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Abstract

A metric space (X, d) is a continuous midpoint space if there is a
continuous map μ : X × X → X such that, for all (a, b) ∈ X × X ,
d(a, μ(a, b)) = (1/2)d(a, b) = d(b, μ(a, b)). A closed subset C of a
complete continuous midpoint space is convex if ∀(a, b) ∈ C × C,
μ(a, b) ∈ C. Under suitable, but natural, assumptions continuous mid-
point spaces are absolute retracts; Browder, Michael or Cellina like
continuous selection theorems hold; bounded closed convex sets have
the fixed point property for nonexpansive maps. Hyperconvex met-
ric spaces, Cartan-Hadamard manifolds and more generally Hadamard
spaces or metric spaces with non positive curvature in the sense of
Busemann are continuous midpoint spaces.
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1 Introduction

Given two points a and b of a metric space (X, d) a point m of X is a
midpoint for the pair (a,b) if d(a,m) = (1/2)d(a, b) = d(b,m). For all
pairs of points of a complete metric space (X, d) to have a midpoint it is
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necessary and sufficient that the metric be strictly intrinsic1, Lemma 2.4.8
and Theorem 2.4.16 in [8]. The construction of a shortest path is done
through dyadic approximations, an idea which goes back at least to Elie
Cartan (Theorem III page 360 of [10]2). The unit circle with its intrinsic
metric shows that it might be impossible to choose for each pair of points
(a, b) a shortest path γ(a,b) which depends continuously on its end points.
As we will see this is a consequence of the fact that one cannot choose for
each pair of points a midpoint in a continuous way.

A continuous midpoint map on a metric space (X, d) is a continuous
map μ : X × X → X such that, for all (a, b) ∈ X × X, d(a, μ(a, b)) =
(1/2)d(a, b) = d(b, μ(a, b)). If μ is a continuous midpoint then μ̌(a, b) =
μ(b, a) is also a continuous midpoint map. The triple (X, d, μ) is a con-
tinuous midpoint space. Given a continuous midpoint space (X, d, μ)
it is natural to say that a closed subset C of X is convex if, for all
(a, b) ∈ C × C, μ(a, b) ∈ C. We will see that the classical results associated
to the names of Browder, Ky Fan, Michael, Cellina and others hold in the
context of convex sets of continuous midpoint spaces, with for some of them
an additional, but natural condition, on the metric. The class of continuous
midpoint spaces is general enough to contain such different objects as hy-
perconvex metric spaces and Cartan-Hadamard manifolds, or more generally
Hadamard spaces and metric spaces of nonpositive curvature in the sense of
Busemann. Some of the results alluded to above have been known for some
time in the realm of hyperconvex metric spaces - [18] or [21] for example
offer two different approaches - or have been established more recently for
spaces of nonpositive curvature, [26] and [27].

Examples of continuous midpoint spaces are given in Section 2. Section 3
characterizes complete continuous midpoint spaces as those spaces for which
every two points can be joined by a geodesic path and the geodesic path
can be chosen in such a way as to depend continuously on its endpoints.
Convex sets in a complete continuous midpoint space are introduced in Sec-
tion 4. Convexity structures are used here as a mean to an end - mainly
establishing fixed point and selection theorems. From some given properties
of the metric - Busemann, quasi-Busemann, quasiconvexity - corresponding

1The metric d of a metric space (X, d) is strictly intrinsic if for all pairs of points (a, b)
there exists a continuous rectifiable path γ : [0, 1] → X from a to b whose length is d(a, b).

2As E. Cartan says, “cet ouvrage est la reproduction d’un cours professé pendant le
premier semestre 1925-1926 à la Faculté des Sciences de l’Université de Paris. ”
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properties of the convexity are derived which in turn, mostly from known re-
sults, imply the fixed point and selection theorems in question. The context
of section 5 is that of complete continuous midpoint spaces whithout any
other particular assumptions; it contains Fan’s Intersection Theorem, Fan’s
Inequality, the Fan-Browder Fixed Point Theorem and Browder’s Selection
Theorem. Section 6 is about absolute retracts in complete continuous mid-
point spaces. Continuous selections for lower semicontinuous multivalued
maps are in Section 7 and approximate selections for upper semicontinuous
multivalued maps are in Section 8. The fixed point property for nonexpan-
sive maps in continuous midpoint spaces is treated in section 9.

2 Examples of continuous midpoint spaces

(0) Closed convex subsets of normed vector spaces.

(1) Let F1 =
{(

(x1, y1), (x2, y2)
) ∈ R2 × R2 : |x1 − x2| ≤ |y1 − y2|

}
and

F2 =
{(

(x1, y1), (x2, y2)
) ∈ R2 × R2 : |y1 − y2| ≤ |x1 − x2|

}
.

If (a, b) =
(
(x1, y1), (x2, y2)

) ∈ F1 let

μ(a, b) =

⎧⎨
⎩

(
x2,

1
2(y1 + y2) − 1

2 |x1 − x2|
)

if y1 ≤ y2

(
x2,

1
2(y1 + y2) + 1

2 |x1 − x2|
)

if y2 ≤ y1

If (a, b) =
(
(x1, y1), (x2, y2)

) ∈ F2 let

μ(a, b) =

⎧⎨
⎩

(
1
2(x1 + x2) + 1

2 |y1 − y2|, y1

)
if x1 ≤ x2

(
1
2(x1 + x2) − 1

2 |y1 − y2|, y1

)
if x2 ≤ x1

One can easily see that μ is continuous on R2 × R2 and that with the met-
ric d(a, b) = |x1 − x2| + |y1 − y2| one has d

(
a, μ(a, b)

)
= d

(
b, μ(a, b)

)
=

(1/2)d
(
a, b

)
.

This example shows first that, for a given metric, even a norm on a vector
space, there might be many continuous midpoint maps (we could have chosen
m(a, b) =

(
(1/2)(x1 + x2), (1/2)(y1 + y2)) ) and that a continuous midpoint

map does not have to be symmetric (if a = (0, 0) and b = (1, 1) then μ(a, b) =
(1, 0) while μ(b, a) = (0, 1)).
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(3) A metric space (X, d) is hyperconvex if
⋂

λ∈ΛB[xλ, rλ] �= ∅ 3 for all
collections of closed balls

{
B[xλ, rλ] : λ ∈ Λ

}
such that for all λ, λ′ ∈ Λ

d(xλ, xλ′) ≤ rλ + rλ′ . Hyperconvex metric spaces are complete. They are
characterized by the fact that they are nonexpansive retracts of Banach
spaces in which they are embedded. Assume that (X, d) is hyperconvex
and let

(
E, ‖ · ‖) be a Banach space in which (X, d) is isometrically em-

bedded. Let r : E → X be retraction such that, for all u and v in E,

d
(
r(u), r(v)) ≤ ‖u − v‖ and, for x and y in X let μ(x, y) = r

(1
2
(
x+ y

))
.

From d
(
x, μ(x, y)

)
d
(
r(x), μ(x, y)

)≤(1/2)‖x−y‖=(1/2)d(x, y) and μ(x, y)=
μ(y, x) we obtain d

(
x, μ(x, y)

)
= d

(
y, μ(x, y)

)
= (1/2)d(x, y). Hyperconvex

metric spaces were introduced in [2]. More information relating to fixed
points, selections and general properties of hyperconvex spaces can be found
in [3], [18], [22], [23] and [24].

The previous argument shows that a nonexpansive retract of a continuous
midpoint space is a continuous midpoint space.

(4) Hilbert spaces have a unique continuous midpoint map. This is a conse-
quence of the parallelogramm law.

A metric space (X, d) is a unique continuous midpoint space if, for
all pair of points there exists a unique midpoint and the midpoint map is
continuous. If μ(x, y) is a continuous midpoint map then μ̌(x, y) = μ(y, x)
is also a continuous midpoint. In a unique continuous midpoint space the
midpoint map is symmetric.
(5) A metric space (X, d) has the Bruhat-Tits Property if,

∀(a, b) ∈ X ×X ∃z ∈ X such that ∀x ∈ X

d(a, b)2 + 4d(x, z)2 ≤ 2d(x, a)2 + 2d(x, b)2.

From the paralellogram law one can see that convex subsets of Hilbert
spaces have the Bruhat-Tits Property.

A Bruhat-Tits metric space is a unique continuous midpoint space. This is
more or less well known. For the reader’s convenience we give a proof.

Taking x = a in the Bruhat-Tits Property we obtain 4d(a, z)2 ≤ d(a, b)2

and therefore 2d(a, z) ≤ d(a, b); similarly, with x = b we obtain 2d(b, z) ≤
d(a, b). These inequalities can not be strict. We have shown that 2d(a, z) =
d(a, b) = 2d(b, z).

3B[x, r] denotes the closed ball of radius r centered at x
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Given (a, b) ∈ X ×X let us see that there is a unique point z ∈ X for which
the Bruhat-Tits Property holds.

If d(a, b)2 + 4d(x, zi)2 ≤ 2d(x, a)2 + 2d(x, b)2 holds for all x ∈ X with
i ∈ {1, 2} then, taking x = z1, we have

d(a, b)2 + 4d(z1, z2)2 ≤ 2d(z1, a)2 + 2d(z1, b)2

and, from 2d(a, z1) = d(a, b) = 2d(b, z1),

d(a, b)2 + 4d(z1, z2)2 ≤ d(a, b)2

and therefore d(z1, z2) = 0.

The continuity of the midpoint map is a consequence of the following
inequality, which can be easily derived from the Bruhat-Tits Property and
the definition of a midpoint,

d
(
a, b

)2 + 4d
(
μ(a, b), μ(a′, b′)

)2 ≤
2
[ 1

2
d(a′, b′) + d(a, a′)

]2
+ 2

[ 1
2
d(a′, b′) + d(b, b′)

]2
.

