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Abstract

The past three decades of research on multiparameter singularly
perturbed systems are reviewed, including recent results. Particular
attention is paid to stability analysis, control, filtering problems and
dynamic games. First, a parameter-independent design methodology
is summarized, which employs a two-time-scale and descriptor systems
approach without information on the small parameters. Further, vari-
ous computational algorithms are included to avoid ill-conditioned sys-
tems: the exact slow-fast decomposition method, the recursive algo-
rithm and Newton’s method are considered in particular. Convergence
results are presented and the existence and uniqueness of the solutions
are discussed. Second, the new results obtained via the stochastic ap-
proach are presented. Finally, the results of a simulation of a practical
power system are presented to validate the efficiency of the considered
design methods.
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1 Introduction

When several small singular perturbation parameters of the same order of
magnitude are present in the dynamic model of a physical system, the control
problem is usually solved as a single parameter perturbation problem [18, 19,
21]; such a system is called a singularly perturbed system (SPS). Although
this is achieved by scaling the coefficients, these parameters are often not
known exactly. Thus, it is not applicable to a wider class of problems.
One solution is to use the so-called multimodeling systems approach (see
e.g. [1, 2, 7, 21, 22]). In addition, a joint multitime scale-multiparameter
singularly perturbed system (MSPS) has been formulated [14, 23]. It should
be noted that these small parameters are of different orders of magnitude.

Stability analysis, control and filtering problems in MSPSs have been
thoroughly investigated. Multiarea power systems [1, 7] and passenger cars
[15, 17, 29] can be modelled as MSPSs, which are widely used to represent
system dynamics.

Since the investigations into the stability for the multimodel situation
in [3, 4, 6], much of the interest in linear quadratic (LQ) control has been
motivated by applications of the theory to multimodeling systems [1, 2, 12].
These interests in extending LQ control to dynamic games [5, 8, 9, 10, 13]
were revealed. An overview of multimodeling control may be found in [11].
The recent theoretical advances in multimodeling techniques allow a revisit-
ing of LQ control [49, 50, 52], the filtering problem [51, 54], the H∞ control
problem [48, 59], guaranteed cost control [56] and Nash games [53, 55, 57, 58].
A direct approach to the Lur’e problem for MSPSs has been proposed [27].
To extend the validity of continuous MSPSs, stability analysis, composite
state feedback control and Nash games have been considered for discrete
MSPSs [24, 25, 26].

In this paper, we present a survey of MSPSs in various control prob-
lems. Although many of the references consider deterministic problems,
stochastic cases are also reviewed here. First, the results of stability analy-
sis and the important related tests are given. After introducing the feature
of the multiparameter algebraic Riccati equations (MARE) that is based
on the LQ control for MSPSs, we discuss the two-time-scale design method
for cases where the singular perturbation parameters are sufficiently small
or unknown. However, iterative methods for finding the desired solutions
are discussed when such parameters are known. In particular, to avoid ill-
conditioned systems, the exact slow-fast decomposition method, recursive
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computation and Newton’s method are surveyed. It is shown that these
results are also valid for the filtering problem, H∞ control problem, guaran-
teed cost control and Nash games. Moreover, some new results for stochastic
systems that are governed by Itô differential equations are also discussed.
Finally, it is shown that the concepts and methods surveyed in this paper
can be exploited to solve the stochastic H∞ control problem for an actual
MSPS.
Notation: The notations used in this paper are fairly standard. block diag
denotes the block diagonal matrix. detM denotes the determinant of M .
vecM denotes an ordered stack of the columns of M . ⊗ denotes Kronecker
product. Reλ(M) denotes a real part of λ ∈ C of M . E[·] denotes the expec-
tation operator. The space of the <k-valued functions that are quadratically
integrable on (0, ∞) are denoted by Lk2(0, ∞).

2 Stability

A general frame-work for the stability of a MSPS is formulated in [1, 3, 4,
6, 7, 21, 22]. Stability is very important for a linear or nonlinear MSPS
when capturing the behaviour of the closed-loop MSPS. For a linear MSPS,
the sufficient conditions for uniform asymptotic stability have been derived,
and the asymptotic behaviour of the solution has also been investigated
by using the transformation [1] and the D-stability [3]. In contrast, it is
known that the Lyapunov method can be used to estimate the stability
of a system by using a Lyapunov function without solving the nonlinear
differential equations [4, 6]. The purpose of this section is to review the
asymptotic stability for several sufficiently small parameters. These results
are based on the asymptotic stability of a reduced-order slow system and
fast subsystems.

A linear system of strongly coupled slow subsystem and weakly coupled
fast subsystems is considered by (1).

ẋ(t) = A0x(t) +
N∑
j=1

A0jzj(t), x(0) = x0, (1a)

εiżi(t) = Ai0x(t) +Aiizi(t) +
N∑

j=1, j 6=i
εijAijzj(t), zi(0) = z0

i , (1b)
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where x(t) ∈ <n0 means the slow state vector. zi(t) ∈ <ni , i = 1, ... , N
mean the fast state vectors. All matrices above are of appropriate dimen-
sions. The small singular perturbation parameters εi > 0, one per subsys-
tem, represent time constant, inertias, masses etc., while the small regular
perturbation parameters εij , i 6= j represent weak coupling between the
subsystems.

The following result is well known for the stability of linear MSPS.

Lemma 1. [1] If Reλ(Aii) < 0, i = 1, ... , N and Reλ(As) < 0, then there
exists a positive scalar σ1 such that

x(t) = xs(t) +O(||ε||), (2a)

zi(t) = −A−1
ii Ai0xs(t) + zif

(
t

εi

)
+O(||ε||), (2b)

hold for all t ∈ [0, ∞) and all ε ∈ H, 0 < ||ε|| ≤ σ1, where

ε :=
[
ε1 · · · εN ε12 · · · εN(N−1)

]
∈ <N2

,

H :=
{
ε ∈ <N2

∣∣∣∣ mij ≤
εj
εi
≤Mij , m̄ij ≤

εij
εi
≤ M̄ij ,

mij > 0, m̄ij > 0, Mij <∞, M̄ij <∞
}
,

ẋs(t) :=Asxs(t), As :=A0−
N∑
j=1

A0jA
−1
jj Aj0, żif (t) :=Aiizif (t), i = 1, ... , N.

