
(1)

where $\xi \in X$, $\eta \in Y$.

Definition 1. By a mild solution of the multi-valued Cauchy problem (1) on [0,T] we mean a continuous function $(u,v):[0,T] \to \mathcal{K}$, for which there exists $g \in L^1(0,T;Y)$ such that $g(s) \in G(u(s),v(s))$ a.e. for $s \in [0,T]$ and

$$\begin{cases} u(t) = S_A(t)\xi + \int_0^t S_A(t-s)F(u(s), v(s)) \, ds \\ v(t) = S_B(t)\eta + \int_0^t S_B(t-s)g(s) \, ds \end{cases}$$
(2)

for each $t \in [0, T]$.

Definition 2. The set \mathcal{K} is viable with respect to (A + F, B + G) if for each $(\xi, \eta) \in \mathcal{K}$ there exists T > 0 such that the Cauchy problem (1) has at least one mild solution $(u, v) : [0, T] \to \mathcal{K}$.

2 Preliminaries

We assume that the reader is familiar with the basic concepts and results concerning multi-functions, linear evolution and semilinear differential inclusions in Banach spaces and we refer to Cârjă [4] and Vrabie [9] for details.

In the sequel $(X, \|\cdot\|)$ will always be a Banach space. For $\xi \in X$ and $\rho > 0$, $D(\xi, \rho)$ denotes the closed ball in X of radius ρ centered in ξ and dist(E, K) denotes the usual distance between the subsets E and K, i.e. $dist(E, K) = \inf_{(x,y)\in E\times K} \|x-y\|$.

We begin by recalling some definitions and basic results concerning u.s.c. multi-functions, the Hausdorff measure of noncompactness and uniqueness functions.

Let K be a subset in X and $F: K \rightsquigarrow X$ a given multi-function, i.e a function $F: K \to 2^X$.

Definition 3. The multi-function $F : K \rightsquigarrow X$ is upper semicontinuous (u.s.c.) at $\xi \in K$ if for every open neighborhood V of $F(\xi)$ there exists an open neighborhood U of ξ such that $F(\eta) \subseteq V$ for each $\eta \in U \cap K$. We say that multi-function $F : K \rightsquigarrow X$ is upper semicontinuous (u.s.c.) on K if it is u.s.c. at each $\xi \in K$.

In all that follows, strongly-weakly u.s.c. designates a multi-function which is u.s.c. if its domain is endowed with the strong (norm) topology and its range is endowed with the weak topology.

Lemma 1. Let X be a Banach space, K a nonempty subset in X and $F: K \rightsquigarrow X$ a nonempty and (weakly) compact valued, (strongly-weakly) u.s.c. multi-function. Then, for each compact subset C of K, $\cup_{\xi \in C} F(\xi)$ is (weakly) compact and, in particular, there exists M > 0 such that $\|\eta\| \leq M$ for each $\xi \in C$ and each $\eta \in F(\xi)$.

See Cârjă-Necula-Vrabie [6], Lemma 2.6.1, p.47.

Lemma 2. Let X be a Banach space, K a nonempty subset in X and $F: K \to X$ be a nonempty, closed and convex valued, strongly-weakly u.s.c. multi-function. Let $u_m : [0,T] \to X$ and $f_m \in L^1(0,T;X)$ be such that $f_m(t) \in F(u_m(t))$ for each $m \in \mathbf{N}$ and a.e. for $t \in [0,T]$. If $\lim_m u_m(t) = u(t)$ a.e. for $t \in [0,T]$ and $\lim_m f_m = f$ weakly in $L^1(0,T;X)$, then $f(t) \in F(u(t))$ a.e. for $t \in [0,T]$.

See Cârjă-Necula-Vrabie [6], Lemma 2.6.2, p. 47-48. Let $\mathcal{B}(X)$ be the family of all bounded subsets of X.

Definition 4. The function $\beta : \mathcal{B}(X) \to \mathbf{R}_+$, defined by

$$\beta(B) = \inf \left\{ \varepsilon > 0; \exists x_1, x_2, \dots x_{n(\varepsilon)} \in X, B \subseteq \bigcup_{i=1}^{n(\varepsilon)} D(x_i, \varepsilon) \right\}$$

is called the Hausdorff-measure of noncompactness on X.

Remark 1. We have $\beta(B) = 0$ if and only if B is a relatively compact set. If X is finite dimensional, the class of relatively compact subsets of X coincides with $\mathcal{B}(X)$, so, in this case, $\beta \equiv 0$. **Lemma 3.** Let Y be a subspace in X, let $B \in \mathcal{B}(X)$ and let

$$\beta_Y(B) = \inf \left\{ \varepsilon > 0; \exists x_1, x_2, \dots x_{n(\varepsilon)} \in Y, \ B \subseteq \bigcup_{i=1}^{n(\varepsilon)} D(x_i, \varepsilon) \right\}.$$

Then for each $B \in \mathcal{B}(Y)$ we have

$$\beta(B) \le \beta_Y(B) \le 2\,\beta(B).$$

For details, see Cârjă-Necula-Vrabie [6], Problem 2.7.2, p.49.

Definition 5. A function $\omega : \mathbf{R}_+ \to \mathbf{R}_+$ which is continuous, nondecreasing and the only solution of the Cauchy problem

$$\begin{cases} x'(t) = \omega(x(t)) \\ x(0) = 0 \end{cases}$$

is $x \equiv 0$ is called a uniqueness function.

Remark 2. If $\omega : \mathbf{R}_+ \to \mathbf{R}_+$ is a uniqueness function, then, for each k > 0, $k\omega$ is a uniqueness function too.

Next, we recall for easy reference the basic viability results, established in Cârjă-Necula-Vrabie [5] and [6], concerning the autonomous multi-valued semilinear Cauchy problem

$$\begin{cases} u'(t) \in Au(t) + F(u(t)), & t \ge 0\\ u(0) = \xi, \end{cases}$$
(3)

where $A: D(A) \subseteq X \to X$ is the infinitesimal generator of C_0 -semigroup $\{S(t): X \to X; t \ge 0\}$, K is a nonempty subset in X and $F: K \rightsquigarrow X$ is a given multi-function.

Definition 6. By a mild solution of the problem (3) on [0,T] we mean a continuous function $u : [0,T] \to K$, for which there exists $f \in L^1(0,T;X)$ such that $f(s) \in F(u(s))$ a.e. for $s \in [0,T]$ and

$$u(t) = S(t)\xi + \int_0^t S(t-s)f(s) \, ds \tag{4}$$

for each $t \in [0, T]$.

Definition 7. The set $K \subseteq X$ is viable with respect to A + F if for each $\xi \in K$, there exists T > 0 such that the Cauchy problem (3) has at least one mild solution $u : [0,T] \to K$.

In Cârjă-Necula-Vrabie [5] and [6] a new concept of tangent set is defined and used in order to prove necessary and sufficient conditions for viability with respect to A + F. We recall that the subset $K \subseteq X$ is locally closed if for each $\xi \in K$ there exists $\rho > 0$ such that $D(\xi, \rho) \cap K$ is closed. Each subset in X which is either open or closed is locally closed. Moreover, each subset K in X which is closed relative to some open subset D, i.e. for which there exists a closed subset $C \subset X$ such that $K = C \cap D$, is locally closed in X.