Cartan-Hadamard manifolds, that is simply connected Riemannian ma-
nifolds of nonpositive curvature, Chapter XI of [25], are Bruhat-Tits spaces.
The space of symmetric positive definite real matrices of a given dimension
with the trace metric is a Cartan-Hadamard manifold, Chapter XII of [25].

The class of complete Bruhat-Tits spaces is exactly the class of Hadamard
spaces, or complete and simply connected metric spaces of nonpositive cur-
vature also known as CAT(0) spaces, see [8] for definitions and the meaning
of “cat” and of CAT(0).

The open unit disc in the complex plane - or the open unit ball of a complex
Hilbert space - endowed with the hyperbolic metric is a unique continuous
midpoint space, and also a Cartan-Hadamard manifold. Goebel, Sekowski
and Stachura studied such spaces in relation to the fixed point property for
nonexpansive maps in [14]; that same topic is also treated in Goebel and
Reich’s book [13] where the midpoint map for these spaces is explicitely
written down.

The Bruhat-Tits condition appears in [7], Lemma 3.2.1. in connection with
the structure of buildings associated to Bruhat-Tits systems, [7] Defini-
tion 2.5.5. According to Theorem 2.5.12 a building is a complete metric
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space while according to Lemma 2.5.15 there is a geodesic between each pair
of points and the geodesic map depends continuously on the end points. In
other words, buildings are continuous midpoint spaces. The construction of
the Bruhat-Tits metric on a given building can be found in Chapter 11 of
[1].

(6) An R-tree is a metric space (X, d) such that for x and y in X there exists
a unique arc between x and y and this arc is isometric to an interval of R.
A metric space is a complete R-tree if and only if it is a hyperconvex metric
space with unique metric segments; this is due to Kirk [23]. An R-tree is
therefore a unique continuous midpoint space. R-trees are treated in [23]
and [24] and the references given therein.

(7) A midpoint space (X, d, μ) has non-positive curvature in the sense
of Busemann if μ is symmetric and if

∀u ∈ X and ∀(x, y) ∈ X2 d(μ(u, x), μ(u, y)) ≤ 1
2
d(x, y). (1)

Property 1 is due to Busemann, [9] Chapter V where it is defined as
a local condition whereas we require the non-positive curvature property
to hold globaly. Let us call such midpoint spaces Busemann midpoint
spaces or simply Busemann spaces.4

Busemann midpoint spaces (X, d, μ) are continuous midpoint spaces since

d(μ(a, b), μ(a′, b′)) ≤ d(μ(a, b), μ(a, b′)) + d(μ(a, b′), μ(a′, b′))

and therefore

d(μ(a, b), μ(a′, b′)) ≤ 1
2
(
d(a, a′) + d(b, b′)

)
. (2)

If in 2 one takes a = a′ = u, b = x and b′ = y then one gets 1. In
other words, a symmetric midpoint space is a Busemann midpoint space if
and only if 2 holds.

Hyperconvex metric spaces (X, d) with the midpoint map associated to a given
nonexpansive retraction r from a Banach space E in which X is embedded

4There already are such things as “Busemann spaces” hence our somewhat cumbersome
terminology “Busemann midpoint spaces”. The relationship between the two structures
is clarified in Section 3.
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are Busemann midpoint spaces as can easily be seen from the definition
of the midpoint map, that is μ(x, y) = r

(
(1/2)(x + y)

)
. More generally, a

nonexpansive retract of a Busemann midpoint space is a Busemann midpoint
space.

Bruhat-Tits spaces are Busemann midpoint spaces. This is Corollary 1.

Hyperbolic metric spaces in the sense of Reich and Shafrir [30], the definition
of which includes property 1, are Busemann midpoint spaces.

(8) A midpoint space (X, d, μ) is a quasi-Busemann space if

∀(x1, x2), (y1, y2) ∈ X2 d
(
μ(y1, y2), μ(x1, x2)

) ≤ max{d(y1, x1), d(y2, x2)}.
(3)

(9) We will say that a midpoint space (X, d, μ) has a quasiconvex metric if

∀u ∈ X and ∀(x1, x2) ∈ X2 d(u, μ(x1, x2)) ≤ max{d(u, x1), d(u, x2)}.
(4)

A quasi-Busemann space is a continuous midpoint space with a quasiconvex
metric and it follows from 2 that a Busemann midpoint space is a quasi-
Busemann space. Notice also that 2 (respectively 3) implies uniform conti-
nuity of the midpoint map μ : X ×X → X therefore the midpoint map as a
unique continuous extension μ� to X�×X�, whereX� is the completion ofX.
Clearly μ� is a midpoint map for which 1, respectively 3 , holds. The comple-
tion of a Busemann midpoint space (respectively a quasi-Busemann space) is
a Busemann midpoint space, respectively a quasi- Busemann space. Since a
Bruhat-Tits metric space is also a Busemann midpoint space the completion
of a Bruhat-Tits metric space is a Busemann midpoint space for which the
Bruhat-Tits Property holds and is therefore a Bruhat-Tits metric space.

If (X1, d1, μ1) and (X2, d2, μ2) are continuous midpoint spaces then μ×
defined by

μ×
(
(x1, x2), (y1, y2)

)
=

(
μ1(x1, y1), μ2(x2, y2)

)
is a continuous midpoint map on the product X1 ×X2 for the metrics

Dp

(
(x1, x2), (y1, y2)

)
=

[
d1(x1, y1)p + d2(x2, y2)p

]1/p
, 1 ≤ p <∞

and
D∞

(
(x1, x2), (y1, y2)

)
= max{d1(x1, y1), d2(x2, y2)}.

If (X1, d1, μ1) and (X2, d2, μ2) are Busemann midpoint spaces then so is

(X1 ×X2,Dp, μ×), 1 ≤ p ≤ ∞.
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3 The Main Lemma

All of the results of this paper are consequences Lemma 1 below and of
suitable, but natural, assumptions on the metric depanding on the conclusion
one wants to reach. For the reader’s convenience we give a full proof of
Lemma 1.

Lemma 1. If (X, d, μ) is a complete continuous midpoint space then there
exists a continuous map ϕ : X ×X × [0, 1] → X such that ∀(a, b) ∈ X ×X
and ∀(t, t′) ∈ [0, 1] × [0, 1]:

(1) d( a, ϕ(a, b, t) ) = td(a, b) and d( b, ϕ(a, b, t) ) = (1 − t)d(a, b) ;

(2) d(ϕ(a, b, t), ϕ(a, b, t′) ) = |t− t′|d(a, b)
Futhermore, if (X, d) is also a unique midpoint space then there is a

unique map ϕ : X ×X × [0, 1] → X for which (1) and (2) hold. It also has
the following property

(3) ϕ(a, b, t) = ϕ(b, a, 1 − t);

Proof. Let Dm = {k2−m : 0 ≤ k ≤ 2m}; the set D =
⋃

m∈N
Dm of dyadic

numbers is dense in [0, 1]. If t ∈ Dm+1 \Dm then t = k/2m+1 where k is odd;
let ts = (k − 1)/2m+1 and td = (k + 1)/2m+1; ts and td are both in Dm.
(A) For a fixed pair (a, b) ∈ X ×X the construction below defines by induc-
tion a sequence of maps ϕm(a, b,−) : Dm → X such that the restriction of
ϕm+1(a, b,−) to Dm is ϕm(a, b,−) and therefore a map ϕω(a, b,−) : D → X
whose restriction to Dm is ϕm(a, b,−) .

First, for all m ∈ N, ϕm(a, b, 0) = a and ϕm(a, b, 1) = b; this defines
ϕ0(a, b, 0). Then

ϕm+1(a, b, t) = ϕm(a, b, t) if t ∈ Dm

and
ϕm+1(a, b, t) = μ

(
ϕm(a, b, ts), ϕm(a, b, td)

)
if t ∈ Dm+1 \Dm.

(B) If ts and td are two consecutive elements of Dm then

d
(
ϕm(a, b, ts), ϕm(a, b, td)

)
=

1
2m

d(a, b).

Form = 0 this is a consequence of the definition of ϕ0 and form = 1 it follows
from the definition of μ. From td − ts = 2−m we have either ts ∈ Dm − 1 or
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td ∈ Dm−1; assume that ts ∈ Dm−1, and therefore ts + 1/2m − 1 ∈ Dm−1

and td = 1/2
[
ts + (ts + 1/2m−1)

] ∈ Dm \Dm − 1.

ϕm(a, b, ts) = ϕm−1(a, b, ts) and

ϕm(a, b, td) = μ
(
ϕm−1(a, b, ts), ϕm−1(a, b, ts + 1/2m−1)

)
We obtain

d
(
ϕm(a, b, ts), ϕm(a, b, td)

)
d
(
ϕm−1(a, b, ts), μ

(
ϕm−1(a, b, ts),

ϕm−1(a, b, ts + 1/2m−1)
))

=
1
2
d
(
ϕm−1(a, b, ts),

ϕm−1(a, b, ts + 1/2m−1)
)1
2

( 1
2m−1

d(a, b)
)

=
1

2m
d(a, b).

One proceeds similarly if td ∈ Dm−1.

(C) By induction on m on shows that, for all t ∈ D,

d
(
a, ϕω(a, b, t)

)
= td(a, b) and d

(
b, ϕω(a, b, t)

)
= (1 − t)d(a, b).

If t ∈ D0 = {0, 1} this is obvious; if t ∈ D1 it follows from the definition
of μ . Let us assume that t ∈ Dm+1 \Dm.

d
(
a, ϕm+1(a, b, t)

)
= d

(
a, μ

(
ϕm(a, b, ts), ϕm(a, b, td)

)) ≤
≤ d

(
a, ϕm(a, b, ts)

)
+ d

(
ϕm(a, b, ts), μ

(
ϕm(a, b, ts), ϕm(a, b, td)

)) ≤
≤ tsd(a, b) +

1
2
d
(
ϕm(a, b, ts), ϕm(a, b, td)

) ≤ (
ts +

1
2m+1

)
d(a, b)td(a, b).