As an important implication, the following result is given for the stability
of an uncertain MSPS.

Lemma 2. [52] Let us consider uncertain MSPS

ẋ(t) = [F0 +O(||ε||)]x(t) + [F0f +O(||ε||)]z(t), x(0) = x0, (3a)
Πεż(t) = [Ff0 +O(||ε||)]x(t) + [Ff +O(||ε||)]z(t), z(0) = z0, (3b)

where

Πε := block diag
(
ε1In1 · · · εNInN

)
, z(t) :=

[
zT1 (t) · · · zTN (t)

]T
,

F0f :=
[
F01 · · ·F0N

]
, Ff0 :=

[
F T10 · · ·F TN0

]T
, Ff :=block diag

(
F11 · · ·FNN

)
,
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x(t) ∈ <n0 and zi(t) ∈ <ni, i = 1, ... , N are the state vectors. All matrices
above are of appropriate dimensions.

If Fii, i = 1, ... , N and F̄ = F0 −
∑N

j=1 F0jF
−1
jj Fj0 are stable, then

there exists a positive scalar σ2 such that for all t ∈ [0, ∞) and all ε ∈ H,
0 < ||ε|| ≤ σ2, uncertain MSPS (3) is asymptotically stable.

Asymptotic expansions of the solutions as well as the problem of expo-
nential stability of the zero state equilibrium of a singularly perturbed linear
system with several small parameters of different orders of magnitude may
be found in [39], see also Chapter 3 in [40].

At the end of this section, sufficient conditions are stated to guarantee
the asymptotic stability of a class of nonlinear SPS with several perturbation
parameters of the same order. Now, let us consider the nonlinear MSPS given
by (4).

ẋ(t) = f(t, x) + F (t, x)z(t), (4a)
Πεż(t) = g(t, x) +G(t, x)z(t). (4b)

We assume that the following conditions are satisfied for all x(t) ∈ Sx,
where Sx is a closed set in <n0 containing the origin and for all t ≥ t0.

(a) x(t) = 0 is the unique point in Sx for which f(t, 0) = 0 and g(t, 0) = 0.

(b) f , g, F , G and h := G−1(t, x)g(t, x) are bounded and satisfy the neces-
sary smoothness requirements for existence, uniqueness and continuity
of the solution of (4). Moreover, G(t, x) and h(t, x) have bounded
first partial derivatives with respect to t and x(t).

(c) There exists a positive definite Lyapunov function V (t, x) such that

Vt + Vxf0(t, x) ≤ −κ1ψ
2(x), ||VxF (t, x)|| ≤ κ2ψ(x),

||ht + hxf0(t, x)|| ≤ κ3ψ(x),

f0(t, x) := f(t, x)− F (t, x)h(t, x), Vt :=
∂V

∂t
, Vx :=

∂V

∂x
,

ht :=
∂h

∂t
, hx :=

∂h

∂x
,

where ψ(x) is a positive definite function of x(t), κ1, κ2 and κ3 are
positive scalars.
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(d) The real parts of the eigenvalues of Π−1
ε G are strictly negative, that

is Reλ(Π−1
ε G) ≤ −τ < 0 for all ε ∈ H, where τ is a positive scalar

independent of t, x and ε.

The asymptotic stability of equation (4) is established in the following
basic lemma.

Lemma 3. [6] Under conditions (a)-(d), there exists a positive scalar σ3

such that for all ε ∈ H with 0 < ||ε|| ≤ σ3, the origin x = 0, z = 0 is an
asymptotically stable equilibrium point of (4).

It should be observed that in practice, Lemma 1 is included in Lemma 3
as a special case.

For the problem of exponential stability of a singularly perturbed linear
system with state delays we refer to [16] and [41].

3 Linear Quadratic Regulator (LQR) Problem

The solution of a LQ regulator (LQR) problem is usually given in the form
of state feedback control. Indeed, the LQR technique was used to solve
the active suspension control problem [29]. In this section, we discuss the
LQR problems from the point of view of the reduced-order technique and
numerical aspects. These results will be covered as the extension of SPS
[18, 19, 21].

3.1 Two-Time-Scale Decomposition

When the small perturbation parameters εi are not known, a popular ap-
proach to deal with the MSPS is the two-time-scale decomposition method
(see e.g. [1, 21]). In practice, since εi is very small or unknown, the previous
technique is very efficient. First, the LQ control problem for the MSPS was
studied by using composite controller design [1, 2]. In [2], the resulting near-
optimal controller has been proven to have a performance level, i.e. O(||ε||),
where ||ε|| denotes the norm of the vector ε := [ε1 · · · εN ], close to the
optimal performance level for the standard and nonstandard MSPS. How-
ever, one major drawback of this method is that the fast state matrices Aii
are invertible. Indeed, if this condition holds, we cannot obtain the reduced-
order slow subsystems. To avoid the invertibility assumptions, the descriptor
systems approach [28] can be used. The descriptor systems approach will
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be discussed later as a nonstandard MSPS. Although the descriptor systems
approach can still be used for general MSPSs, the two-time-scale decomposi-
tion method is recommended in this case because the fast state matrices are
invertible in most practical systems. Some properties of the two-time-scale
decomposition method are described next.

We consider a specific structure of N -lower level multi-fast subsystems in-
terconnected through the dynamics of a higher level slow subsystem [1, 7, 52].