If E is a nonempty subset in X, we denote by

$$\mathcal{E} = \{ f \in L^1(\mathbf{R}_+; X); f(s) \in E \text{ a.e. for } s \in \mathbf{R}_+ \}.$$

Definition 8. Let $A : D(A) \subseteq X \to X$ be the infinitesimal generator of a C_0 -semigroup, $\{S(t) : X \to X; t \ge 0\}$, K a subset in X and $\xi \in K$. We say that the set $E \subseteq X$ is A- quasi-tangent to the set K at the point ξ if for each $\rho > 0$, we have

$$\liminf_{h\downarrow 0} \frac{1}{h} dist(\mathcal{S}_{\mathcal{E}}(h)\xi; K \cap D(\xi, \rho)) = 0,$$
(5)

where

$$\mathcal{S}_{\mathcal{E}}(h)\xi = \left\{ S(h)\xi + \int_0^h S(h-s)f(s)\,ds;\, f \in \mathcal{E} \right\}.$$

We denote by $\mathcal{QTS}_{K}^{A}(\xi)$ the class of all A-quasi-tangent sets to K at $\xi \in K$.

Remark 3. Let $K \subseteq X, \xi \in K$ and $E \subseteq X$. Then the following conditions are equivalent:

- (i) $E \in \mathcal{QTS}_K^A(\xi);$
- (ii) for each $\varepsilon > 0$, $\rho > 0$ and $\delta > 0$ there exist $h \in (0, \delta)$, $p \in D(0, \varepsilon)$ and $f \in \mathcal{E}$ such that

$$S(h)\xi + \int_0^h S(h-s)f(s)\,ds + hp \in K \cap D(\xi,\rho);$$

(iii) there exist three sequences, $(h_n)_n$ in \mathbf{R}_+ with $h_n \downarrow 0$, $(p_n)_n$ in X with $\lim_n p_n = 0$, and $(f_n)_n \in \mathcal{E}$, with $\lim_n \int_0^{h_n} S(h_n - s) f_n(s) ds = 0$ and

$$S(h_n)\xi + \int_0^{h_n} S(h_n - s)f_n(s) \, ds + h_n p_n \in K.$$

Before proceeding to the main results in this section, we introduce first:

Definition 9. A set $C \subseteq X$ is quasi-weakly (relatively) compact if, for each $r > 0, C \cap D(0, r)$ is weakly (relatively) compact.

We present now a necessary condition for mild viability.

Theorem 1. Let X be a Banach space, $A : D(A) \subseteq X \to X$ the infinitesimal generator of a C_0 -semigroup, $\{S(t) : X \to X; t \ge 0\}$, K a nonempty subset in X and $F : K \to X$ a nonempty valued multi-function. If K is viable with respect to A + F then, for each $\xi \in K$ at which F is u.s.c. and $F(\xi)$ is convex and quasi-weakly compact, we have

$$F(\xi) \in \mathcal{QTS}_K^A(\xi). \tag{6}$$

The main sufficient condition for mild viability is:

Theorem 2. Let X be a Banach space, $A : D(A) \subseteq X \to X$ the infinitesimal generator of a compact C_0 -semigroup, $\{S(t) : X \to X; t \ge 0\}$, K a nonempty and locally closed subset in X and $F : K \rightsquigarrow X$ a nonempty, weakly compact and convex valued, strongly-weakly u.s.c. multi-function. If for each $\xi \in K$, the tangency condition (6) is satisfied, then K is viable with respect to A + F.

3 The main results

We focus our attention to the main necessary and sufficient conditions for viability in the case of reaction diffusion systems of the form (1).

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ two real Banach spaces, $\mathcal{K} \subseteq X \times Y$, $F : \mathcal{K} \to X$, $G : \mathcal{K} \rightsquigarrow Y$, and $\xi \in X$, $\eta \in Y$. We assume that the operators $A : D(A) \subseteq X \to X$ and $B : D(B) \subseteq Y \to Y$ are the generators of two C_0 -semigroups, $\{S_A(t) : X \to X; t \ge 0\}$ and $\{S_B(t) : Y \to Y; t \ge 0\}$ respectively.

The system (1) can be written as a multi-valued semilinear Cauchy problem in a product space. Let $\mathcal{X} = X \times Y$ be endowed with the norm $\|\cdot\|$, defined by $\|(x,y)\|_{\mathcal{X}} = \|x\|_{X} + \|y\|_{Y}$, for each $(x,y) \in \mathcal{X}$. Let $\mathcal{A} = (A, B)$: $D(\mathcal{A}) \subseteq \mathcal{X} \to \mathcal{X}$ be defined by $D(\mathcal{A}) = D(A) \times D(B)$, $\mathcal{A}(x,y) = (Ax, By)$ for each $(x,y) \in D(\mathcal{A})$ and let $\mathcal{F} : \mathcal{K} \rightsquigarrow \mathcal{X}, \mathcal{F}(z) = (F(z), G(z))$ for each $z = (x,y) \in \mathcal{K}$, where $(F(z), G(z)) = \{F(z), \eta\}$; $\eta \in G(z)\}$. So, the system (1) can be written as

$$\begin{cases} z'(t) \in \mathcal{A}z(t) + \mathcal{F}(z(t)) \\ z(0) = \zeta, \end{cases}$$
(7)

where $\zeta = (\xi, \eta)$. We notice that, in the hypotheses above, \mathcal{A} is the infinitesimal generator of a C_0 -semigroup $\{\mathcal{S}(t) : \mathcal{X} \to \mathcal{X}; t \geq 0\}$, given by

$$\mathcal{S}(t)(\xi,\eta) = (S_A(t)\xi, S_B(t)\eta)$$

for each $t \ge 0$ and $(\xi, \eta) \in \mathcal{X}$. Let us remark that \mathcal{K} is viable with respect to (A + F, B + G) in sense of Definition 2 if and only if \mathcal{K} is viable with respect to $\mathcal{A} + \mathcal{F}$ in sense of Definition 7, which means that for each $\zeta \in \mathcal{K}$, there exists T > 0 such that the problem (7) has at least one mild solution $z : [0, T] \to \mathcal{K}$.

From Theorem 1 we deduce the necessary condition for viability.

Theorem 3. Let X and Y be Banach spaces, \mathcal{K} a nonempty subset in $X \times Y$, $A: D(A) \subseteq X \to X$, $B: D(B) \subseteq Y \to Y$ the infinitesimal generators of two C_0 -semigroups, $\{S_A(t): X \to X; t \ge 0\}$ and $\{S_B(t): Y \to Y; t \ge 0\}$ respectively, $F: \mathcal{K} \to X$ a continuos function and $G: \mathcal{K} \rightsquigarrow Y$ a nonempty, convex and quasi-weakly compact valued, u.s.c. multi-function. If \mathcal{K} is viable with respect to (A + F, B + G) then, for each $\zeta \in \mathcal{K}$ we have:

$$(F(\zeta), G(\zeta)) \in \mathcal{QTS}^{\mathcal{A}}_{\mathcal{K}}(\zeta).$$
(8)

In order to state and prove some sufficient conditions for viability, we need the hypotheses below.

- (H₁) $A : D(A) \subseteq X \to X, B : D(B) \subseteq Y \to Y$ are the generators of two C_0 -semigroups, $\{S_A(t) : X \to X; t \ge 0\}$ and $\{S_B(t) : Y \to Y; t \ge 0\}$ respectively;
- (*H*₂) $\mathcal{K} \subseteq X \times Y$ is nonempty and locally closed;

(H₃) $F: X \times Y \to X$ is continuous and globally Lipschitz with respect to its first argument, i.e. there exists L > 0 such that

$$||F(u,v) - F(\widetilde{u},v)|| \le L||u - \widetilde{u}||$$

for each $(u, v), (\tilde{u}, v) \in X \times Y;$

(H₄) A + F is Y-uniformly locally of β_X -compact type, which means that F is continuous and, for each $\zeta = (\xi, \eta) \in \mathcal{K}$, there exist $\rho > 0$, a continuous function $l : \mathbf{R}_+ \to \mathbf{R}_+$ and a uniqueness function $\omega :$ $\mathbf{R}_+ \to \mathbf{R}_+$ such that, for each subset $C \subseteq D_{X \times Y}(\zeta, \rho) \cap \mathcal{K}$, with $\Pi_Y C$ relatively compact, and for each t > 0, we have

$$\beta_X(S_A(t)F(C)) \le l(t)\omega(\beta_{X\times Y}(C));$$

- (H_5) { $S_B(t): Y \to Y, t \ge 0$ } is compact;
- (H_6) $G : \mathcal{K} \rightsquigarrow Y$ is strongly-weakly u.s.c. multi-function with nonempty, convex and weakly compact values.