This shows that for all t ∈ D

d
(
a, ϕω(a, b, t)

) ≤ td(a, b).

Similarly, from td = t+
1

2m+1
, one can show that, for all t ∈ D,

d
(
ϕω(a, b, t), b

) ≤ (1 − t)d(a, b).

The triangle inequality implies that none of these inequalities can be strict,
therefore, t ∈ D,
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d
(
a, ϕω(a, b, t)

)
= td(a, b) and d

(
ϕω(a, b, t), b

)
= (1 − t)d(a, b).

(D) Let us see that t �→ ϕω(a, b, t) is uniformly continuous on D.
For t, t′ ∈ D we choose m such that t, t′ ∈ Dm, let us say t = k/2m and
t = (k + j)/2m. We use (B) with the sequence of consecutive points k/2m,
(k + 1)/2m, · · · , (k + j)/2m to obtain

d
(
ϕω(a, b, t), ϕω(a, b, t′)

) ≤ (j/2m)d(a, b)|t − t′|d(a, b).

(E) From (B), (C) and (D), and since D is dense in [0, 1] and X is complete,
there is a unique uniformly continuous map ϕ(a, b,−) : [0, 1] → X such that

(1) ϕ(a, b, 0) = a and ϕ(a, b, 1) = b;

(2) for all t∈ [0, 1], d
(
a, ϕ(a, b, t)

)
= td(a, b) and d

(
ϕ(a, b, t), b

)
=(1−t)d(a, b);

(3) for all t, t′ ∈ [0, 1], d
(
ϕ(a, b, t), ϕ(a, b, t′)

) ≤ |t− t′|d(a, b).
The triangular inequality in conjonction with (2) yields

d(a, b) ≤ td(a, b) + (1 − t′)d(a, b) + d
(
ϕ(a, b, t), ϕ(a, b, t′)

)
which shows that,

assuming t < t′, the inequality in (3) cannot be strict, and therefore,

(4) for all t, t′ ∈ [0, 1], d
(
ϕ(a, b, t), ϕ(a, b, t′)

)
= |t− t′|d(a, b).

(F ) We show that ϕ is continuous on X ×X × [0, 1].

(a) First, if t ∈ Dm then (a, b) �→ ϕ(a, b, t) = ϕm(a, b, t) is continuous as
one can see from the contunuity of the midpoint map μ, the definition of
ϕm+1(a, b, t) and an induction on m.

(b) Let us see that for all t ∈ [0, 1] (a, b) �→ ϕ(a, b, t) is continuous. Let
Δ = d

(
ϕ(a, b, t), ϕ(a′ , b′, t)

)
; from (4) we have, for arbitrary t′ ∈ [0, 1],

Δ ≤ |t− t′|(d(a, b) + d(a′, b′)
)

+ d
(
ϕ(a, b, t′), ϕ(a′, b′, t′)

)
.

If d(a, a′) + d(b, b′) < 1 then d(a′, b′) < d(a, b) + 1 and therefore

Δ ≤ |t− t′|(2d(a, b) + 1
)

+ d
(
ϕ(a, b, t′), ϕ(a′, b′, t′)

)
.

We can choose t′ ∈ D such that |t− t′| < ε
(
2d(a, b)+1

)−1 and conclude from
the continuity of the map ϕ(−,−, t′) at (a, b).

(c) To see that ϕ is continuous at (a, b, t) let Δ = d
(
ϕ(a, b, t), ϕ(a′, b′, t′)

)
and notice that
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Δ ≤ d
(
ϕ(a, b, t), ϕ(a′, b′, t)

)
+ |t− t′|d(a′, b′).

(G) Let us assume now that (X, d) is a unique continuous midpoint space.
We show that ϕ is the unique continuous map from X ×X × [0, 1] to X for
which (1) and (2) hold. Indeed, if ψ is such a map then ψ(a, b, 0) = ϕ(a, b, 0),
ψ(a, b, 1) = ϕ(a, b, 1) and ψ(a, b, 1/2) = μ(a, b).

To complete the proof let us see that

ψ
(
a, b,

t1 + t2
2

)
= μ

(
ψ(a, b, t1), ψ(a, b, t2)

)
.

We can assume that t1 < t2 and we let

M = ψ
(
a, b,

t1 + t2
2

)
.

d
(
M,ψ(a, b, t1)

)
=

(t1 + t2
2

− t1

)
d(a, b) =

(t2 − t1
2

)
d(a, b)

and similarly

d
(
M,ψ(a, b, t2)

)
=

(
t2 − t1 + t2

2

)
d(a, b) =

( t2 − t1
2

)
d(a, b).

we also have

d
(
ψ(a, b, t1), ψ(a, b, t2)

)
= (t2 − t1)d(a, b).

This shows that M is the midpoint of ψ(a, b, t1) and ψ(a, b, t2).

If t ∈ D \{0, 1/2, 1} let m be the smallest integer for which t ∈ Dm, from
t = (1/2)(td + ts) we have

ψ(a, b, t) = μ
(
ψ(a, b, ts), ψ(a, b, ts)

)
.

and an obvious induction on m shows that ψ = ϕ on X × X × D and
therefore ψ = ϕ.

Finally, notice that (1) and (2) hold for ψ(a, b, t) = ϕ(b, a, 1− t); this proves
(3). �

Given a continuous midpoint space
(
X, d, μ

)
the map ϕ constructed in

Lemma 1 is the equiconnecting map associated to μ. At times we
will also write ϕ(a,b)(t) for ϕ(a, b, t). Since d( a, ϕ(a, b, 1/2) ) = d(a, b)/2
and d( b, ϕ(a, b, 1/2) ) = d(a, b)/2 we have the following characterization of
complete spaces which carry a continuous midpoint map.
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Proposition 1. Let (X, d) be a complete metric space. Then there exists
a continous midpoint map μ : X × X → X if and only if there exists a
continuous map ϕ : X × X × [0, 1] → X such that ∀(a, b) ∈ X × X and
∀(t, t′) ∈ [0, 1] × [0, 1]:

(1) d( a, ϕ(a, b, t) ) = td(a, b) and d( b, ϕ(a, b, t) ) = (1 − t)d(a, b) ;

(2) d(ϕ(a, b, t), ϕ(a, b, t′) ) = |t− t′|d(a, b)

For all pair (a, b) the map ϕ(a,b) clearly defines a rectifiable path whose
length is d(a, b). We call the set ϕ(a,b)

(
[0, 1]

)
the geodesic segment with

extremities a and b and we denote by σμ
(a,b) or simply σ(a,b). Example 1

shows that we can possibly have σ(a,b) �= σ(b,a).

Going back to example (1) of section 2 we can compute ϕ(a, b, t) using the
fact that it is a constant speed geodesic with speed d(a, b) = |x1−x2|+|y1−y2|
where a = (x1, y1) and b = (x2, y2). One finds

ϕ(a, b, t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x1, y1) + td(a, b)
( x2 − x1

|x2 − x1| , 0
)

if t∈
[
0,

|x2 − x1|
d(a, b)

]

(x2,y1)+
(
t− |x2−x1|

d(a, b)

)
d(a, b)

(
0,

y2−y1

|y2−y1|
)

if t∈
[ |x2 − x1|
d(a, b)

, 1
]

If x1 = x2 or y1 = y2 then ϕ(a, b, t) = (1 − t)a+ bt.

Busemann spaces can be characterized by the behaviour of the metric on
geodesics, more precisely,

Proposition 2. A symmetric and continuous midpoint space (X, d, μ) is a
Busemann space if and only if, ∀(a, b, a′, b′) ∈ X4 and ∀(t, t′) ∈ [0, 1]× [0, 1],
one has, with t′′ = (1/2)(t + t′),

d
(
ϕa,b(t′′), ϕa′ ,b′(t′′)

) ≤ 1
2
d
(
ϕa,b(t), ϕa′,b′(t)

)
+

1
2
d
(
ϕa,b(t′), ϕa′,b′(t′)

)
(5)

Proof. If in 5 one takes t = 0 and t′ = 1 then one obtains 2 which character-
izes Busemann spaces. On the other hand, 2 is exactly 5 for (t, t′) ∈ D0×D0.
On shows by induction that 5 holds on D × D and therefore on [0, 1] × [0, 1]. �

Proposition 3. A symmetric and continuous midpoint space (X, d, μ) is a
Busemann space if and only if, ∀(u, x, y) ∈ X3 the map
t �→ d

(
ϕ(u, x, t), ϕ(u, y, t)

)
is convex on [0, 1].
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Proof. Let δ(w,a,b)(t) = d
(
ϕ(w, a, t), ϕ(w, b, t)

)
. If (X, d, μ) is a Busemann

space then one can take in 5 a = a′ = u, b = x and b′ = y to see that δ(u,x,y)

is convex on [0, 1].

On the other hand, if δ(u,x,y) is convex on [0, 1] then δ(u,x,y)(1/2) ≤
(1/2)δ(u,x,y)(0) + (1/2)δ(u,x,y)(1) which is exactly 1 since, for all (u, z) ∈
X ×X, ϕ(u, z, 0) = u, ϕ(u, z, 1) = z and ϕ(u, z, 1/2) = μ(u, z). �.

For all (a, b) ∈ X × X of an arbitrary continuous midpoint space the
map ϕa,b is a constant speed geodesic - its speed is d(a, b) - from which,
assuming that we have a Bruhat-Tits space, the map δ(u,x,y) is convex; this
is Proposition 9.2.13 in [8]5.

Corollary 1. Bruhat-Tits spaces are Busemann midpoint spaces.