ẋ(t) = A0x(t) +
N∑
j=1

A0jzj(t) +
N∑
j=1

B0juj(t), x(0) = x0, (5a)

εiżi(t) = Ai0x(t) +Aiizi(t) +Biiui(t), zi(0) = z0
i , i = 1, ... , N, (5b)

where ui(t) ∈ <mi , i = 1, ... , N are the control inputs.
It should be noted that all fast state matrices Aii, i = 1, ... , N are

invertible. The performance criterion is given by

J =
1
2

∫ ∞
0

ξT (t)Qξ(t) +
N∑
j=1

uTj (t)Rjuj(t)

 dt, (6)

where

ξ(t) :=
[
xT (t) zT1 (t) · · · zTN (t)

]T ∈ Rn̄, n̄ :=
N∑
j=0

nj ,

Q := CTC =
[
Q00 Q0f

QT0f Qf

]
, Q00 := CT0 C0 =

N∑
j=0

CTj0Cj0,

Q0f := CT0 Cf =
[
Q01 · · · Q0N

]
=
[
CT10C11 · · · CTN0CNN

]
,

Qf := CTf Cf = block diag
(
Q11 · · · QNN

)
=

block diag
(
CT11C11 · · · CTNNCNN

)
,
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C :=
[
C0 Cf

]
, C0 :=


C00

C10
...

CN0

 ,

Cf :=


0 0 0 · · · 0
C11 0 0 · · · 0

...
...

...
. . .

...
0 0 0 · · · CNN

 ,
R := block diag

(
R1 · · · RN

)
.

Let the optimal control for the LQ control problem (5) and (6) be

uopt(t) = Koptξ(t) = −R−1BT
ε Pεξ(t), (7)

where Pε satisfies the MARE

PεAε +ATε Pε − PεSεPε +Q = 0, (8)

with

Aε :=
[

A0 A0f

Π−1
ε Af0 Π−1

ε Af

]
,

A0f :=
[
A01 · · · A0N

]
, Af0 :=

[
AT10 · · · ATN0

]T
,

Af := block diag
(
A11 · · · ANN

)
,

Sε := BεR
−1BT

ε =
[

S00 S0fΠ−1
ε

Π−1
ε ST0f Π−1

ε SfΠ−1
ε

]
,

S00 := B0R
−1BT

0 =
N∑
j=1

B0jR
−1
j BT

0j ,

S0f := B0R
−1BT

f =
[
S01 · · · S0N

]
=[

B01R
−1
1 BT

11 · · · B0NR
−1
N BT

NN

]
,

Sf := BfR
−1BT

f = block diag
(
S11 · · · SNN

)
=

block diag
(
B11R

−1
1 BT

11 · · · BNNR
−1
N BT

NN

)
,

Bε :=
[

B0

Π−1
ε Bf

]
, B0 :=

[
B01 · · · B0N

]
,

Bf := block diag
(
B11 · · · BNN

)
.
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However, we cannot solve the MARE (8) without the knowledge of the small
perturbation parameters εi. When εi is very small or unknown, the two-time-
scale design method [1, 52] is very efficient.

According to [1, 7], the near-optimal closed-loop control is given by

uicom(t) = −[(Imi −R−1
i BT

iiXiiA
−1
ii Bii)R̃

−1
i (D̃T

i C̃i0 + B̃T
0iX00)

+R−1
i BT

iiXiiA
−1
ii Ai0]x(t)−R−1

i BT
iiXiizi(t), i = 1, ... , N, (9)

where B̃0i = B0i − A0iA
−1
ii Bii, C̃i0 = Ci0 − CiiA−1

ii Ai0, R̃i = Ri + D̃T
i D̃i,

D̃i = −CiiA−1
ii Bii.

In the above, X00 is the unique stabilizing positive semidefinite symmet-
ric solution of the following algebraic Riccati equation (ARE)

X00(As −BsR−1
s DT

s Cs) + (As −BsR−1
s DT

s Cs)
TX00 −

−X00BsR
−1
s BT

s X00 + CTs (Il̄ −DsR
−1
s DT

s )Cs = 0, (10)

where

Rs = R+DT
s Ds, Bs = B0 −A0fA

−1
f Bf =[

B01 −A01A
−1
11 B11 · · · B0N −A0NA

−1
NNBNN

]
,

Cs = C0 − CfA−1
f Af0 =

[
CT00 (C10 − C11A

−1
11 A10)T · · ·

(CN0 − CNNA−1
NNAN0)T

]T
,

Ds = −CfA−1
f Bf = −


0 · · · 0

C11A
−1
11 B11 · · · 0
...

. . .
...

0 · · · CNNA
−1
NNBNN

 .
Xii, i = 1, ... , N are the unique stabilizing positive semidefinite solution of
the following AREs

XiiAii +ATiiXii −XiiSiiXii +Qii = 0. (11)

It is well known from [1] that the controller (9) is identical with the following
controller

uicom(t) = −R−1
i BT

i0X00x(t)−R−1
i BT

iiXi0x(t)−R−1
i BT

iiXiizi(t), (12)

where Xi0, i = 1, ... , N are

XT
i0 = [X00(S0iXii −A0i)− (ATi0Xii +Q0i)](Aii − SiiXii)−1. (13)
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Furthermore, the composite controller ucom(t) =
[
u1com(t)T · · · uNcom(t)T

]T
can be rewritten as the following composite controller

ucom(t) := Kcomξ(t) = −R−1BT


X00 0 0 · · · 0
X10 X11 0 · · · 0

...
...

...
. . .

...
XN0 0 0 · · · XNN

 ξ(t). (14)

Theorem 1. [1] There exists a positive scalar σ̄1 such that for all ε ∈ H with
0 < ||ε|| ≤ σ̄1 the closed loop MSPS (5) is asymptotically stable. Furthermore,
the use of the composite controller (14) results in Japp satisfying

lim
||ε||→+0

(Jcom − Jopt) = 0, (15)

where Jopt = ξT (0)Pεξ(0) and Jcom = ξT (0)Wεξ(0) with

Wε(Aε +BεKcom) + (Aε +BεKcom)TWε +KT
comRKcom +Q = 0.

According to Theorem 1, the detailed cost degradation has not been
established. This property is described in a subsequent section.