Theorem 4. Assume that (H_1) , (H_2) , (H_3) , (H_5) and (H_6) are satisfied. If, for each $\zeta \in \mathcal{K}$ the tangency condition (8) is satisfied, then \mathcal{K} is viable with respect to (A + F, B + G).

Theorem 5. Assume that (H_1) , (H_2) , (H_4) , (H_5) and (H_6) are satisfied. If, for each $\zeta \in \mathcal{K}$ the tangency condition (8) is satisfied, then \mathcal{K} is viable with respect to (A + F, B + G).

A nonautonomous variant of Theorem 4 is stated below. Let us consider the quasi-autonomous semilinear system

$$\begin{cases} u'(t) = Au(t) + F(t, u(t), v(t)), & t \ge \tau \\ v'(t) \in Bv(t) + G(t, u(t), v(t)), & t \ge \tau \\ u(\tau) = \xi, & v(\tau) = \eta \end{cases}$$
(9)

where $\mathcal{K} \subseteq \mathbf{R} \times X \times Y$, $F : \mathbf{R} \times X \times Y \to X$ and $G : \mathcal{K} \rightsquigarrow Y$.

Let $\mathcal{X} = \mathbf{R} \times X$ endowed with the norm $||(t,x)||_{\mathcal{X}} = |t| + ||x||_X$, for each $(t,x) \in \mathcal{X}$. Let $\mathcal{A} = (0,A), \ z(s) = (s+\tau, u(s+\tau)), \ w(s) = v(s+\tau)$ and let $\mathcal{F} : \mathcal{X} \times Y \to X, \ \mathcal{F}(z,w) = (1,F(z,w))$ for each $(z,w) \in \mathcal{X} \times Y$. With the

notation above the system (9) can be written as an autonomous one in the space $\mathcal{X} \times Y$

$$\begin{cases} z'(s) = \mathcal{A}z(s) + \mathcal{F}(z(s), w(s)), & s \ge 0\\ w'(s) \in B(s) + G(z(s), w(s)), & s \ge 0\\ z(0) = (\tau, \xi), & w(0) = \eta \end{cases}$$
(10)

From Theorem 4 we deduce:

Theorem 6. Assume that X and Y are Banach spaces and (H_1) , (H_5) are satisfied. Let $\mathcal{K} \subseteq \mathbf{R} \times X \times Y$ be a nonempty and locally closed set, $F : \mathbf{R} \times X \times Y \to X$ be continuous and $G : \mathcal{K} \rightsquigarrow Y$ be locally bounded, strongly-weakly u.s.c. multi-function with nonempty, convex and weakly compact values. Let us assume that F is globally Lipschitz with respect to its first and second arguments i.e. there exists L > 0 such that

$$\|F(t, u, v) - F(\widetilde{t}, \widetilde{u}, v)\| \le L(|t - \widetilde{t}| + \|u - \widetilde{u}\|).$$

If, for each $(\tau, \xi, \eta) \in \mathcal{K}$ the next tangency condition

$$(1, F(\tau, \xi, \eta), G(\tau, \xi, \eta)) \in \mathcal{QTS}_{\mathcal{K}}^{(\mathcal{A}, B)}(\tau, \xi, \eta)$$
(11)

is satisfied, then \mathcal{K} is viable with respect to (A + F, B + G).

The nonautonomous case was studied in Necula-Vrabie [8] in the case when A and B are *m*-dissipative possibly nonlinear operators, while both Fand G are single-valued, F is jointly continuous and locally Lipschitz with respect to its second variable, G is continuous and the semigroup generated by B is compact.

4 Proofs of Theorem 4 and Theorem 5

The proofs are essentially based on the construction of an ε -approximate solution for the Cauchy problem (3), i.e. a 5-uple (σ, θ, g, f, u) given by lemma below.

Lemma 4. Let X, Y be real Banach spaces, $\mathcal{A} : D(\mathcal{A}) \subseteq X \times Y \to X \times Y$ the infinitesimal generator of a C_0 -semigroup, $\{\mathcal{S}(t) : X \times Y \to X \times Y; t \geq 0\}$, \mathcal{K} a nonempty and locally closed subset in $X \times Y$ and $\mathcal{F} : \mathcal{K} \to X \times Y$ a given nonempty-valued and locally bounded multi-function satisfying the tangency condition (6). Let $\zeta \in \mathcal{K}$ be arbitrary and let r > 0 be such that $D_{X \times Y}(\zeta, r) \cap \mathcal{K}$ is closed. Then, there exist $\rho \in (0, r]$ and T > 0 such that, for each $\varepsilon \in (0, 1)$, there exist $\sigma : [0, T] \to [0, T]$ nondecreasing, $\theta : \{ (t, s); 0 \le s < t \le T \} \to [0, T]$ measurable, $\mathcal{G} : [0, T] \to X \times Y$, $\tilde{f} : [0, T] \to X \times Y$ Bochner integrable and $z : [0, T] \to X \times Y$ continuous such that:

- (i) $s \varepsilon \leq \sigma(s) \leq s$ for each $s \in [0, T]$;
- (*ii*) $z(\sigma(s)) \in D_{X \times Y}(\zeta, r) \cap \mathcal{K}$ for each $s \in [0, T]$ and $z(T) \in D_{X \times Y}(\zeta, r) \cap \mathcal{K}$;
- (iii) $\|\mathcal{G}(s)\| \leq \varepsilon$ for each $s \in [0,T]$ and $\tilde{f}(s) \in \mathcal{F}(z(\sigma(s)) \text{ a.e. for } s \in [0,T];$
- (iv) $\theta(t,s) \leq t$ for each $0 \leq s < t \leq T$ and $t \mapsto \theta(t,s)$ is nonexpansive on (s,T];

(v)
$$z(t) = S(t)\zeta + \int_0^t S(t-s)\tilde{f}(z(s)) ds + \int_0^t S(\theta(t,s))\mathcal{G}(s) ds$$

for each $t \in [0,T]$;

(vi)
$$||z(t) - z(\sigma(t))|| \le \varepsilon$$
 for each $t \in [0, T]$.

See Cârjă-Necula-Vrabie [5] and [6], Lemma 9.3.1, p.185.

Remark 4. Let $\mathcal{K} \subseteq X \times Y$ be a nonempty, locally closed set and $G : \mathcal{K} \rightsquigarrow Y$ be a strongly-weakly u.s.c. multi-function with nonempty, convex and weakly compact valued, then G is locally bounded.

See Remark 7.1 in Cârjă-Necula-Vrabie [7].