The standard definition of Busemann spaces, as opposed to our definition
of Busemann midpoint spaces, is given in [28], Chapter 8: a metric space
(X, d) is a Busemann space if it is a geodesic space (two arbitrary points
can always be joinded by a geodesic path) and, given two geodesic paths
γ : [a, b] → X and γ′ : [a′, b′] → X the map

(t, t′) �→ d
(
γ(t), γ′(t′)

)
(6)

is convex on [a, b] × [a′, b′].

Condition 6 implies that a Busemann space is a unique geodesic space
(given a pair of points (x, y) there exists one and only one geodesic path
parametrized by t ∈ [0, 1] joining x to y), this is Proposition 8.1.4 of [28]. Fur-
thermore, from (vii) of Proposition 8.1.2, given two geodesics γ : [0, 1] → X
and γ′ : [0, 1] → X with γ(0) = γ′(0) one has

d
(
γ(1/2), γ′(1/2)

) ≤ (1/2)d
(
γ(1), γ′(1)

)
(7)

If γa,b : [0, 1] → X is the unique geodesic of the Busemann space X such
that γa,b(0) = a and γa,b(1) = b then γa,b(1/2) is a midpoint for the pair
(a, b) and 7 implies

d
(
γu,x(1/2), γu,y(1/2)

) ≤ (1/2)d(x, y)

which is exactly 1.
5This is proved for the hyperbolic metric on the open unit disc in [13] Lemma 6.8
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Furthermore, the path γ̃a,b(t) = γa,b(1 − t) is a geodesic path from b to a;
from the uniqueness of the geodesic we have γa,b(1−t) = γb,a(t) and therefore
γa,b(1/2) = γb,a(1/2).

If μ : X × X → X is a continuous midpoint map on the Busemann space
X then ϕ(a, b, t) = γa,b(t), since ϕa,b is a geodesic from a to b, in particular,
μ(a, b) = γa,b(1/2). We can conclude this discussion with the following
lemma:

Lemma 2. A Busemann space is a unique continuous midpoint space and
a Busemann midpoint space.

A normed vector space (E, || ||) with the midpoint map μ(x, y) = (1/2)(x+y)
is a Busemann midpoint space but, according to Proposition 7.2.1 of [28], a
normed space is a unique geodesic space if and only if it is strictly convex.
Consequently, a Busemann midpoint space does not have to be a unique
geodesic space.

4 Convex structures

In this section
(
X, d, μ

)
is a complete continuous midpoint space and ϕ is

the associated equiconnecting map. A closed subset C of X is convex,
or more pricisely μ-convex, if, for all (x, y) ∈ C×C, μ(x, y) ∈ C. An obvious
induction on dyadic numbers shows that if C is a closed μ-convex set then,
for all (x, y, t) ∈ C ×C × [0, 1], ϕ(x, y, t) ∈ C, in other words, a closed set C
is convex if and only if,

∀(a, b) ∈ C × C σ(a,b) ⊂ C. (8)

Such a set will be called geodesically convex. In a complete continous
midpoint space the geodesic hull of an arbitrary set A is the smallest
geodesically convex subset containing A, let us call it Δgeo

(
A

)
. One has

Δgeo

(
A

)
=

⋃
n∈N

Δ(n)
geo

(
A

)
(9)

where Δ(0)
geo

(
A

)
= A and Δ(n+1)

geo

(
A

)
=

⋃{σ(x,y) : (x, y) ∈ Δ(n)
geo

(
A

) ×
Δ(n)

geo

(
A

)}. It is clear that a subset C of a complete continuous midpoint
space is geodesically convex if and only if Δgeo

(
C

)
= C if and only if, for all
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finite subsets A of C, Δgeo

(
A

) ⊂ C. The geodesic hull of an arbitary finite
set might not be closed, even for Bruhat-Tits spaces.
In a real topological vector space one can characterize a convex subset as
a set that is geodesically convex or as a set that contains all the polytopes
spanned by its finite subsets; in a real topological vector space polytopes
are compact. In a complete continous midpoint space these two definitions
do not have to be equivalent and polytopes - which will be defined below -
do not have to be compact. If A is an arbitrary finite subset of a complete
continuous midpoint space

(
X, d, μ

)
let

Δμ

(
A

)
=

⋂{
C : A ⊂ C s.t. C is closed and convex

}
. (10)

A set P ⊂ X is a polytope if it is of the form Δμ(A) for some finite subset
A of X. We say that a subset C of a complete continuous midpoint space(
X, d, μ

)
is convex subset of X if it contains all the polytopes spanned by

its finite subsets, that is: if for all finite subsets A of C one has Δμ

(
A

) ⊂ C.
Let us see that for closed sets this definition is identical to the one given
above.

Lemma 3. A closed C subset of a complete continuous midpoint space(
X, d, μ

)
is convex is and only if, for all finite subsets A of C one has

Δμ

(
A

) ⊂ C.

Proof If C is a closed convex set and if A ⊂ C then, from the definition
of Δμ

(
A

)
, Δμ

(
A

) ⊂ C. On the other hand, if Δμ

(
A

) ⊂ C for all finite
subsets A of C then, for all x and y in C, Δμ

({x, y}) ⊂ C. By construction
Δμ

({x, y}) is a closed convex set containing x and y and therefore μ(x, y) ∈
Δμ

({x, y}). This shows that C is convex. �

It is not even clear that a geodesic segment is geodesically convex. At least
if the midpoint map is not unique.

Lemma 4. In a unique continuous midpoint space geodesic segments are
convex.

Proof. Let u and v be two points of σ(x,y). We can write

u = ϕ(x, y, tu) and v = ϕ(x, y, tv)

with tu and tv in [0, 1]. From 2 of Lemma 1 we have

d(u, v) = |tu − tv|d(x, y)
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and also, with t =
tu + tv

2
,

d
(
u, ϕ(x, y, t)

)
= d

(
v, ϕ(x, y, t)

)
=

|tu − tv|
2

d(x, y).

From the uniqueness of the midpoint we can conclude that

μ(u, v) = ϕ
(
x, y,

tu + tv
2

)
. �

For finite subsets the almost obvious relationship between Δgeo

(
A

)
and

Δμ

(
A

)
is given by the following lemma.

Lemma 5. For all finite subsets A of a complete continuous midpoint space
(X, d, μ) we have

Δμ

(
A

)
= Δgeo

(
A

)
. (11)

Proof. Since Δμ

(
A

)
is closed and geodesically convex we have Δμ

(
A

) ⊃
Δgeo

(
A

)
. For all (x, y) ∈ Δgeo

(
A

)
we have μ(x, y) ∈ Δgeo

(
A

)
.

The continuity of μ implies that Δgeo

(
A

)
is convex, and therefore that

Δμ

(
A

) ⊂ Δgeo

(
A

)
. �

Lemma 5 implies that a convex set is geodesically convex, that a closed
set is convex if and only if it is geodesically convex and that the closure of
a geodesically convex set is convex. Also, the following observation, while
evident, is crucial for all that follows.

Lemma 6. Non empty geodesically convex subsets of a complete continuous
midpoint space (X, d, μ) are contractible.

Given a convex (resp. geodesically convex) subset C of a complete con-
tinuous midpoint space (X, d, μ) let Cμ

(
C

)
(resp. Cgeo

(
C

)
) be the collection

of those convex (resp. geodesically convex) subsets of X which are contained
in C. Let C be either Cμ

(
C

)
or Cgeo

(
C

)
. The following properties are easily

established:

Conv1: ∅ ∈ C, C ∈ C and, for all x ∈ C, {x} ∈ C;

Conv2: For all subfamilies A of C,
⋂A ∈ C;

Conv3: if A is a subfamily of C such that, for all A1, A2 ∈ A there exists
A3 ∈ A such that A1 ∪A2 ⊂ A3 then

⋃A ∈ C.
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From (Conv 2) the smallest convex subset of X containing a given subset S
is the intersection of all the elements of Cμ

(
X

)
, closed or not, containing S.

Since Δμ(A) ∈ Cμ

(
X

)
for all finite subsets A of X we have

Δμ(A) =
⋂{

C ∈ Cμ(X) : A ⊂ C
}

(12)

For an arbitrary subset S of X we define the convex hull Δμ(S) of S as the
intersection of all the convex subsets of X containing S.

Given a nonempty set S let 〈S〉 be the family of finite and nonempty subsets
of S. Let Δ be either Δμ or Δgeo. One can easily verify that property (Conv
3) implies that for all subsets S of a complete continuous midpoint space
(X, d, μ) the following holds

Δ(S) =
⋃

A∈〈S〉
Δ(A). (13)

Finally, notice that a complete continuous midpoint space (X, d, μ) is always
locally contractible - if d(x0, x) < ε then d(x0, ϕ(x0, x, t)) = td(x0, x) <
tε and therefore ϕ(x0, x, t) ∈ B(x0, ε) which implies that open balls are
contractible - and, as has been shown, contractible.

Convex structures will be used as a mean to derive certain properties of
complete continuous midpoint spaces whose metric satisfies some explicite
conditions.

5 Around the KKM Lemma in complete
continuous midpoint spaces

In this section (X, d, μ) is a complete continuous midpoint space without
any other particular property. We will see that some fundamental results
from nonlinear analysis hold in this very general framework. Only the basic
statements - relating mainly to variationnal inequalities, fixed points and
selections - will be given, often without proof since they can be directly
derived from propositions and theorems already available.