3.2 Matrix Riccati Equations

The multimodel strategies for the LQ control problem are given in terms of
Riccati or Riccati-type equations, which are parameterized by several small
positive perturbation parameters. The existence of a unique and bounded
solution to the MARE (8) was first shown in [13]. This important result is
summarized as follows.

Since the matrices Aε and Bε contain the term of ε−1
i , a solution Pε of

the MARE (8), if it exists, must contain terms of εi. Taking this fact into
consideration, we look for a solution Pε of the MARE (8) with the structure

Pε :=
[

P00 P Tf0Πε

ΠεPf0 ΠεPf

]
, P00 = P T00,

Pf0 :=

 P10
...

PN0

 ,
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Pf :=


P11 α12P

T
21 α13P

T
31 · · · α1NP

T
N1

P21 P22 α23P
T
32 · · · α2NP

T
N2

...
...

...
. . .

...
P(N−1)1 P(N−1)2 P(N−1)3 · · · α(N−1)NP

T
N(N−1)

PN1 PN2 PN3 · · · PNN

 ,

ΠεPf = P Tf Πε.

In order to guarantee the existence of the reduced-order ARE and its
standard stabilizability and the detectability conditions when ||ε|| → +0,
Assumptions 1 and 2 are needed.

Assumption 1. The triples (Aii, Bii, Cii), i = 1, ... , N are stabilizable
and detectable.

Assumption 2.

rank
[
sIn0 −A0 −A0f B0

−Af0 −Af Bf

]
= n̄, (16a)

rank
[
sIn0 −AT0 −ATf0 CT0
−AT0f −ATf CTf

]
= n̄, (16b)

with ∀s ∈ C, Re[s] ≥ 0.

Before investigating the optimal control problem, we investigate the
asymptotic structure of the MARE (8).

The MARE (8) can be partitioned into

f1 = P T00A0 +AT0 P00 + P Tf0Af0 +ATf0Pf0 − P T00S00P00 −
−P Tf0SfPf0 − P T00S0fPf0 − P Tf0S

T
0fP00 +Q00 = 0, (17a)

f2 = AT0 P
T
f0Πε +ATf0Pf + P T00A0f + P Tf0Af − P T00S00P

T
f0Πε −

−P Tf0S
T
0fP

T
f0Πε − P T00S0fPf − P Tf0SfPf +Q0f = 0, (17b)

f3 = P Tf Af +ATf Pf + ΠεPf0A0f +AT0fP
T
f0Πε − P Tf SfPf

−P Tf ST0fP Tf0Πε −ΠεPf0S0fPf −ΠεPf0S00P
T
f0Πε +Qf = 0. (17c)
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It is assumed that the limit of αij exists as εi and εj tend to zero (see e.g.,
[1, 2]), that is

ᾱij = lim
εj→+0
εi→+0

αij = lim
εj→+0
εi→+0

εj
εi
. (18)

Assumption 1 ensures that Aii − SiiP̄ ∗ii, i = 1, ... , N are nonsingular. Sub-
stituting the solution of (17c) into (17b) and substituting P̄ ∗f0 into (17a)
and making some lengthy calculations (the detail is omitted for brevity), we
obtain the following zeroth-order equations (19)

P̄ ∗00A + AT P̄ ∗00 − P̄ ∗00SP̄
∗
00 + Q = 0, (19a)

P̄ ∗f0 = −NT
2 +NT

1 P̄
∗
00, (19b)

P̄ ∗fAf +ATf P̄
∗
f − P̄ ∗f Sf P̄ ∗f +Qf = 0, (19c)

where

A := A0 +N1Af0 + S0fN
T
2 +N1SfN

T
2 ,

S := S00 +N1S
T
0f + S0fN

T
1 +N1SfN

T
1 ,

Q := Q00 −N2Af0 −ATf0N
T
2 −N2SfN

T
2 ,

P̄ ∗f0 :=
[
P̄ ∗T10 · · · P̄ ∗TN0

]T
, P̄ ∗f := block diag

(
P̄ ∗11 · · · P̄ ∗NN

)
,

P̄ ∗Ti0 := −[P̄ ∗00D0i + (ATi0P̄
∗
ii +Q0i)]D−1

ii ,

P̄ ∗iiAii +ATiiP̄
∗
ii − P̄ ∗iiSiiP̄ ∗ii +Qii = 0, i = 1, ... , N,

NT
1 := −Ā−Tf ĀT0f =

[
−D01D

−1
11 · · · −D0ND

−1
NN

]T =
[
N11· · ·N1N

]T
,

NT
2 := Ā−Tf Q̄T0f =

[
Q̄01D11 · · · Q̄0NDNN

]T =
[
N21 · · · N2N

]T
,

Ā0f := A0f − S0f P̄
∗
f =

[
D01 · · · D0N

]
,

Āf := Af − Sf P̄ ∗f = block diag
(
D11 · · · DNN

)
,

Q̄0f := Q0f +ATf0P̄
∗
f =

[
Q̄01 · · · Q̄0N

]
,

D0i := A0i − S0iP̄
∗
ii, Dii := Aii − SiiP̄ ∗ii,

Q̄0i := Q0i +ATi0P̄
∗
ii, i = 1, ... , N.

In the following we established the relation between the MARE (8) and the
zeroth-order equations (19). Before doing that, we give the results for the
AREs (19).
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Lemma 4. [52] Under Assumptions 1 and 2, the following results hold.

(i) The matrices A, S and Q do not depend on P̄ ∗ii, i = 1, ... , N . That is,
following formulations are satisfied.

[
A −S

−Q −AT

]
= T00 −

N∑
j=1

T0jT
−1
jj Tj0, (20)

where

T00 :=
[

A0 −S00

−Q00 −AT0

]
, T0i :=

[
A0i −S0i

−Q0i −ATi0

]
,

Ti0 :=
[

Ai0 −ST0i
−QT0i −AT0i

]
, Tii :=

[
Aii −Sii
−Qii −ATii

]
, i = 1, ... , N.