Proof of Theorem 4 Let $\zeta = (\xi, \eta) \in \mathcal{K}$ and r > 0 such that $D_{\mathcal{X}}(\zeta, r) \cap \mathcal{K}$ be closed. Let us choose $\rho \in (0, r]$, N > 0, $M \ge 1$ and $a \ge 0$ such that $||F(z)||_X \le N$ and $||y||_Y \le N$ for every $z \in D_{\mathcal{X}}(\zeta, \rho) \cap \mathcal{K}$ and every $y \in G(z)$ and $||\mathcal{S}(t)||_{\mathcal{L}(\mathcal{X})} \le Me^{at}$, for every $t \ge 0$. Since $t \mapsto \mathcal{S}(t)\zeta$ is continuous in t = 0 and $\mathcal{S}(0)\zeta = \zeta$, we may find a sufficiently small T > 0 such that

$$\sup_{t \in [0,T]} \|\mathcal{S}(t)\zeta - \zeta\|_{\mathcal{X}} + TMe^{aT}(N+1) \le \rho$$

and all the conclusions of Lemma 4, for the Cauchy problem (7), be satisfied.

Let $(\varepsilon_n)_n \downarrow 0$ be a sequence in (0,1) and let $((\sigma_n, \theta_n, \mathcal{G}_n, f_n, z_n))_n$ be a sequence of $(\varepsilon_n)_n$ – approximate solutions defined on [0,T] whose existence is ensured by the Lemma 4. This means that $\tilde{f}_n = (f_n, g_n)$ is Lebesque integrable, $f_n(s) = F(z_n(\sigma_n(s)))$ and $g_n(s) \in G(z_n(\sigma_n(s)))$ a.e. for $s \in [0,T]$, and $z_n(\sigma_n(t)) \in D_{\mathcal{X}}(\zeta,\rho) \cap \mathcal{K}$, for $n = 1, 2, \ldots$ and each $t \in [0,T]$, and

$$z_n(t) = \mathcal{S}(t)\zeta + \int_0^t \mathcal{S}(t-s)\widetilde{f}_n(s)ds + \int_0^t \mathcal{S}(\theta_n(t,s))\mathcal{G}_n(s)ds$$

for each $n \in \mathbf{N}$ and $t \in [0, T]$. Put $z_n = (u_n, v_n)$. So, (u_n, v_n) satisfies

$$\begin{cases} u_{n}(t) = S_{A}(t)\xi + \int_{0}^{t} S_{A}(t-s)F(z_{n}(\sigma_{n}(s)))ds + \int_{0}^{t} S_{A}(\theta_{n}(t,s))\mathcal{G}_{n}^{X}(s)ds \\ v_{n}(t) = S_{B}(t)\eta + \int_{0}^{t} S_{B}(t-s)g_{n}(s)ds + \int_{0}^{t} S_{B}(\theta_{n}(t,s))\mathcal{G}_{n}^{Y}(s)ds, \end{cases}$$
(12)

where $\mathcal{G}_n(t) = (\mathcal{G}_n^X(t), \mathcal{G}_n^Y(t))$ for each n = 1, 2, ... and $t \in [0, T]$. Since $\|g_n(s)\|_Y \leq N$ for each n = 1, 2, ... and for a.a. $s \in [0, T]$, the family $\{g_n(\cdot); n \in \mathbf{N}\}$ is uniformly integrable subset in $L^1(0, T; Y)$. Since the C_0 -semigroup $\{S_B(t): Y \to Y; t \geq 0\}$ is compact and $\|\mathcal{G}_n^Y(s)\|_Y \leq \varepsilon_n < 1$, from Theorem 8.4.2 in Vrabie [9] it follows that $\{v_n; n = 1, 2, ...\}$ is relatively compact in C([0, T]; Y). As $\lim_n \sigma_n(t) = t$ uniformly for $t \in [0, T]$ we deduce that there exists $v \in C([0, T]; Y)$ such that, on a subsequence at least, $\lim_n v_n(t) = v(t)$ and $\lim_n v_n(\sigma_n(t)) = v(t)$ uniformly for $t \in [0, T]$.

At this point let us consider the problem:

$$\begin{cases} u'(t) = Au(t) + F(u(t), v(t)), & t \ge 0\\ u(0) = \xi, \end{cases}$$
(13)

where $v \in C([0, T]; Y)$ is as above. Since A is the infinitesimal generator of a C_0 -semigroup and F is continuous on $X \times Y$ and globally Lipschitz with respect to its first argument, it follows that the problem (13) has an unique mild solution $u : [0, T] \to X$, i.e.

$$u(t) = S_A(t)\xi + \int_0^t S_A(t-s)F(u(s), v(s))ds$$
(14)

for each $t \in [0, T]$. We will prove next that $\lim_{n \to \infty} u_n(t) = u(t)$ uniformly for $t \in [0, T]$. Indeed, we have

$$\|u_n(\sigma_n(t)) - u(t)\|_X \le \|u_n(\sigma_n(t)) - u_n(t)\|_X + \|u_n(t) - u(t)\|_X.$$
 (15)

From (12) and (14), it follows that

$$\|u_n(t) - u(t)\|_X \le \int_0^t \|S_A(\theta_n(t,s))\|_{L(X)} \|\mathcal{G}_n^X(s)\|_X ds$$

+ $\int_0^t \|S_A(t-s)\|_X \|F(u_n(\sigma_n(s)), v_n(\sigma_n(s))) - F(u(s), v(s))\|_X ds$

for each $t \in [0, T]$. Using (iii)¹, (vi) and the Lipschitz's condition for F, from (15) we obtain

$$\|u_{n}(\sigma_{n}(t)) - u(t)\|_{X} \leq Me^{aT}\varepsilon_{n}$$

$$+Me^{aT}\int_{0}^{t}\|F(u(s), v_{n}(\sigma_{n}(s))) - F(u(s), v(s))\|_{X}ds \qquad (16)$$

$$+LMe^{aT}\int_{0}^{t}\|u_{n}(\sigma_{n}(s)) - u(s)\|_{X}ds,$$

for each $t \in [0, T]$. On the other hand, $\varepsilon_n \downarrow 0$, $v_n(\sigma_n(s)) \to v(s)$ uniformly for $s \in [0, T]$ and F is continuous. So, for each $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon)$ such that, for each $n \in \mathbf{N}$, $n \ge n_0$ and for each $t \in [0, T]$ we have:

$$Me^{aT}\varepsilon_n + Me^{aT} \int_0^t \|F(u(s), v_n(\sigma_n(s))) - F(u(s), v(s))\|_X ds \le \varepsilon.$$

In view of (16) and the last inequality, we deduce

$$\|u_n(\sigma_n(t)) - u(t)\|_X \le \varepsilon + LMe^{aT} \int_0^t \|u_n(\sigma_n(s)) - u(s)\|_X ds$$

for all $n \in \mathbf{N}$, $n \ge n_0$ and $t \in [0, T]$. Gronwall's Lemma implies

$$\|u_n(\sigma_n(t)) - u(t)\|_X \le \varepsilon e^{LMTe^{aT}}$$

for each $n \in \mathbf{N}$, $n \ge n_0$ and each $t \in [0, T]$. Therefore $\lim_n u_n(\sigma_n(t)) = u(t)$ uniformly for $t \in [0, T]$. Taking into account (i) we deduce that $\lim_n u_n(t) =$

 $^{^1\}mathrm{Throughout}$ this section, reference to (i)–(vi) are to the corresponding items in Lemma 4.

u(t) uniformly for $t \in [0, T]$. Since $(u_n(\sigma_n(t)), v_n(\sigma_n(t))) \in D_{\mathcal{X}}(\zeta, \rho) \cap \mathcal{K}$, for $n = 1, 2, \ldots$ and each $t \in [0, T]$ and $D_{\mathcal{X}}(\zeta, \rho) \cap \mathcal{K}$ is closed, it follows that $(u(t), v(t)) \in D_{\mathcal{X}}(\zeta, \rho) \cap \mathcal{K}$ for each $t \in [0, T]$.