A c-structure on a topological spaceX is a map Δ from the family of non
empty finite subsets of X to the family of non empty homotopically trivial
subsets of X such, ∀A,B ∈ 〈X〉, Δ(A) is homotopically trivial and if A ⊂ B
then Δ

(
A

) ⊂ Δ
(
B

)
. The pair

(
X,Δ

)
is called a c-space, [17], [18], [16].
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Given a c-space (X,Δ), a subset C of X is a Δ-convex set if, ∀A ∈ 〈C〉,
Δ(A) ⊂ C.
If (X, d, μ) is a complete continuous midpoint space then, for all geodesi-
cally convex (respectively, convex) subsets C of X, (C,Δgeo) (respectively,
(C,Δμ)) is a c-space whose convex subsets are exactly the geodesically con-
vex (respectively, convex) subsets of X contained in C. Hyperconvex metric
spaces carry a natural c-structure which does not depend on the midpoint
map associated to a given retraction; it is defined as follows : for all finite
subsets A of X

Δhyperconv

(
A

)
=

⋂ {
B[x, r] : A ⊂ B[x, r]

}
. (14)

Of course Δhyperconv

(
A

)
makes sense for bounded sets, they are the

admissible sets of [22] and [21].The proof that (X,Δhyperconv) is indeed a
c-space can be found in [18].
Let us call the convexity associated to Δhyperconv the natural convexity
of the hyperconvex metric space (X, d).

Let (X, d) be an hyperconvex metric space and let μ(x, y) = r
(x+ y

2

)
be the

continuous midpoint map associated to an arbitrary nonexpansive retraction
r : E → X from a Banach space E onto X. We have seen that (X, d, μ) is
quasi-Busemann and therefore closed balls are Δμ-convex. From (Conv 2)
and 14 and we have, ∀A ∈ 〈X〉, Δμ

(
A

) ⊂ Δhyperconv

(
A

)
.

The relevance of this remark is due to the following simple observation:
if, in the context of complete continuous midpoint spaces, a statement -
for example a fixed point theorem or a selection theorem - is true under
general topological assumptions for sets, or families of sets, that are convex
then, in the context of hyperconvex metric spaces, under those same general
topological assumptions, it is true for sets, or families of sets, that are convex
with respect to the natural convexity of (X, d). The passage from Proposition
9 to Corollary 4, which is a theorem of Khamsi [21], is a typical example.

The first and basic ingredient of this section is the following statement
whose proof can be obtained from Theorem 2 in [20].

Lemma 7 (KKM). Let {M0, · · · ,Ml} be a family of subsets of a geodesically
convex subset C of X. Assume that either they are all closed or all open in
C and that there exists a finite subset {x0, · · · , xl} of C such that for all non
empty set of indices J ⊂ {0, · · · , l}, Δgeo

{
xj : j ∈ J}) ⊂ ∪j∈JMj . Then

∩l
j=0Mj �= ∅.
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It is well known that the classical Knaster-Kuratowski-Mazurkiewicz Lemma
for convex subsets of Rn can be used to prove Brouwer’s Fixed Point Theo-
rem, and reciprocally [15]. In [26] Niculescu and Rovenţa have given a proof
of the KKM Lemma for closed sets in complete Bruhat-Tits spaces assuming
that, for all non empty finite subsets A, Δμ(A) has the fixed point property
for continuous maps.

The first, and maybe most fundamental, application of Lemma 7 is the
following version of Ky Fan’s Intersection Theorem. A proof in the standard
setting of topological vector spaces can be found in [15]. The proof of the
slightly more general formulation can be found in [17], Theorem 1 page 350.

Proposition 4 (Fan’s Intersection Theorem). Let C be a geodesically convex
subset of a complete continuous midpoint space and let Γ : C → C be a
multivalued map with closed values, at least one of which is compact. Assume
that Γ has a multivalued selection Θ : C → C such that, ∀x ∈ C, x ∈ Θx
and C \ Θ−1x is geodesically convex. Then ∩x∈CΓx �= ∅.

The importance of this result, at least in the standard framework of topo-
logical vector spaces, is due to its use in the study of variational inequalities.
For an illustration, the following inequality is a direct and easy application
of Proposition 4.

Corollary 2. Let C be a geodesically convex subset of a complete continuous
midpoint space and f, g : C × C → R be two functions such that: (1) f ≤ g,
(2) ∀y ∈ C f(−, y) is lower semicontinuous, (3) ∀x1, x2, y ∈ C and ∀t ∈
[0, 1], min{g(x1, y), g(x2, y)} ≤ g(ϕ(x1, x2, t), y), (4) ∀x ∈ C g(x, x) ≤ 0 and
(5) ∃x0 ∈ C such that {y ∈ C : f(x0, y) ≤ 0} is compact. Then, ∃y0 ∈ C
such that, ∀x ∈ C, f(x, y0) ≤ 0.

Taking f = g in Corollary 2 we obtain the classical inequality of Ky Fan
a proof of which in the context of complete Bruhat-Tits spaces, under the
assumption that C is compact and polytopes have the fixed point property
for continuous maps, can be obtained from the more general results of [26].

An elementary manipulation of Proposition 4 yields the following midpoint
spaces version of the Browder-Fan Fixed Point Theorem.

Proposition 5. Let Φ : C → C be a multivalued map from a geodesically
convex subset of a complete continuous midpoint space to itself. Assume
that (1) Φ has geodesically convex values, (2) Φ has a multivalued selection
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Ψ : C → C with open fibers and non empty values, (3) ∃x0 ∈ C such that
C \Ψ−1x0 is compact. Then ∃x̂ ∈ C such that x̂ ∈ Φx̂.

6 A proof of Browder’s Selection Theorem in c-spaces can be found in
[16] or in [17], Theorem 2 page 348. For midpoint spaces Browder’s Selection
Theorem takes the following form.

Proposition 6. A Browder map Φ : Z → C from a paracompact topological
space Z to a geodesically convex subset C of a complete continuous midpoint
space has a continuous selection.

Most of the classical results whose proof depends on the KKM Lemma,
for example those presented in [15] on page 142 and subsequent pages, can
be formulted in the framework of midpoint spaces. For more results of this
type in the context of c-spaces one could look at [17], at [20] for Klee type
theorems or, for even more general formulations, at [29] and the references
given therein.

6 Absolute retracts and fixed points

The generalized Schauder’s Theorem, Theorem 7.4 Page 291 in [15], states
that a compact continuous map f : C → C 7 from an absolute retract to
itself has a fixed point. A convex subset of a normed space is an absolute
retract; for closed convex sets this is a consequence of Michael’s Selection
Theorem. More generally, metrizable convex subsets of locally convex topo-
logical vector space are absolute retract; this is a consequence of Dugundji’s
Extension Theorem. What can be said with regard to convex subsets of com-
plete continuous midpoint spaces? This is the question we partially answer
in this section.

Since a complete continuous midpoint space is locally contractible and con-
tractible the following statement is a direct consequence of a Theorem of

6The terminology is still somewhat unstable. In [16], and in the context of general c-
spaces, maps Φ for which the assumptions of Proposition 5 hold are called Browder maps.
In [15], definition 1.1 page 142, in the context of linear topological spaces, a map with
nonempty convex values and open fibers is an F map; still in [15], maps of type Φ, which
are defined on page 176, are what we just called Browder maps while the Browder maps
of [15], which are the maps of type B on page 176, are still something else. We will keep
the terminology of [16].

7f : C → C is compact if there exists a compact subset K of C such that f(C) ⊂ K.
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Dugundji, Theorem 3.1 in [11], or Borsuk, Corollary 10.5 in [4], for compact
spaces.

Proposition 7. A finite dimensional continuous midpoint space is an ab-
solute retract.

Proposition 7 for finite dimensional compact spaces is essentially due to
Borsuk, [4] page 219 where it is stated for compact metric spaces with a
unique midpoint map (in which case the continuity of the midpoint map is
a consequence of the compactness of the space). Borsuk asked if a compact
metric space with a unique midpoint map is always an absolute retract,
Problem 10.1 on page 219 of [4]. We will see that this is indeed the case,
without assuming compactness, if the metric is quasiconvex.

Lemma 8. In a complete continuous midpoint space (X, d, μ) the
following statements are equivalent: (1) The metric is quasiconvex; (2) closed
balls are convex; (3) open balls are convex; (4) open ball are geodesically
convex.

Proof. The equivalence between (1) and (2) is obvious from 4. The
equivalence of (2) and (3) follows from (conv2) and (conv3). To see that (4)
implies (2) notice that if open balls are geodesically convex then, by (conv3),
closed balls are geodesically convex and therefore convex. Obviously (3)
implies (4) �

Proposition 8. A geodesically convex subset of a complete continuous mid-
point space whose metric is quasiconvex is an absolute retract.

Proof. Let C be a geodesically convex subset of a complete continuous
midpoint space (X, d, μ) whose metric is quasiconvex. In X open balls are
geodesically convex, Lemma 8. The family of geodesically convex sets {C∩
B(x, r) : x ∈ C, r > 0} is an open basis for the metric space C. By a theorem
of Dugundji, Theorem 3.4 in [11], C is an ANR and since it is contractible
it is an abolute retract. �

Corollary 3 (Schauder’s Theorem). A geodesically convex subset of a com-
plete continuous midpoint space which is either finite dimensional or whose
metric is quasiconvex has the fixed point property for continuous maps.

In [27] Niculescu and Rovenţa have given a direct proof of Schauder’s
Theorem in complete Bruhat-Tits spaces using a Schauder like approxima-
tion method. Notice that Corollary 3 implies that in complete Bruhat-Tits
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spaces, and more generally in quasi-Busemann spaces, a set of the form
Δμ(A), that is the closure of geodesic hulls of finite sets A, has the fixed
point property for continuous maps.

In a complete continuous midpoint space whose metric is quasiconvex
inequality 4 can be written

∀u ∈ X, ∀(x1, x2, t) ∈ X2×[0, 1], d(u, ϕ(x1, x2, t)) ≤ max{d(u, x1), d(u, x2)}.
(15)

From this remark we have a fixed point theorem originally proved by Ky
Fan in normed spaces, Theorem 1.9 on page 146 of [15] and as a Corollary
Khamsi’s extension of that theorem to hyperconvex metric spaces, Theorem
6 in [21].