(ii) There exist a matrix B :=
[
B01 +N11B11 · · · B0N +N1NBNN

]
∈

Rn0×m̄, m̄ :=
∑N

j=1mj and a matrix C with the same dimension as C0

such that S = BR−1BT , Q = CTC. Moreover, the triple (A, B, C)
is stabilizable and detectable.

Remark 1. Note the relation

Tii :=
[

Aii −Sii
−Qii −ATii

]
=
[
Ini 0
P̄ ∗ii Ini

] [
Dii −Sii
0 −DT

ii

] [
Ini 0
−P̄ ∗ii Ini

]
.

Since Tii is nonsingular under Assumption 1 and the ARE (19c) has a stabi-
lizing solution under Assumption 2, Dii is also nonsingular. This means that
T−1
ii can be expressed explicitly in terms of D−1

ii . Using the similar manner,
we have the following relations.

T−1
ii =

[
Ini 0
P̄ ∗ii Ini

] [
D−1
ii −D−1

ii SiiD
−T
ii

0 −D−Tii

] [
Ini 0
−P̄ ∗ii Ini

]
.

Theorem 2. [13, 52] Under Assumptions 1 and 2, there exists a positive
scalar σ̄2 such that for all ε ∈ H with 0 < ||ε|| ≤ σ̄2 the MARE (8) admits a
symmetric positive semidefinite stabilizing solution Pε which can be written
as

Pε = Φε

[
P̄ ∗00 +O(||ε||) [P̄ ∗f0 +O(||ε||)]TΠε

P̄ ∗f0 +O(||ε||) P̄ ∗f +O(||ε||)

]
(21)
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=
[

P̄ ∗00 +O(||ε||) [P̄ ∗f0 +O(||ε||)]TΠε

Πε[P̄ ∗f0 +O(||ε||)] Πε[P̄ ∗f +O(||ε||)]

]
,

where Φε = block diag
(
In0 ε1In1 · · · εNInN

)
.

This result can be easily extended to the other multimodeling-type ARE
(see e.g., [48, 51, 53]). The cross-coupled MARE is discussed later.

3.3 Nonstandard MSPS

If one of the fast state matrices Aii, j = 1, ... , N is singular, the MSPS is
called a nonstandard MSPS. In such a case, we cannot utilize the two-time-
scale decomposition technique.

Recent theoretical advances in the descriptor system approach allow a
revisiting of the various control problems [28]. Since the feedback controller
in such problems can be expressed by solutions of the reduced-order and
parameter independent AREs, the resulting feedback is derived without in-
vertibility assumptions.

We focus on a specific linear state feedback controller which does not
depend on the values of the small parameters. Our methodology is different
from the methodology of [1]. This design method is based on the descriptor
system approach. If ||ε|| is very small, it is obvious that the optimal linear
state feedback controller (7) can be approximated as

uapp(t) = Kappξ(t) = −R−1BT

[
P̄ ∗00 0
P̄ ∗f0 P̄ ∗f

]
ξ(t), (22)

where

P̄ ∗i0 =
[
P̄ ∗ii −Ini

]
T−1
ii Ti0

[
In0

P̄ ∗00

]
.

Theorem 3. [52] Under Assumptions 1 and 2, the use of the approximation
controller (22) results in Japp satisfying

Japp = Jopt +O(||ε||2), (23)

whereJapp = ξT (0)Uεξ(0) with

Uε(Aε +BεKapp) + (Aε +BεKapp)TUε +KT
appRKapp +Q = 0.



126 Hiroaki Mukaidani, Vasile Dragan

The following theorem gives a relation between the composite controller
(14) and the approximate controller (22).

Theorem 4. [52] Under Assumptions 1 and 2, the following identities

Xii = P̄ ∗ii, Xi0 = P̄ ∗i0, X00 = P̄ ∗00, i = 1, ... , N (24)

hold. Hence the resulting composite controller (14) is the same as the com-
posite optimal controller (22).

It can be observed that the new near-optimal controller (22) is equivalent
to the existing one [1] in the case of the standard and the nonstandard
MSPSs. We claim that the proposed controller (22) includes the composite
near-optimal controller [1] as a special case since the proposed controller can
be constructed even if the fast state matrices are singular.

3.4 Numerical Algorithms

In order to obtain the optimal solution to the multimodeling problems, we
must solve the MARE, which are parameterized by the small, positive pa-
rameters εi, i = 1, ... , N , which have the same order of magnitude. Various
reliable approaches to the theory of ARE have been well documented in many
literatures (see e.g. [32, 33]). One of the approaches is the invariant subspace
approach, which is based on the Hamiltonian matrix [32]. However, such an
approach is not adequate for the MSPS since the workspace dimensions re-
quired to carry out the calculations for the Hamiltonian matrix are twice
those of the original full-system. Another disadvantage is that there is no
guarantee of symmetry for the solution of the ARE when the ARE is known
to be ill-conditioned [32]. It should be noted that it is very difficult to solve
the MARE due to the high dimension and numerical stiffness [18, 19]. To
avoid this drawback, various reliable approaches for solving the MARE have
been well documented. Three types of numerical algorithms are presented
in this paper: the first one is the exact slow-fast decomposition method, the
second is a recursive algorithm and the third one is Newton’s method.

3.4.1 Exact Slow-fast Decomposition Method

The exact slow-fast decomposition method for solving the MARE has been
tackled in [15]. In order to simplify the notation, N = 2 is summarized [15].
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Let us consider the nonlinear matrix algebraic equations.

T11L1 − T10 − ε1L1(T00 − T01L1 − T02L2 + T02L3L1) = 0, (25a)
T22L2 − α12L3T10 − T20 − ε2L2(T00 − T02L2) = 0, (25b)
T22L3 − α12L3T11 − ε2L2(T01 − T02L3) = 0, (25c)
−H1T11 − ε1H1L1(T01 − T02L3) + (T01 − T02L3) + ε1(T00 − (25d)
−T01L1 − T02L2 + T02L3L1)H1 = 0,
−H2T22 + α12T11H2 + ε2L1(T01 − T02L3)H2 + (25e)
+(L1 − ε2H2L2)T02 = 0,
−H3T22 − ε2H3L2T02 − ε2(T01 − T02L3)− T02 + ε2(T00 − (25f)
−T01L1 − T02L2 + T02L3L1)H3 = 0.