Next, we will prove that $(g_n)_n$ is weakly convergent in $L^1(0,T;Y)$ to some function g. Indeed, since G is strongly-weakly u.s.c. with weakly compact values and since $\{(u_n(\sigma_n(s)), v_n(\sigma_n(s))); n = 1, 2, \ldots, s \in [0,T]\}$ is relatively compact in $X \times Y$, from Lemma 1 and using by Theorem 1.3.2. in Cârjă-Necula-Vrabie [6], it follows that the set

$$C = \overline{\operatorname{conv}} \bigcup_{n=1}^{\infty} \bigcup_{s \in [0,T]} G(u_n(\sigma_n(s)), v_n(\sigma_n(s)))$$

is weakly compact. Since $g_n(s) \in C$ for n = 1, 2, ... and a.e. for $s \in [0,T]$, we obtain that $\{g_n(\cdot); n = 1, 2, ...\}$ is weakly relatively compact in $L^1(0,T;Y)$. So, on a subsequence at least, $(g_n)_n$ is weakly convergent in $L^1(0,T;Y)$ to some function g. From Lemma 2 it follows that $g(s) \in G(u(s), v(s))$ a.e. for $s \in [0,T]$.

Now, let us consider the mild solution operator $Q : L^1(0,T;Y) \rightarrow C([0,T];Y)$, defined by

$$(Qg)(t) = S_B(t)\eta + \int_0^t S_B(t-s)g(s) \, ds,$$

for each $t \in [0,T]$ and for each $g \in L^1(0,T;Y)$. As the graph of Q is strongly×strongly closed and convex, it is weakly×strongly closed. So, we may pass to the limit in the second relation of (12) and, taking into account $\|\mathcal{G}_n^Y(s)\|_Y \leq \varepsilon_n$, we obtain

$$v(t) = S_B(t)\eta + \int_0^t S_B(t-s)g(s) \, ds.$$

Thus (u, v) is a mild solution of (1). The proof is complete.

We prove now, that, in the hypotheses of Theorem 5, there exists at least one sequence $(\varepsilon_n)_n$, with $\varepsilon_n \downarrow 0$ such that the ε_n -approximate mild solutions sequence $((\sigma_n, \theta_n, \mathcal{G}_n, \tilde{f}_n, z_n))_n$ has the property that $z_n = (u_n, v_n)$ is, on a subsequence at least, uniformly convergent on [0, T] to some function $(u, v) : [0, T] \to \mathcal{K}$ which is the mild solution of (1).

Proof of Theorem 5 Let $\zeta = (\xi, \eta) \in \mathcal{K}$ be arbitrary and let r > 0, $\rho \in (0, r]$, N > 0, $M \ge 1$, $a \ge 0$ and T > 0 as in proof of Theorem 4.

Since A + F is Y-uniformly locally of β_X -compact type, diminishing $\rho > 0$ and T > 0, if necessary, it follows that there exist a continuous function $l: \mathbf{R}_+ \to \mathbf{R}_+$ and a uniqueness function $\omega: \mathbf{R}_+ \to \mathbf{R}_+$ such that

$$\beta_X(S_A(t)F(C)) \le l(t)\omega(\beta_X(\Pi_X C)) \tag{17}$$

for each subset $C \subseteq D_{\mathcal{X}}(\zeta,\rho) \cap \mathcal{K}$, with $\Pi_Y C$ relatively compact, and for each t > 0. Let $(\varepsilon_n)_n$ with $\varepsilon_n \downarrow 0$ be a sequence in (0,1) and let $((\sigma_n, \theta_n, \mathcal{G}_n, \tilde{f}_n, z_n))_n$ be a sequence of $(\varepsilon_n)_n$ - approximate mild solutions for (7), defined on [0, T]. Put $\tilde{f}_n = (f_n, g_n)$ and $z_n = (u_n, v_n)$. So $f_n(s) =$ $F(z_n(\sigma_n(s))), g_n(s) \in G(z_n(\sigma_n(s)))$ a.e. for $s \in [0, T]$, and $z_n(\sigma_n(t)) \in$ $D_{\mathcal{X}}(\zeta, \rho) \cap \mathcal{K}$, for $n = 1, 2, \ldots$ and each $t \in [0, T]$. From (v), we have

$$z_n(t) = \mathcal{S}(t)\zeta + \int_0^t \mathcal{S}(t-s)\widetilde{f}_n(s)ds + \int_0^t \mathcal{S}(\theta_n(t,s))\mathcal{G}_n(s)ds,$$
(18)

for each n = 1, 2, ... and $t \in [0, T]$. This means that (u_n, v_n) satisfies

$$\begin{cases} u_n(t) = S_A(t)\xi + \int_0^t S_A(t-s)F(z_n(\sigma_n(s)))ds + \int_0^t S_A(\theta_n(t,s))\mathcal{G}_n^X(s)ds \\ v_n(t) = S_B(t)\eta + \int_0^t S_B(t-s)g_n(s)ds + \int_0^t S_B(\theta_n(t,s))\mathcal{G}_n^Y(s)ds, \end{cases}$$
(19)

where

$$\begin{cases} \mathcal{G}_n(s) = (\mathcal{G}_n^X(s), \mathcal{G}_n^Y(s)) \\ \mathcal{S}(\theta_n(t,s))\mathcal{G}_n(s) = (S_A(\theta_n(t,s))\mathcal{G}_n^X(s), S_B(\theta_n(t,s))\mathcal{G}_n^Y(s)), \end{cases}$$

for each $n \in \mathbf{N}$ and $0 \leq s < t \leq T$.

Since the family $\{g_n(\cdot); n \in \mathbf{N}\}$ and $\{\mathcal{G}_n^Y(\cdot); n \in \mathbf{N}\}$ are uniformly integrable subsets in $L^1(0,T;Y)$ and the C_0 -semigroup $\{S_B(t) : Y \to Y; t \ge 0\}$ is compact, from Theorem 8.4.2 in Vrabie [9] it follows that $\{v_n; n = 1, 2, ...\}$ is relatively compact in C([0,T];Y). As $\lim_n \sigma_n(t) = t$ uniformly for $t \in [0,T]$ we deduce that there exists $v \in C([0,T];Y)$ such that, on a subsequence at least, $\lim_n v_n(t) = v(t)$ and $\lim_n v_n(\sigma_n(t)) = v(t)$ uniformly for $t \in [0,T]$. We will prove that $\{u_n; n = 1, 2, ...\}$ is relatively compact in C([0,T];X).

We consider first the case when X is a separable space. Since $\Pi_Y\{(u_n(\sigma_n(t)), v_n(\sigma_n(t))); n \ge k\} = \{v_n(\sigma_n(t)); n \ge k\}$ is relatively compact in Y, A+F is Y-uniformly locally of β_X -compact type, from (17), we get

$$\beta_X(\{S_A(t-s)F(u_n(\sigma_n(s)), v_n(\sigma_n(s))); n \ge k\})$$

$$\leq l(t-s)\omega(\beta_X(\{u_n(\sigma_n(s)); n \ge k\})),$$
(20)

for each k = 1, 2, ... and $0 \le s < t \le T$. Since $\|\mathcal{G}_n^X(s)\|_X \le \varepsilon_n$ for each $s \in [0, T]$ it follows that $\beta_X\left(\left\{\int_0^t S_A(\theta_n(t, s))\mathcal{G}_n^X(s)ds; n \ge k\right\}\right) = 0$. Similarly, from (vi) we have that $\{u_n(\sigma_n(s)) - u_n(s); n \ge k\}$ is relatively compact, for each $k \in \mathbf{N}$ and $s \in [0, T]$, and so $\beta(\{u_n(\sigma_n(s)) - u_n(s); n \ge k\}) = 0$.