Proposition 9. Let C be a compact convex subset of a complete continuous
midpoint space (X, d, μ) whose metric is quasiconvex. Let f : C → X be a
continuous map. Then, ∃y0 ∈ C such that, ∀x ∈ C

d(y0, f(y0)) ≤ d(x, f(y0)). (16)

Furthermore, if for all x ∈ C such that f(x) �= x one of the following
conditions holds then f has a fixed point:

(1) ∃t ∈ (0, 1) such that C ∩B[f(x), td(x, f(x)] �= ∅.
(2)(Fan’s condition) The geodesic segment σ(f(x),x) contains at least two
points of C.

Proof. For all x ∈ C let Γx = {y ∈ C : d(y, f(y)) ≤ d(x, f(y))}. Notice
that x ∈ Γx and that Γx is closed, and therefore compact.
Also, C \ Γ−1y = {x ∈ C : d(x, f(y)) < d(y, f(y)} is, by 15, geodesically
convex. Applying Proposition 4 with Θ = Γ we find a point y0 in ∩x∈CΓx.
This proves the first part. If (1) holds and if 0 < d(y0, f(y0)) then there exist
y1 ∈ C and t ∈ (0, 1) such that d(y1, f(y0)) ≤ td(y0, f(y0)). Taking x = y1

in 16 yields a contradiction. If (2) holds and if y0 �= f(y0) then there exists
y1 �= y0 which belongs to C ∩ σ(f(y0),y0). We have y1 = ϕ(f(y0), y0, t) with
t < 1 and therefore d(y1, f(y0)) = d(ϕ(f(y0), y0, t), f(y0)) = td(f(y0), y0)
which shows that (1) holds. �

Corollary 4. Let C be a compact subset of a hyperconvex metric space (X, d)
which is convex with respect to the natural convexity of (X, d), that is
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Δhyperconv(C) = C, and let f : C → X be a continous map such that,
∀x ∈ C, either f(x) = x or ∃t ∈ (0, 1) such that

C ∩B[f(x), td(x, f(x)] �= ∅. (17)

Then f has a fixed point.

Proof. Let μ be the midpoint point map associated to an arbitrary
nonexpansive retraction r : E → X where E is a Banach space in which
X is isometrically embedded. We have seen that (X, d, μ) is a Busemann
midpoint space and that the metric is therefore quasiconvex.
Since C is Δhyperconv-convex it is also Δμ-convex. By Proposition 9 there
exists y0 ∈ C such that, for all x ∈ C, d(y0, f(y0)) ≤ d(x, f(y0)).
If y0 �= f(y0) then, by 17, we have a contradiction. �

Instead of condition 17 above Khamsi in [21] writes C ∩ B[x, αd(x, f(x)] ∩
B[f(x), (1 − α)d(x, f(x)] �= ∅ with α ∈ (0, 1). Notice that, for x ∈ C,
C∩B[x, αd(x, f(x)] �= ∅ holds trivially and, for α ∈ (0, 1), B[x, αd(x, f(x)]∩
B[f(x), (1 − α)d(x, f(x)] �= ∅ holds by hyperconvexity. If we also have 17
then, by hyperconvexity, we also have Khamsi’s condition which is therefore
equivalent to 17.

7 Selections for lower semicontinuous maps

A metric space (X, d) endowed with a c-structure for which balls and ar-
bitrary ε-neighborhoods of c-convex sets are c-convex is called an lc-space.
Michael’s selection theorem holds in lc-spaces. A proof can be found in [18]
and a more recent proof using “small selections” can be found in [16], The-
orem 6.1, or, in a slightly different context in [19], Theorem 3.4.
Since we are considering here only c-structures which are associated to a
complete continuous midpoint space (X, d, μ) let us say that the met-
ric and the midpoint map are strongly compatible if arbitrary ε-
neighborhoods of convex sets are convex that is, if (X,Δμ) is an lc space.
For Bruhat-Tits spaces compatibility of the metric and the midpoint map is
also a consequence of the following condition (1-convexity of the square
of the distance to a point)8 :

8A function f : X → R is λ-convex if f
(
μ(x, y)

) ≤ (
f(x) + f(y)

)
/2 − λd(x, y)2/4 or,

equivalently, if, for all x and y, the function t �→ f
(
ϕ(x, y, t)

) − λt2 is convex.



A note on metric spaces 275

∀w ∈ X and ∀(x, y) ∈ X2 d
(
w,μ(x, y)

)2 ≤

≤ d(w, x)2 + d(w, y)2

2
− d(x, y)2

4
. (18)

Condition 7 is just another way to write the Bruhat-Tits Property.

We will now see that the metric and the midpoint map are strongly compat-
ible exactly when, for all convex sets C, the distance to the convex set C,
that is the function dC , is quasiconvex, or, equivalently that, for all polytopes
Δμ(A), the distance function dΔμ(A) is quasiconvex. For unique midpoint
spaces this condition reduces to the quasiconvexity of the distance functions
to arbitrary geodesic segment .

The ε-neighborhood of a subset S of a metric space (X, d), denoted by
N (S, ε), is the set of points of X whose distance to S is strictly smaller than
ε, that is N (S, ε) = {x ∈ X : dS(x) < ε} where dS(x) = inf

y∈S
d(x, y). We

write N [S, ε] for the set {x ∈ X : dS(x) ≤ ε}
Lemma 9. The following statements are equivalent:

(1) The metric and the midpoint map of a complete continuous midpoint
space (X, d, μ) are strongly compatible.

(2) ∀ε > 0 and for all convex subset C of X N [C, ε] is convex.

(3) ∀ε > 0 and ∀A ∈ 〈X〉 N (Δμ(A), ε) is convex.

(4) ∀ε > 0 and ∀A ∈ 〈X〉 N [Δμ(A), ε] is convex.

(5) ∀A ∈ 〈X〉 and ∀(x1, x2) ∈ X ×X

dΔμ(A)(μ(x1, x2)) ≤ max{dΔμ(A)(x1), dΔμ(A)(x2)}.

(6) ∀(y1, y2), (x1, x2) ∈ X2

dΔμ({y1,y2})(μ(x1, x2)) ≤ max{dΔμ({y1,y2})(x1), dΔμ({y1,y2})(x2)}.

(7) For all closed convex subset C of X and ∀(x1, x2) ∈ X2

dC(μ(x1, x2)) ≤ max{dC(x1), dC(x2)}.
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Proof. The equivalence between (1) and (2) as well as that between
(3) and (4) is a consequence of (Conv2), (Conv3), N (S, ε) =

⋃
ε′<ε

N [S, ε′]

and N [S, ε] =
⋂
ε′>ε

N (S, ε′). The equivalence of (1) and (3) follows from 13

and (Conv3) applied to the family {N (Δμ(A), ε) : A ∈ 〈C〉}. If (5) holds
then, for all x1 and x2 in N [Δμ(A), ε], μ(x1, x2) ∈ N [Δμ(A), ε]. Since
N [Δμ(A), ε] is closed it is convex. Assume that (4) holds. If x1 and x2

both belong to Δμ(A), which is closed and convex, then μ(x1, x2) ∈ Δμ(A)
and (5) trivially holds. If either x1 or x2 does not belong to Δμ(A) let
ε = max{dΔμ(A)(x1), dΔμ(A)(x2)}; both x1 and x2 are in N [Δμ(A), ε], which
is closed and convex, and therefore μ(x1, x2) ∈ N [Δμ(A), ε] from which (5)
follows. If (5) holds then so does (6).
Assume that (6) holds and let A be an arbitrary finite and nonempty subset
of X. For all η > max{dΔμ(A)(x1), dΔμ(A)(x2)} we can find y1,η and y2,η in
Δμ(A) such that d(yi,η, xi) ≤ η.
With Aη = {y1,η, y2,η} we have max{dΔμ(Aη)(x1), dΔμ(Aη)(x2)} ≤ η. From
(6) we obtain dΔμ(Aη)(μ(x1, x2)) ≤ max{dΔμ(Aη)(x1), dΔμ(Aη)(x2)}.
Since Δμ(Aη) ⊂ Δμ(A) we also have dΔμ(A)(μ(x1, x2)) ≤ dΔμ(Aη)(μ(x1, x2))
and therefore dΔμ(A)(μ(x1, x2)) ≤ η.
One proceeds similarly to establish the equivalence of (5) and (7) �

Lemma 10. In a complete and continuous unique midpoint space (X, d, μ)
the following statements are equivalent:

(1) The metric and the midpoint map are strongly compatible.

(2) ∀(x1, x2) ∈ X2 and ∀ε > 0, the ε-neigborhood of the geodesic segment
σ(x1,x2) is convex.

(3) ∀(y1, y2), (x1, x2) ∈ X2

dσ(y1,y2)
(μ(x1, x2)) ≤ max{dσ(y1,y2)

(x1), dσ(y1,y2)
(x2)}.

Proof. From Lemmas 4 and 9. �

Recall that a continuous midpoint space (X, d, μ) is quasi-Busemann if, for
all (u, v) and (x1, x2) in X×X, d

(
μ(u, v), μ(x1, x2)

) ≤ max{d(u, x1), d(v, x2)}.
Lemma 11. In a quasi-Busemann continuous midpoint space (X, d, μ) the
metric and the midpoint map are strongly compatible.
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Proof. Let ε > 0 and choose ui,ε ∈ Δμ({y1, y2}) such that
d(ui,ε, xi) ≤ dΔμ({y1,y2})(xi) + ε.
From d

(
μ(u1,ε, u2,ε), μ(x1, x2)

) ≤ max{d(u1,ε, x1), d(u2,ε, x2)} we have
d
(
μ(u1,ε, u2,ε), μ(x1, x2)

) ≤ max{dΔμ({y1,y2})(x1), dΔμ({y1,y2})(x2)} + ε and
therefore dΔμ({y1,y2})(μ(x1, x2))≤max{dΔμ({y1,y2})(x1), dΔμ({y1,y2})(x2)} + ε.
We have shown that (6) of Lemma 9 holds. �

We can now state the main result of this section, that is Michael’s Selec-
tion Theorem for midpoint spaces :

Proposition 10. Let Y be a paracompact topological space, A a nonempty
closed subspace of Y and (X, d, μ) a quasi-Busemann complete space. If
Ω : Y → X is a lower semicontinuous map with nonempty convex closed
values then any continous selection g : A → X of Ω restricted to A can be
extended to a continuous selection f : Y → X of Ω.