These equations can be solved by utilizing the fixed point iterations for Li
and Hi, i = 1, 2, 3 [15]. On the other hand, reduced-order pure-slow and
pure-fast asymmetric algebraic Riccati equations are derived as follows.

Psa1 − a4Ps − a3 + Psa2Ps = 0, (26a)
Pf1b1 − b4Pf1 − b3 + Pf1b2Pf1 = 0, (26b)
Pf2c1 − c4Pf2 − c3 + Pf2c2Pf2 = 0, (26c)

where [
a1 a2

a3 a4

]
:= T00 − T01L1 − T02L2 + T02L3L1,[

b1 b2
b3 b4

]
:= T11ε1L1(T01 − T02L3),

[
c1 c2

c3 c4

]
:= T22 + ε2L2T02.

It should be noted that unique positive semidefinite stabilizing solutions
exist for the asymmetric AREs defined in (26) exist. These solutions can
be obtained by using Newton’s method. It is well known that Newton’s
method converges quadratically under appropriate initial conditions. In fact,
this important feature has been proved in [15]. Using the above results, the
following matrix is defined.

Π :=
[

Π1 Π2

Π3 Π4

]
= ET2 KE1, (27)
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where

K :=

 In0 − ε1H1L1 + ε1ε2H1H2L2 + ε2H3L2

L1 − ε2H2L2

L2

−ε1H1 + ε1ε2H1H2L3 + ε2H3L2 ε2(H3 + ε1H1H2)
In1 − ε2H2L3 −ε2H2

L3 In2

 ,

E1 :=



In0 0 0 0 0 0
0 0 0 In0 0 0
0 In1 0 0 0 0
0 0 0 0 ε−1

1 In1 0
0 0 In2 0 0 0
0 0 0 0 0 ε−1

2 In2

 ,

E2 :=



In0 0 0 0 0 0
0 0 0 In0 0 0
0 In1 0 0 0 0
0 0 0 0 In2 0
0 0 In1 0 0 0
0 0 0 0 0 In2

 .

Finally, we can express Pε in terms of Ps, Pf1 and Pf2.

Pε =
[
Ω3 + Ω4 · block diag

(
Ps Pf1 Pf2

)]
·
[
Ω1 + Ω2 · block diag

(
Ps Pf1 Pf2

)]−1
, (28)

where

Ω =
[

Ω1 Ω2

Ω3 Ω4

]
= Π−1.

However, these results are restricted to the MSPS such that the Hamiltonian
matrices for the fast subsystems have no eigenvalues in common (see e.g.,
Assumption 5, [17]). Thus, we cannot apply the technique proposed in [15]
to the practical system.
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3.4.2 Recursive Computation

Now, let us define φ := ||ε|| =
√
ε2

1 + ε2
2. The solution (21) of MARE (8) can

be changed as follows.

Pε =

 P̄00 + φE00 ε1(P̄10 + φE10)T ε2(P̄20 + φE20)T

ε1(P̄10 + φE10) ε1(P̄11 + φE11) φ2ET21

ε2(P̄20 + φE20) φ2E21 ε2(P̄22 + φE22)

 , (29)

where E00 = ET00, E11 = ET11, E22 = ET22.

The O(||ε||) approximation of the error terms Epq will result in O(||ε||2)
approximation of the required matrix Ppq. That is why we are interested
in finding equations of the error terms and a convenient algorithm to find
their solutions. Substituting (29) into (17), we arrive at the recursive algo-
rithm.

DT
11E

(n+1)
11 + E

(n+1)
11 D11

= −ε1

φ
(DT

01P̄
T
10 + P̄10D01)− ε1(DT

01E
(n)T
10 + E

(n)
10 D01) +

ε2
1

φ
P

(n)
10 S00P

(n)T
10

+ε1(E(n)
11 S

T
01P

(n)T
10 + P

(n)
10 S01E

(n)
11 ) + ε1

√
α12(E(n)T

21 ST02P
(n)T
10 +

+P (n)
10 S02E

(n)
21 ) + φ(E(n)

11 S11E
(n)
11 + α12E

(n)T
21 S22E

(n)
21 ), (30a)

DT
22E

(n+1)
22 + E

(n+1)
22 D22

= −ε2

φ
(DT

02P̄
T
20 + P̄20D02)− ε2(DT

02E
(n)T
20 + E

(n)
20 D02) +

ε2
2

φ
P

(n)
20 S00P

(n)T
20

+ε2(E(n)
22 S

T
02P

(n)T
20 + P

(n)
20 S02E

(n)
22 ) +

ε2√
α12

(E(n)
21 S

T
01P

(n)T
20 +

+P (n)
20 S01E

(n)T
21 ) + φ(E(n)

22 S22E
(n)
22 +

1
α12

E
(n)
21 S11E

(n)T
21 ), (30b)
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√
α12E

(n+1)T
21 D22 +

1
√
α12

DT
11E

(n+1)T
21

= −ε1

φ
P̄10D02 −

ε2

φ
DT

01P̄
T
20 − ε1E

(n)
10 D02 − ε2D

T
01E

(n)T
20 + ε1(P (n)

10 S02E
(n)
22 +

+
1
√
α12

P
(n)
10 S01E

(n)T
21 ) + ε2(E(n)

11 S
T
01P

(n)T
20 +

√
α12E

(n)T
21 ST02P

(n)T
20 )

+
ε1ε2

φ
P

(n)
10 S00P

(n)T
20 + φ(

√
α12E

(n)T
21 S22E

(n)
22 (30c)

+
1
√
α12

E
(n)T
11 ST11E

(n)T
21 ),

DT
0 E

(n+1)
00 + E

(n+1)
00 D0

= −DT
10D

−T
11 H

(n)T
01 −H(n)