Using these arguments, the inequality (20), Lemma 2.7.2 and Problem 2.7.1 from Cârjă-Necula-Vrabie [6], we deduce that

$$\begin{split} \beta_X(\{u_n(t); n \ge k\}) &\leq \beta_X \left(\left\{ \int_0^t S_A(t-s)F(z_n(\sigma_n(s)))ds; n \ge k \right\} \right) \\ &+ \beta_X \left(\left\{ \int_0^t S_A(\theta_n(t,s))\mathcal{G}_n^X(s)ds; n \ge k \right\} \right) \\ &\leq \int_0^t \beta_X(\{S_A(t-s)F(z_n(\sigma_n(s))); n \ge k\})ds \\ &\leq \int_0^t l(t-s)\omega(\beta_X(\{u_n(\sigma_n(s)); n \ge k\}))ds \\ &\leq \int_0^t l(t-s)\omega(\beta_X(\{u_n(s); n \ge k\} + \{u_n(\sigma_n(s)) - u_n(s); n \ge k\}))ds \end{split}$$

$$\leq \int_0^t m\omega \left(\beta_X(\{u_n(s); n \geq k\}) + \beta_X(\{u_n(\sigma_n(s)) - u_n(s); n \geq k\})\right) ds$$

where $m = \sup_{t \in [0,T]} l(t)$. Hence

$$\beta_X(\{u_n(t); n \ge k\}) \le \int_0^t m\omega \left(\beta_X(\{u_n(s); n \ge k\})\right) ds,$$

for each k = 1, 2, ... and $t \in [0, T]$.

Since $\beta_X(\{u_n(t); n \ge k\}) = \beta_X(\{u_n(t); n \ge 1\})$ and we set $x(t) = \beta_X(\{u_n(t); n \ge 1\}), \omega_0 = m\omega$, we deduce that

$$x(t) \le \int_0^t \omega_0(x(s)) ds,$$

for all $t \in [0, T]$.

But ω_0 is a uniqueness function, so by Lemma 1.8.2 in Cârjă-Necula-Vrabie [6], we have x(t) = 0, for all $t \in [0, T]$, which means that

$$\beta_X(\{u_n(t); n \ge 1\}) = 0,$$

for all $t \in [0, T]$. It follows that for each $t \in [0, T]$, $\{u_n(t); n = 1, 2, ...\}$ is relatively compact in X. Since $(F(z_n))_n$ is bounded, it is uniformly integrable, so, by Theorem 8.4.1 in Vrabie [9], there exists $u \in C([0, T]; X)$ such that, on a subsequence at least,

$$\lim_{n} \left(u_n(t) - \int_0^t S_A(\theta_n(t,s)) \mathcal{G}_n^X(s) ds \right) = u(t),$$

uniformly for $t \in [0, T]$. But, by (iii),

$$\lim_{n} \int_{0}^{t} S_{A}(\theta_{n}(t,s)) \mathcal{G}_{n}^{X}(s) ds = 0,$$

uniformly for $t \in [0, T]$, so $\lim_{n \to \infty} u_n(t) = u(t)$, uniformly for $t \in [0, T]$.

If X is not separable, in view of Theorem 1.1.3, p.3 and Remark 1.1.2, p.4 in Vrabie [9], there exists a separable and closed subspace Z of X such that

$$S_A(t)\xi, S_A(r)F(u_n(\sigma_n(s)), v_n(\sigma_n(s))), S_A(\theta_n(r,s))\mathcal{G}_n^X(s) \in \mathbb{Z}$$

for n = 1, 2, ... and a.e. for $t, r, s \in [0, T]$. Using Lemma 2.1 and the monotonicity of ω , we have

$$\beta_Z(S_A(t)F(C)) \le 2\beta_X(S_A(t)F(C)) \le 2l(t)\omega(\beta_X(\Pi_X C)) \le 2l(t)\omega(\beta_Z(\Pi_X C)),$$

for each t > 0 and for each set $C \subseteq D_{\mathcal{X}}(\zeta, \rho) \cap \mathcal{K} \cap (Z \times Y)$ with $\Pi_Y C$ relatively compact. Since the restriction of β_Z to $\mathcal{B}(Z)$ is the Hausdorff measure of noncompactness on Z, we repeat now the arguments in the separable case with β_X replaced by β_Z and ω replaced by 2ω .

So, $\lim_n u_n(t) = u(t)$, uniformly for $t \in [0, T]$. From now on the proof follows the same lines as those of the proof of Theorem 4.

Remark 5. We cannot deduce Theorem 3.2 from Theorem 11.1 in Cârjă-Necula-Vrabie [5] because the multi-function G is only strongly-weakly u.s.c., so, in this case, $\mathcal{A} + \mathcal{F}$ it cannot be locally of compact type.

5 An example

Let $\Omega \subseteq \mathbf{R}^n$, n = 1, 2, ... be a bounded domain with C^2 boundary Γ , let $\delta_1 \geq 0, \ \delta_2 > 0, \ p > 0, \ q > 0$, let $f : \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+, \ g_i : \mathbf{R} \times \mathbf{R} \to \mathbf{R}_-$ for i = 1, 2 be given functions and let us consider the following general semilinear predator-pray system

$$\begin{cases} u_t = \delta_1 \Delta u - pu + f(u, v) & (t, x) \in Q_{\tau, T} \\ v_t \in \delta_2 \Delta v + qv + [g_1(u, v), g_2(u, v)] & (t, x) \in Q_{\tau, T} \\ u(t, x) = v(t, x) = 0 & (t, x) \in \Sigma_{\tau, T}, \\ u(\tau, x) = \xi(x), \quad v(\tau, x) = \eta(x) & x \in \Omega, \end{cases}$$
(21)

where $0 \leq \tau < T \leq \infty$, $Q_{\tau,T} = (\tau,T) \times \Omega$, $\Sigma_{\tau,T} = (\tau,T) \times \Gamma$, Δ is the usual Laplace operator, i.e. $\Delta u = \sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2}$ and $\xi, \eta \in L^2(\Omega)$. We assume that f is continuous function, q_i is bounded and l.s.c. and q_i is bounded and u.s.c.

continuous function, g_1 is bounded and l.s.c. and g_2 is bounded and u.s.c. function on $\mathbf{R} \times \mathbf{R}$ and $g_1(u, v) \leq g_2(u, v)$ for each $(u, v) \in \mathbf{R} \times \mathbf{R}$.

Let $f : \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$ and $\tilde{g} : \mathbf{R} \times \mathbf{R} \to \mathbf{R}_-$ be two continuous functions such that

$$\begin{cases} f(u,v) \le \widetilde{f}(u,v) \\ g_2(u,v) \ge \widetilde{g}(u,v) \end{cases}$$
(22)

for each $(u, v) \in \mathbf{R} \times \mathbf{R}$. Let us consider also the comparison predator-pray system

$$\begin{cases} u_t = \delta_1 \Delta u - pu + \tilde{f}(u, v) & (t, x) \in Q_{0,\infty} \\ v_t = \delta_2 \Delta v + qv + \tilde{g}(u, v) & (t, x) \in Q_{0,\infty} \\ u(t, x) = v(t, x) = 0 & (t, x) \in \Sigma_{0,\infty}, \\ u(0, x) = u_0(x), \quad v(0, x) = v_0(x) & x \in \Omega, \end{cases}$$
(23)

where $u_0, v_0 \in L^2(\Omega)$, $u_0(x) \ge 0, v_0(x) \ge 0$ a.e. for $x \in \Omega$. Let $(\tilde{u}, \tilde{v}) : \mathbf{R}_+ \times \Omega \to \mathbf{R}_+ \times \mathbf{R}_+$ be a mild solution of (23).