8 Approximate selections and fixed points for
upper semicontinuous maps

Approximate selections for upper semicontinuous maps with convex values in
convex subsets of continuous midpoint spaces can be obtained from Theorem
3.5 of [19] which, adapted to complete continuous midpoint spaces, gives the
following result:

Proposition 11. Let (X, d, μ) be a complete quasi-Busemann space and Y
be a paracompact topological space. Let C ∈ Cμ(X) be a convex set and
Ω : Y → C an upper semicontinuous map with non empty convex values.
Then, ∀ε > 0 there exists a continuous map f : Y → C such that, ∀y ∈ Y ,
the distance from f(y) to Ωy is less that ε.

Furthermore, if the values are convex and compact then, for all neighbour-
hood Θ ⊂ Y ×X of the graph of Ω there exists a continuous map f : Y → X
whose graph is contained in Θ.

Corollary 5 (Kakutani’s Fixed Point Theorem). Let C be a convex and
compact subset of a complete quasi-Busemann space. If Ω : C → C is
an upper semicontinuous map with non empty closed convex values then
∃x� ∈ C such that x� ∈ Ωx�.

Proof. If, for all x ∈ C, x �∈ Ωx then (C ×C) \ΔC , where ΔC = {(x, x) :
x ∈ C}, is a neighborhood of the graph of Ω. By Proposition 11 there is a
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continuous map f : C → C whose graph is contained in (C × C) \ ΔC and
this contradicts Theorem 1. �

To obtain the Generalized Schauder Theorem for upper semicontinuous
maps, that is the multivalued version of Corollary 3, we will have to ask a
little more of the convexity associated to a midpoint map. We will need the
following fact which is a consequence of Theorem 2.8 in [31].

Lemma 12. In a complete quasi-Busemann space whose polytopes are all
compact the convex hull of a compact set is compact.

Proposition 12. If C is a convex subset of a complete quasi-Busemann
space whose polytopes are all compact and if Ω : C → C is a compact9 upper
semicontinuous map with nonempty closed convex values then ∃x� ∈ C such
that x� ∈ Ωx�.

Proof. There exists a compact subset K of C such that, for all x ∈C,
Ωx ⊂ K. By Lemma 12 Δμ(K) is compact; it is also a convex subset of
C since C is itself convex. The restriction of Ω to Δμ(K) is upper semi-
continuous with compact and convex values. From Corollary 5 it has a fixed
point. �

In [19] the convex hull of a set S is defined as the intersection of all the
convex sets containing it. So, for a subset S of C the convex hull of S in
C, as defined in [19], is the intersection of all the convex subsets C ′ of C
containing S, and since C is itself convex convex, this convex hull is also
the intersection of all the convex subsets C ′ of X containing S. We have
implicitely used in the proof the fact that for a on empty finite subset A of
X the intersection of all the convex subsets C ′ of X containing A is exactly
Δμ(A); 12 says that this is indeed the case.

9 Fixed points for nonexpansive maps

A well known result of F. Browder states that bounded closed convex subsets
of Hilbert spaces have the fixed point property for nonexpansive maps; that
result was extended to uniformly convex normed spaces by both Browder
and Goehde. Bounded hyperconvex metric spaces also have the fixed point
property for nonexpansive maps. Closed bounded convex subets of uniformly

9Ω : C → C is a compact if there exists a compact subset K ⊂ C such that ∪x∈CΩx ⊂ K
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convex normed spaces and hyperconvex bounded spaces belong to a class of
metric spaces, all of which share a kind of weak compactness property and
a so called normality condition (the Chebyshev radius not greater than the
diameter); Kirk showed that those spaces have the fixed point property for
nonexpansive maps, Section 4 of [12], more particularly Theorem 4.5 and
4.6.

We follow another path, that of the purely metric proof given in [15].
The subclass of the class of continuous metric spaces for which that method
works contains the class of complete Bruhat-Tits spaces.

Lemma 13. In all complete Bruhat-Tits spaces (X, d) the following proper-
ties hold:

(1) ∀u ∈ X ∀(a, b) ∈ X2 ∀R, r ≥ 0 if R ≥ max{d(u, a), d(u, b)} and
r ≤ d(u, μ(a, b)) then

d(a, b)
2

≤
√
R2 − r2;

(2) ∀(u, t) ∈ X×]0, 1[ the map x �→ ϕ(u, x, t) is contractive.

Proof. Statement (1) is easily obtained from the Bruhat-Tits Property.
Statement (2) is true of all midpoint Busemann spaces, and therefore of
Bruhat-Tits spaces.
Indeed, by Proposition 3 the map t �→ d

(
ϕ(u, x, t), ϕ(u, y, t)

)
is convex, we

can therefore write

d
(
ϕ(u, x, t), ϕ(u, y, t)

)≤(1−t)d(ϕ(u, x, 0), ϕ(u, y, 0)
)
+td

(
ϕ(u, x, 1), ϕ(u, y, 1)

)
.

Finally, from ϕ(a, b, 0) = a and ϕ(a, b, 1) = b we obtain

d
(
ϕ(u, x, t), ϕ(u, y, t)

) ≤ td(x, y).

�

Using the first part of the preceding lemma and proceeding exactly as in
[15] one can proves the following statement:

Lemma 14. Let C be a convex and bounded subset of a complete continuous
midpoint space (X, d, μ) for which (1) and (2) of Lemma 13 hold and let F :
C → C be nonexpansive. Then, ∀x, y ∈ C and ∀R such that d(x, F (x)) ≤ R
and d(y, F (y)) ≤ R

d
(
μ(x, y), F (μ(x, y))2 ≤ 8Rdiam(C).
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We now have all the necessary ingredients to prove Browder’s Fixed Point
Theorem for closed convex subsets of complete Bruhat-Tits spaces as in [15].

Theorem 1. Closed bounded convex subsets of a complete continuous mid-
point spaces (X, d, μ) for which (1) and (2) of Lemma 13 hold have the fixed
point property for continuous nonexpansive maps.

Proof. Let C be a closed bounded convex subset of X and let F : C → C
be a nonexpansive map. We proceed as in the proof of Browder’s Theorem
in [15], with some very minor adaptations, to show that F has a fixed point.

Fix an arbitrary point u ∈ C and, for all n > 0 let

Fn(x) = ϕ(u, F (x), 1 − 1/n).

By the proof of second part of Lemma 13, Fn is contractive with contraction
constant equal to 1/n; let xn be its fixed point. From Lemma 1 we have

d(xn, F (xn)) = d(ϕ(u, F (xn), 1 − 1/n), F (xn)) =
d(u, F (xn))

n

from which we obtain

d(xn, F (xn)) ≤ diam(C)
n

.

As in [15], for n ≥ 2, let Qn =
{
x ∈ C : d(x, F (x)) ≤ (1/n)diam(C)

}
; Qn

is closed and not empty. Let dn = infx∈Qn d(u, x) and notice that, for all
n ≥ 2, dn ≤ dn+1 ≤ diam(C). Let d = lim

n→∞ dn and

An = Q8n2 ∩B[u, d+ 1/n].

Using Lemma 14 one shows that, for all x, y in Q8n2 , μ(x, y) ∈ Qn.

Therefore, if x and y are in An, we must have d(u, x) ≤ d+
1
n

and

d(u, y) ≤ d+
1
n

as well as d(u, μ(x, y)) ≥ dn. The first part of Lemma 13
yields the following estimation for the diameter of An:

diamAn ≤ 2

√
2d
n

+
1
n2

+ d2 − d2
n.
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To complete the proof notice that An+1 ⊂ An and consequently that⋂
n≥2An reduces to a single point which is clearly a fixed point of F . �

Of course, as has already been said, this is the proof of [15]. But having
said so it might be interesting to notice that it entirely relies on the two
conditions of Lemma 13, which as we have seen hold in all complete Bruhat-
Tits spaces. The second condition says that “the translation operators x �→
ϕ(u, x, t) along the geodesics issuing from a given point u are contractive”.
It holds whenever the map t �→ d

(
ϕ(u, x, t), ϕ(u, y, t)

)
is convex that is, by

Proposition 3 in Busemann midpoint spaces. The first condition of Lemma
13 says that closed balls are “at least as uniformly convex as balls in a Hilbert
space”. To make that statement precise define the modulus of convexity
in a continuous midpoint space (X, d) as in [13], that is

δ(R, ε) = inf
(
1 − d(u, μ(a, b)

R

)
where R > 0, ε ∈ [0, 2] and the infimum is taken over all triples (u, a, b) ∈
X3 such that max{d(u, a), d(u, b)} ≤ R and d(a, b) ≥ εR. For a Hilbert
space the modulus of convexity does not depend on R and its value is

δH(ε) = 1 −
√

1 − ε2

4
.10

Proposition 13. In all continuous midpoint spaces (X, d, μ) the following
conditions are equivalent:

(1) ∀u ∈ X ∀(a, b) ∈ X2 ∀R, r ≥ 0 if R ≥ max{d(u, a), d(u, b)} and
r ≤ d(u, μ(a, b)) then

d(a, b)
2

≤
√
R2 − r2;

(2) ∀R > 0 and ∀ε ∈ [0, 2]

δ(R, ε) ≥ δH(ε);

(3) ∀u ∈ X and ∀(a, b) ∈ X2

4d
(
u, μ(a, b)

)2 + d(a, b)2 ≤ 4max{d(u, a), d(u, b)}2 . (19)

10The modulus of convexity with respect to the hyperbolic metric is defined and com-
puted in [13] where it is shown that δ(R, ε) ≥ δH(ε).
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Proof. Assume that (1) holds. If R ≥ max{d(u, a), d(u, b)} then, taking
r = d(u, μ(a, b)), we have

d(u, μ(a, b))2 ≤ R2 − d(a, b)2

4
.