01 D
−1
11 D10 −DT

20D
−T
22 H

(n)T
02 −H(n)

02 D
−1
22 D20

+φ(E(n)
00 S00E

(n)
00 + E

(n)T
10 ST01E

(n)
00 + E

(n)
00 S01E

(n)
10

+E(n)T
20 ST02E

(n)
00 + E

(n)
00 S02E

(n)
20 + E

(n)T
10 ST11E

(n)
10 + E

(n)T
20 S22E

(n)
20 ), (30d)

E
(n+1)T
i0 = (H(n)

0i − E
(n+1)
00 D0i)D−1

ii , i = 1, 2, (30e)

where

H
(n)
01 = −DT

10E
(n+1)
11 −

√
α12D

T
20E

(n+1)
21 − ε1

φ
DT

00P̄
T
10 − ε1D

T
00E

(n)T
10 +

+φ(E(n)
00 S01E

(n)
11 + E

(n)T
10 S11E

(n)
11 ) + φ

√
α12(E(n)

00 S02E
(n)
21 +

+E(n)T
20 ST22E

(n)
21 ) + ε1(E(n)

00 S00 + E
(n)T
10 ST01 + E

(n)T
20 ST02)P (n)T

10 ,

H
(n)
02 = −DT

20E
(n+1)
22 − 1

√
α12

DT
10E

(n+1)T
21 − ε2

φ
DT

00P̄
T
20 − ε2D

T
00E

(n)T
20 +

+φ(E(n)
00 S02E

(n)
22 + E

(n)T
20 S22E

(n)
22 ) +

φ
√
α12

(E(n)
00 S01E

(n)T
21 +

+E(n)T
10 ST11E

(n)T
21 ) + ε2(E(n)

00 S00 + +E(n)T
10 ST01 + E

(n)T
20 ST02)P (n)T

20 ,

P
(n)
10 = P̄10 + φE

(n)
10 , P

(n)
20 = P̄20 + φE

(n)
20 ,

E
(0)
00 = E

(0)
10 = E

(0)
20 = E

(0)
11 = E

(0)
21 = E

(0)
22 = 0.

The following theorem indicates the convergence of the algorithm (30).

Theorem 5. [49] Under Assumptions 1 and 2, there exist the unique and
bounded solutions Epq of the error equation in a neighborhood of ||ε|| = 0.
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Moreover, the algorithm (30) converges to the exact solution Epq with the
rate of convergence of O(||ε||n), that is

||Epq − E(n)
pq || = O(||ε||n), n = 1, 2, ... , pq = 00, 10, 20, 11, 21, 22. (31)

However, there exists the drawback that the recursive algorithm con-
verges only to the approximation solution [49] since the convergence of the
recursive algorithm depends on the zeroth-order solutions.

3.4.3 Newton’s Method

In this section, we develop an elegant and simple algorithm which converges
globally to the positive semidefinite solution of the MARE (8). The algo-
rithm uses the Kleinman algorithm [33], which is equivalent to Newton’s
method. Thus, this paper presents important improvements upon some of
the results of [15, 49] in the sense that one need not assume that the Hamil-
tonian matrices for the fast subsystems have no eigenvalues in common.
Moreover, the convergence solution does not depend on the initial guess,
and quadratic convergence is attained.

We propose the following algorithm for solving the MARE (8)

(A− SP (n))TP (n+1) + P (n+1)T (A− SP (n)) + P (n)TSP (n) +Q = 0, (32)
i = 0, 1, 2, ... , P (n)

ε = ΦεP
(n) = P (n)TΦε,

P (n) =


P

(n)
00 ε1P

(n)T
10 ε2 P

(n)T
20

P
(n)
10 P

(n)
11

1
√
α21

P
(n)T
21

P
(n)
20

√
α21P

(n)
21 P

(n)
22

 , A = ΦεAε, S = ΦεSεΦε

with the initial condition

P (0) =

 P̄00 ε1P̄10T ε2P̄
T
20

P̄10 P̄11 0
P̄20 0 P̄22

 , (33)

where P̄pq, pq = 00, 10, 20, 11, 22 are defined by (19).
The algorithm (32) has the feature given in the following theorem.

Theorem 6. [50] Under Assumptions 1 and 2, there exists a positive scalar
σ̃1 such that for all ε ∈ H with 0 < ||ε|| ≤ σ̃1 the iterative algorithm (32) con-
verges to the exact solution P ∗ε = ΦεP

∗ = P ∗TΦε with the rate of quadratic
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convergence, where P (n)
ε = ΦεP

(n) = P (n)TΦε is positive semidefinite. More-
over, zero-order solution P (0) is in the neighborhood of the exact solution P ∗ε .
That is, the following conditions are satisfied.

||P (n) − P ∗|| ≤ (2θ)2n

2nβL
= O(||ε||2n), n = 0, 1, 2, · · · , (34a)

||P (0) − P ∗|| ≤ 1
βL

[1−
√

1− 2θ], (34b)

where

L := 2||S|| <∞, β := ||[∇F (P 0)]−1||, θ := βηL

with

η := β · ||F (P 0)||, F (P ) :=



vecF00

vecF10

vecF20

vecF11

vecF21

vecF22

 ,

ATP + P TA− P TSP +Q =

 F00 F T10 F T20

F10 F11 F T21

F20 F21 F22

 ,
and

∇F (P ) :=
∂F (P )
∂P T

, P =



vecP00

vecP10

vecP20

vecP11

vecP21

vecP22

 , P 0 =



vecP̄00

vecP̄10

vecP̄20

vecP̄11

0
vecP̄22

 .

These proofs can be derived by applying the Newton-Kantorovich theo-
rem [34, 35].

It should be noted that the proposed algorithm, which is based on the
Kleinman algorithm, has quadratic convergence. It may also be noted that
to solve the multiparameter algebraic Lyapunov equation (MALE), a fixed-
point algorithm can be combined. See [50] for details. In addition, it has
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been proved that the resulting O(||ε||2n) accuracy controller achieves the cost
Jopt +O(||ε||2n+1

).