Using the viability result, we are interested to show that, in the specific hypotheses, for each $(\xi, \eta) \in L^2(\Omega) \times L^2(\Omega)$, with

$$\begin{cases} 0 \le \xi(x) \le \widetilde{u}(\tau, x) \\ \eta(x) \ge \widetilde{v}(\tau, x) \end{cases}$$
(24)

a.e. for $x \in \Omega$, the system (21) has at least one solution $(u, v) : \mathbf{R}_+ \times \Omega \to \mathbf{R}_+ \times \mathbf{R}_+$, such that, for each $t \in [\tau, \infty)$, we have

$$\begin{cases} 0 \le u(t,x) \le \widetilde{u}(t,x) \\ v(t,x) \ge \widetilde{v}(t,x) \end{cases}$$
(25)

a.e. for $x \in \Omega$.

Let $\mathcal{K} \subseteq \mathbf{R} \times L^2(\Omega) \times L^2(\Omega)$ be defined by

$$\mathcal{K} = \left\{ (t, u, v) \in \mathbf{R}_+ \times L^2(\Omega) \times L^2(\Omega); \ (u, v) \text{ satisfies (27) below} \right\}$$
(26)

$$\begin{cases} 0 \le u(x) \le \widetilde{u}(t,x) \\ v(x) \ge \widetilde{v}(t,x) \end{cases}$$
(27)

a.e. for $x \in \Omega$.

Theorem 7. Let $\Omega \subseteq \mathbf{R}^n$, $n = 1, 2, ..., be a bounded domain with <math>C^2$ boundary Γ , $\delta_1 \geq 0$, $\delta_2 > 0$ and let $f : \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$ be continuous on $\mathbf{R} \times \mathbf{R}$ and globally Lipschitz with respect to its first argument, $g_1 : \mathbf{R} \times \mathbf{R} \to \mathbf{R}_-$ be bounded and l.s.c., $g_2 : \mathbf{R} \times \mathbf{R} \to \mathbf{R}_-$ be bounded and u.s.c. such that $g_1(u, v) \leq g_2(u, v)$ for each $(u, v) \in \mathbf{R} \times \mathbf{R}$. Let $\tilde{f} : \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$, $\tilde{g} : \mathbf{R} \times \mathbf{R} \to \mathbf{R}_-$ be continuous such that (22) are satisfied. Assume that, for each $(u_0, v_0) \in \mathbf{R} \times \mathbf{R}$, $u \mapsto \tilde{f}(u, v_0)$ and $v \mapsto \tilde{g}(u_0, v)$ are nondecreasing, $u \mapsto \tilde{g}(u, v_0)$ and $v \mapsto \tilde{f}(u, v) \leq c_1 |u| + c_2$, and $|\tilde{g}(u, v)| \leq c_3 |u| + c_4 |v| + c_5$ for each $(u, v) \in \mathbf{R} \times \mathbf{R}$. Let $(\tilde{u}, \tilde{v}) : \mathbf{R}_+ \to L^2(\Omega) \times L^2(\Omega)$ be a global mild solution of (23) with $\tilde{u}(t, x) \geq 0$ for each $(\tau, \xi, \eta) \in \mathcal{K}$, the problem (21) has at least one global mild solution $(u, v) : [\tau, \infty) \to L^2(\Omega) \times L^2(\Omega)$ satisfying $(t, u(t), v(t)) \in \mathcal{K}$, for each $t \in [\tau, \infty)$.

Proof. Let us denote by $X = L^2(\Omega)$. We rewrite (21) and (23) as an evolution systems in $X \times X$. Let us define $A : D(A) \subseteq X \to X$ and $B : D(B) \subseteq X \to X$ by

$$D(A) = H_0^1(\Omega) \cap H^2(\Omega)$$
 and $Au = \delta_1 \Delta u - pu$ for $u \in D(A)$

and respectively by

$$D(B) = H_0^1(\Omega) \cap H^2(\Omega)$$
 and $Bv = \delta_2 \Delta v + qv$ for $v \in D(B)$.

Let us define $F: X \times X \to X$ and $G: X \times X \to X$ by

$$F(u,v)(x) = f(u(x),v(x))$$
 for each $(u,v) \in X \times X$ and a.e. for $x \in \Omega$

and respectively by

$$G(u,v) = \{ g \in L^{2}(\Omega); g_{1}(u(x),v(x)) \le g(x) \le g_{2}(u(x),v(x)) \text{ a.e. for } x \in \Omega \}$$

for each $(u, v) \in X \times X$. Let us observe that F is well-defined, continuous on $X \times X$ and is globally Lipschitz with respect to its first argument. Since g_1 is l.s.c., g_2 is u.s.c. and both are bounded, we conclude that G is strongly-weakly u.s.c. with nonempty, convex and weakly compact values. Let us define $\tilde{F}: X \times X \to X$ and $\tilde{G}: X \times X \to X$ by

$$\widetilde{F}(u,v)(x) = \widetilde{f}(u(x),v(x))$$
 and $\widetilde{G}(u,v)(x) = \widetilde{g}(u(x),v(x))$

for each $(u, v) \in X \times X$ and a.e. for $x \in \Omega$. Since \tilde{f} and \tilde{g} are continuous and have sublinear growth, \tilde{F} and \tilde{G} are well-defined, continuous and have sublinear growth. With the notations above, the problem (21) can be rewritten as the abstract system

$$\begin{cases} u'(t) = Au(t) + F(u(t), v(t)) \\ v'(t) \in Bv(t) + G(u(t), v(t)) \\ u(\tau) = \xi, \ v(\tau) = \eta, \end{cases}$$
(28)

while (23) takes the abstract form

$$\begin{cases} u'(t) = Au(t) + F(u(t), v(t)) \\ v'(t) = Bv(t) + \widetilde{G}(u(t), v(t)) \\ u(0) = u_0, v(0) = v_0. \end{cases}$$
(29)

We have to show first that \mathcal{K} is viable with respect to (A + F, B + G)and second that every mild solution $(u, v) : [\tau, T) \to X \times X$, satisfying $(t, u(t), v(t)) \in \mathcal{K}$ for each $t \in [\tau, T)$, can be extended to a global one obeying the very same constraints. Let $\widetilde{\mathcal{K}} \subseteq \mathbf{R}_+ \times L^2(\Omega) \times L^2(\Omega)$ be defined by

$$\widetilde{\mathcal{K}} = \left\{ (t, u, v) \in \mathbf{R}_+ \times L^2(\Omega) \times L^2(\Omega); \ (u, v) \ \text{satisfy} \ (31) \text{ below} \right\}.$$
(30)

$$u(x) \le \widetilde{u}(t, x), \quad v(x) \ge \widetilde{v}(t, x) \tag{31}$$

a.e. for $x \in \Omega$. To prove that \mathcal{K} is viable with respect to (A + F, B + G) it suffices to show that $\widetilde{\mathcal{K}}$ is viable with respect to (A + F, B + G). This is

a direct consequence of the maximum principle for parabolic equations-see Theorem 1.7.5. in Cârjă-Necula-Vrabie [6]– combined with the fact that Fand \tilde{u} are nonnegative. In view of Theorem 6, to show that $\tilde{\mathcal{K}}$ is viable with respect to (A + F, B + G), we have merely to check the tangency condition

$$((\tau + h, S_A(h)\xi + hF(\xi, \eta), S_B(h)\eta + hG(\xi, \eta)) \in \mathcal{QTS}^{\mathcal{A}}_{\widetilde{\mathcal{K}}}(\tau, \xi, \eta)$$
(32)

for each $(\tau, \xi, \eta) \in \widetilde{\mathcal{K}}$, where $\{S_A(t) : X \to X, t \ge 0\}$ is the C_0 -semigroup generated by A and $\{S_B(t) : X \to X, t \ge 0\}$ is the compact C_0 -semigroups generated by B and $\mathcal{A} = (A, B)$.