If we also have d(a, b) ≥ εR then

d(u, μ(a, b)) ≤ R

√
1 − ε2

4
= R

[
1 −

(
1 −

√
1 − ε2

4

)]
and consequently δ(R, ε) ≥ δH(ε).

Assume that δ(R, ε) ≥ δH(ε) for all R > 0 and ε ∈ [0, 2]. If R ≥
max{d(u, a), d(u, b)} then d(a, b)/R ≤ 2. We take ε = d(a, b)/R to obtain

d
(
u, μ(a, b)

)2 ≤ R2 − d(a, b)2

4

from which (1) follows. The equivalence between (1) and (3) is clear. �

The left hand side of condition 19 is identical the left hand side of
the Bruhat-Tits condition. The Bruhat-Tits condition clearly implies 19
which can be seen as a kind of “quasi-Bruhat-Tits” condition. Notice also
that condition 19 implies that closed balls are convex, since d

(
u, μ(a, b)

) ≤
max{d(u, a), d(u, b)}.

Let us say that a continuous midpoint space (X, d, μ) is strictly con-
vex if closed balls are convex and for all convergent sequences (xn)n∈N and
(yn)n∈N of points of X and all points u ∈ X such that

lim
n→∞ d(u, xn) = lim

n→∞ d(u, yn) = lim
n→∞ d(u, μ(xn, yn))

one has
lim

n→∞ d(xn, yn) = 0.

With a = xn and b = yn in 19 one sees that a continuous midpoint space
for which one of the Properties of Proposition 13 holds is strictly convex. In
particular, complete Bruhat-Tits spaces are strictly convex. The following
proposition shows that “closed and bounded convex subsets of strictly convex
midpoint spaces are weakly compact”.
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Proposition 14. Let F = {Cλ : λ ∈ Λ} be a family of closed and bounded
convex subsets of a continuous midpoint space which is complete and strictly
convex. If F has the finite intersection property then

⋂
λ∈Λ Cλ �= ∅.

Proof. (A) Let us first assume that the elements of F form a decreasing
family C0 ⊃ C1 ⊃ · · · of nonempty closed convex susbets of X. Fix an
arbitrary point u0 of C0 and let dn be the distance from u0 to Cn. From
d0 ≤ d1 · · · ≤ dn ≤ dn+1 ≤ · · · ≤ diamC0 we have a convergent sequence.
Let d = lim

n→∞ dn. We verify that there is a unique point ū ∈ ⋂
n∈N

Cn such

that d(u0, ū) = d.
If such a point exists it has to belong to

⋂
n∈N

[
B[u0, d+ 2−n]∩Cn

]
. Taking

An = B[u0, d+2−n]∩Cn we obtain a decreasing sequence of nonempty closed
convex sets. For all n ∈ N choose xn and yn in An such that

diamAn ≤ d(xn, yn) + 2−n.

From μ(xn, yn) ∈ An and dn ≤ d(u0, vn) for all points vn of Cn we have

lim
n→∞ d(u0, xn) = lim

n→∞ d(u0, yn) = lim
n→∞ d(u0, μ(xn, yn))

and therefore lim
n→∞ d(xn, yn) = 0. This shows that lim

n→∞diamAn = 0 and con-

sequently that there is a point ū such that
⋂
n∈N

An = {ū}.

(B) To complete the proof let C0 be an arbitrary element of F and an
element u0 of C0. Replacing each C of F by C ∩C0 we we can assume that
all the elements of F are contained in C0. Let d = supC∈F d(u0, C) and fix
a decreasing sequence {Ĉn : n ∈ N} of elements of F such that d − 2−n ≤
d(u0, Cn) ≤ d. Let ū be the unique point (A) such that ū ∈ ⋂

n∈N
Cn and

d(u0, ū) = d. To see that ū ∈ ⋂
C∈F C take an arbitrary element C of

F and consider the sequence given by C ′
n = C ∩ Cn. There is a unique

point u′ such that u′ ∈ ⋂
n∈N

C ′
n and d(u0, u

′) = supn∈N d(u0, C
′
n). From

d(u0, Cn) ≤ d(u0, C
′
n) ≤ d we have d(u0, u

′) = d and therefore u′ = ū. �

The proof of Proposition 14 given above is essentially identical to the proof
of Theorem 4.2 for closed bounded subsets of Hilbert spaces given in [15].
The first part of the proof of Proposition 14 has the following interesting
byproduct:
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Proposition 15. Let (X, d, μ) be a complete continuous midpoint space
which is strictlly convex. Then, for all closed nonempty convex subset C
of X and for all point u ∈ X there exists a unique point ū ∈ C such that
d(u, ū) = d(u,C).

Proof. Let d = d(u,C) and apply (A) of Proposition 14 to the constant
sequence Cn = B[u, d+ 1] ∩ C. �

Under the conditions of Proposition 15, closed convex sets are Chebyshev.
This is proved for the hyperbolic metric on the open unit disc in [13]. An
important feature of the projection onto a closed convex subset of a Hilbert
space is that it is nonexpansive. The same is true for the hyperbolic metric,
Theorem 6.10 in [13]. Given a complete continuous strictly convex midpoint
space (X, d, μ) and a closed nonempty convex subset C of X let PC : X → C
be the closest point map. For complete Bruhat-Tits spaces PC is nonexpan-
sive, for a proof see Theorem 2.4 on page 176 of [5] which we partially state
below.

Theorem 2. Let (X, d) be a complete Bruhat-Tits space and C a closed
nonempty convex subset of X. Then

(1) PC : X → C is a nonexpansive retraction and

(2) the map H : X × [0, 1] → X defined by H(x, t) = ϕ(x, PC(x), t) is a
continuous homotopy from the identity map of X to C.

The second part of Theorem 2 implies that a closed convex subset of a
complete Bruhat-Tits space is a deformation retract of X.

From Theorem 2 some well known fixed points theorems for nonexpansive
maps in Hilbert spaces, Theorem 1.5 and Corollary 1.6 Page 54 of [15] can
easily be extended to complete Bruhat-Tits spaces. First, we prove the
following lemma.

Lemma 15. Let B[u0, r] be the closed ball of radius r centered at u0 of a
complete Bruhat-Tits space (X, d). Then ∀x ∈ X \ B[u0, r], the geodesic
segment σ(u0,x) and the boundary of B[u0, r] intersect in a single point which
is the projection of x on B[u0, r].

Proof. Let x̄ be the projection of x on B[u0, r]. Since d(u0, ϕ(x̄, x, 0)) ≤ r
and d(u0, ϕ(x̄, x, 1)) > r there exists t ∈ [0, 1] such that d(u0, ϕ(x̄, x, t)) = r.
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If t �= 0 then, from d(ϕ(x̄, x, t)), x) = (1−t)d(x̄, x), we have d(ϕ(x̄, x, t)), x) <
d(x̄, x), which would contradict the minimality of d(x̄, x). Therefore t = 0
and d(u0, x̄) = r. �

Theorem 3. Let f : B[u0, r] → X be a continuous map defined on a closed
ball of a complete Bruhat-Tits space. Assume that f is either compact or
nonexpansive. Then either

(1) f has a fixed point or

(2) there exists t ∈]0, 1[ such that the map x �→ ϕ(u0, t, f(x)) has a fixed
point on the boundary of B[u0, r] or, equivalently, there exists x̂ such that
{x̂} = σ(u0,f(x̂)) ∩ ∂B[u0, r].

Proof. Let C = B[u0, r] and g(x) = PC(f(x)). If f is a compact map
then g is a compact map from B[u0, r] to itself. If f is nonexpansive then g
is nonexpansive. In either case there exists x̂ ∈ C such g(x̂) = x̂. If f(x̂) ∈ C
then g(x̂) = f(x̂); if not let α(t) = ϕ(u0, f(x̂), t). It is an homeomorphism
from [0, 1] to the geodesic segment σ(u0,f(x̂)). Since d(u0, α(0)) = 0 and
d(u0, α(1)) > r there is unique t̂ ∈]0, 1[ such that d(u0, α(t̂)) = r. From
Lemma 15 we have α(t̂) = PC(f(x̂)). In conclusion d(u0, x̂) = r and x̂ =
ϕ(u0, f(x̂)), t̂) with 0 < t̂ < 1 that is {x̂} = σ(u0,f(x̂)) ∩ ∂B[u0, r]. �

Corollary 6. Let (X, d, μ) be a complete Bruhat-Tits space and f : X → X a
continuous map that is either absolutely compact11 or nonexpansive. Assume
that ∃u0 ∈ X and r > 0 such that ∀x ∈ ∂B[u0, r] one of the following two
conditions below holds:

(1) d(u0, f(x))2 ≤ r2 + d(x, f(x))2;

(2) d(u0, f(x)) ≤ d(x, f(x)).

Then f has a fixed point.

Proof. Assume that (1) holds. If f does not have a fixed point then there
exists t ∈]0, 1[ and x ∈ ∂B[u0, r] such x = ϕ(u0, t, f(x)). From

d(x, f(x)) = d(ϕ(u0, t, f(x)), f(x)) = (1 − t)d(u0, f(x))

11f is absolutely compact if for all closed balls B the restriction of f to B is a compact
map.
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and
r = d(u0, x) = d(u0, ϕ(u0, t, f(x)) = td(u0, f(x))

we have d(u0, f(x)) = r + d(x, f(x)) with d(x, f(x)) > 0 which contradicts
(1).

If (2) holds then so does (1). �
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[26] C.P. Niculescu and I. Rovenţa, Fan’s inequality in geodesic spaces, App.
Math. Lett. 22 (2009), No. 10, 1529-1533.
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