Let $(\tau, \xi, \eta) \in \widetilde{\mathcal{K}}$. To prove (32) it suffices that for each h > 0 there exist $(u_h, v_h) \in X \times X$ and $g_h \in G(\xi, \eta)$ with $(\tau + h, u_h, v_h) \in \widetilde{\mathcal{K}}$ and

$$\begin{cases} \liminf_{h \downarrow 0} \frac{1}{h} \|S_A(h)\xi + hF(\xi, \eta) - u_h\| = 0\\ \liminf_{h \downarrow 0} \frac{1}{h} \|S_B(h)\eta + hg_h - v_h\| = 0. \end{cases}$$
(33)

Let us define $g_h(x) = g_2(\xi(x), \eta(x))$ a.e. for $x \in \Omega$ and u_h and v_h by

$$u_{h} = S_{A}(h)\xi + \int_{\tau}^{\tau+h} S_{A}(\tau+h-s)F(\xi,\eta) \, ds$$
$$+ \int_{\tau}^{\tau+h} S_{A}(\tau+h-s) \left[\widetilde{F}(\widetilde{u}(s),\widetilde{v}(s)) - \widetilde{F}(\widetilde{u}(\tau),\widetilde{v}(\tau)) \right] \, ds$$

and respectively by

$$v_h = S_B(h)\eta + \int_{\tau}^{\tau+h} S_B(\tau+h-s)g_h \, ds$$
$$+ \int_{\tau}^{\tau+h} S_B(\tau+h-s) [\widetilde{G}(\widetilde{u}(s),\widetilde{v}(s)) - \widetilde{G}(\widetilde{u}(\tau),\widetilde{v}(\tau))] \, ds.$$

Now let us observe that, inasmuch as $\xi \leq \tilde{u}(\tau)$ and $\eta \geq \tilde{v}(\tau)$ a.e. on Ω , we have both

$$S_A(h)\xi \le S_A(h)\widetilde{u}(\tau)$$
 and $S_B(h)\eta \ge S_B(h)\widetilde{v}(\tau).$

See Theorem 1.7.5 in Cârjă-Necula-Vrabie [6]. Recalling that $f \leq \tilde{f}$ and taking into account of the monotonicity properties of \tilde{f} , we get

$$F(\xi,\eta) \le \widetilde{F}(\xi,\eta) \le \widetilde{F}(\widetilde{u}(\tau),\widetilde{v}(\tau)).$$

Using the fact that $g_2 \geq \tilde{g}$ and the monotonicity properties of \tilde{g} , we deduce

$$g_h \ge \widetilde{G}(\xi, \eta) \ge \widetilde{G}(\widetilde{u}(\tau), \widetilde{v}(\tau)).$$

So, we get both $u_h \leq \widetilde{u}(\tau+h)$ and $v_h \geq \widetilde{v}(\tau+h)$ and thus $(\tau+h, u_h, v_h) \in \widetilde{\mathcal{K}}$. On the other hand

$$\|S_A(h)\xi + hF(\xi,\eta) - u_h\| \le \int_{\tau}^{\tau+h} \|S_A(\tau+h-s)F(\xi,\eta) - F(\xi,\eta)\| ds$$
$$+ Me^{ah} \int_{\tau}^{\tau+h} \|\widetilde{F}(\widetilde{u}(s),\widetilde{v}(s)) - \widetilde{F}(\widetilde{u}(\tau),\widetilde{v}(\tau))\| ds,$$

where $M \geq 1$ and a > 0 are the growth constants of the C_0 -semigroups $\{S_A(t): X \to X, t \geq 0\}$ and $\{S_B(t): X \to X, t \geq 0\}$. Since \widetilde{F} , \widetilde{u} and \widetilde{v} are continuous we conclude that the first equality in (33) holds. Similarly, we have

$$||S_B(h)\eta + hg_h - v_h|| \le \int_{\tau}^{\tau+h} ||S_B(\tau + h - s)g_h - g_h|| ds$$
$$+ Me^{ah} \int_{\tau}^{\tau+h} ||\widetilde{G}(\widetilde{u}(s), \widetilde{v}(s)) - \widetilde{G}(\widetilde{u}(\tau), \widetilde{v}(\tau))|| ds,$$

and we get the second equality from (33). This completes the proof of the viability of $\tilde{\mathcal{K}}$ and consequently the viability of \mathcal{K} . Let us observe that \mathcal{K} satisfies the next property: for each sequence $((t_n, \xi_n, \eta_n))_n$ in \mathcal{K} with $\lim_n (t_n, \xi_n \eta_n) = (t, \xi, \eta)$ and $t < T_{\mathcal{K}}$, where $T_{\mathcal{K}}$ is given by (34) below, it follows that $(t, \xi, \eta) \in \mathcal{K}$.

$$T_{\mathcal{K}} = \sup\{t \in \mathbf{R}; \text{ there exist}(\xi, \eta) \in X \times X, \text{ with}(t, \xi, \eta) \in \mathcal{K}\}.$$
 (34)

Then it follows that each mild solution $(u, v) : [\tau, T] \to X \times X$ of (21) satisfying $(t, u(t), v(t)) \in \mathcal{K}$ for each $t \in [\tau, T]$ can be continued up to a global one $(u^*, v^*) : [\tau, T_{\mathcal{K}}) \to X \times X$ satisfying the very same condition on $[\tau, T_{\mathcal{K}})$. Since (\tilde{u}, \tilde{v}) is defined on \mathbf{R}_+ and $(t, \tilde{u}(t), \tilde{v}(t)) \in \mathcal{K}$ for each $t \in [0, \infty)$, we conclude that $T_{\mathcal{K}} = \infty$ and this completes the proof.

References

 M. Burlică. Viability for semi-multi-valued reaction-diffusion systems. In T.E. Simos, G. Psihoyios, Ch. Tsitouras(eds.) Numerical Analysis and Applied Mathematics, International Conference, AIP. Kos, Greece, 2008.

- [2] M. Burlică, D. Roşu. A Viability Result for Semilinear Reaction-Diffusion Systems (I).In O. Cârjă, I.I. Vrabie, (eds.) Proceedings of the International Conference on Applied Analysis and Differential Equations., 4-9 September, Iaşi, România, (2006), 31-44.
- [3] M. Burlică, D. Roşu. A Viability Results for Semilinear Reaction-Diffusion Systems (II). An. Științ. Univ. "Al. I. Cuza" Iași, Secț. I a, Matematică. TOM LIV, f2 (2008), 361-382.
- [4] O. Cârjă. Some Methods of Nonlinear Functionals Analysis. Matrix Rom, Bucureşti, 2003 (Romanian).
- [5] O.Cârjă, M. Necula, I.I.Vrabie. Necessary and Sufficient Conditions for Viability for Semilinear Differential Inclusions. *Trans. Amer. Math. Soc.* 361, No. 1 (2009), 343-390.
- [6] O.Cârjă, M. Necula, I.I.Vrabie. Viability, Invariance and Applications. North-Holland Mathematics Studies, 207, Elsevier, 2007.
- [7] O.Cârjă, M. Necula, I.I.Vrabie. Necessary and sufficient conditions for viability for nonlinear evolution inclusions. *Set Valued Analysis.* 16, 2008, 701-731.
- [8] M. Necula, I.I.Vrabie. A viability result for a class of fully nonlinear reaction-diffusion systems. *Nonlinear Anal. Theor. Math. Appl.* 69, 2008, 1732-1743.
- [9] I.I. Vrabie. C₀-Semigroups and Applications. North-Holland Mathematics Studies, 191, 2003.