Remark 2. Using the Newton-Kantorovich theorem [34, 35], which will be
presented later in this paper, it is clear that there exists a positive scalar
σ̃2 such that for all ε ∈ H with 0 < ||ε|| ≤ σ̃2, the MARE (8) has positive
semidefinite solutions within the limits of the sufficiency condition. More-
over, it should be noted that the asymptotic structure of (21) can also be
obtained by applying the Newton-Kantorovich theorem.

4 Extension to Other Problem

The above-mentioned techniques can be demonstrated for the filtering and
the various control.

4.1 Filtering Problem

Filtering problems for MSPS have been investigated extensively. In [51], a
new design method for the near-optimal Kalman filters has been proposed.
As a result, the high-dimensional ill-conditioned MARE is replaced by the
low-order singular perturbation parameter-independent ARE. Furthermore,
the proposed filters can be implemented even if the fast state matrices are
singular and the perturbation parameters are unknown. In [12], the well-
posedness of multimodel strategies for a LQ-Gaussian (LQG) optimal control
problem has been studied. In addition, numerical stiffness is avoided by us-
ing the exact slow-fast decomposition method for solving the filtered MARE
in [17]. The local control problem of a control agent of the above paper is
obtained by neglecting the fast dynamics of the other agent’s subsystem, and
each agent uses the optimal solution of its local control problem. However,
the nonsingularity assumptions for the fast state matrices Aii, i = 1, ... , N
are also needed. To avoid this drawback, a new recursive algorithm for solv-
ing the MARE has been proposed [54]. It has been proved that the solution
of the MARE converges to a positive semi-definite stabilizing solution with
the rate of convergence of O(||ε||n+1), where i denotes the number of required
iterations. Moreover, it has been recently proved that the resulting Kalman
filter achieves a performance level, i.e. O(||ε||2n+1), close to the optimal mean
square error.
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4.2 H∞ Control Problem

The asymptotic expansions for MARE with a sign-indefinite quadratic term
that arises in the H∞ control problem and an iterative technique for solving
such MARE are described in [48]. In [59], a new iterative algorithm for
solving MARE with a sign-indefinite quadratic term has been proposed for
the general case. The proposed algorithm consists of Newton’s method and
two fixed-point algorithms. As a result, it has been proven that the solution
of the MARE converges to a positive semi-definite stabilizing solution with
a rate of convergence of O(||ε||2n). Moreover, compared with the existing
results [48], a reduction in the size of the computational work space can
be achieved even if the MSPS has many fast subsystems. This algorithm
for solving the MARE and MALE is applied to a wide class of control law
synthesis methods involving a solution to the MARE, such as in the robust
stabilizing control problem. On the other hand, a reliable H∞ control for
linear time-invariant MSPS against sensor failures has been investigated [30].
The main contribution of this paper was an extension of the previous study
of the reliable H∞ control.

4.3 Guaranteed Cost Control Problem

The multi-parameter singularly perturbed guaranteed cost control problem
has been demonstrated [56]. By solving the reduced-order slow and fast
AREs, the new ε-independent guaranteed cost controller can be obtained.
The new technique has the following advantages: It does not need informa-
tion on the small parameters εi. The required work space is the same as that
of the reduced-order slow and fast subsystems. The present new results can
be applied to the MSPS without the need for the various assumptions that
have been made for the fast subsystems in the existing results, although the
fast subsystems have the uncertainty. Therefore, the new design approach
has been successfully applied to a more practical uncertain MSPS. Further-
more, if the parameters are known, we can obtain the exact GCC by using
the above-mentioned numerical technique. As another important approach
to the uncertain MSPS except for the guaranteed cost control problem, the
fault diagnosis of two-time-scale MSPSs has been considered in [31].
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5 Nash Games

The LQ Nash games for the MSPS have been studied by using composite
controller design [5, 57, 58]. Furthermore, a decentralized stochastic Nash
game has been presented for two decision makers controlling MSPS [8]. Ac-
cording to this result, in order to obtain near-equilibrium Nash strategies, the
decision makers need only to solve two coupled low-order stochastic control
problems. Furthermore, decentralized team strategies for decision makers us-
ing MSPS have been developed [10]. The well-posedness of the multimodel
solution was demonstrated. Recently, computational approaches for Nash
games have been studied [53, 55, 62]. For obtaining the strategies, Newton’s
method [55] seems to be very powerful tool. In this section, existing and
recent progress on the use of the two-time-scale decomposition method and
numerical analysis related to Nash games for MSPSs will be reviewed.

5.1 Parameter Independent Strategies

Consider a linear time-invariant MSPS

ẋ(t) = A0x(t) +
N∑
j=1

A0jzj(t) +
N∑
j=1

B0juj(t), x(0) = x0, (35a)

εiżi(t) = Ai0x(t) +Aiizi(t) +Biiui(t), zi(0) = z0
i , i = 1, ... , N, (35b)

with the quadratic cost functions

Ji(u1, ... , uN ) =
1
2

∫ ∞
0

[yTi yi + uTi Riiui]dt, (36a)

yi = Ci0x+ Ciizi = Ciξ. (36b)

These conditions are quite natural since at least one control agent has to
be able to control and observe unstable modes. Our purpose is to find a
linear feedback strategy set (u∗1, ... , u

∗
N ) such that

Ji(u∗1, ... , u
∗
N ) ≤ Ji(u∗1, ... , u∗i−1, ui, u

∗
i+1, ... , u

∗
N ), i = 1, ... , N.(37)

The decision makers are required to select the closed loop strategy u∗i , if they
exist, such that (37) holds. Moreover, each player uses the strategy u∗i such
that the closed-loop system is asymptotically stable for sufficiently small εi.
The following lemma is already known [36].
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Lemma 5. There exists an admissible strategy such that the inequality (37)
holds iff the cross-coupled multiparameter algebraic Riccati equations
(CMAREs)

Piε

Aε − N∑
j=1

SjεPjε

+

Aε − N∑
j=1

SjεPjε

T

Piε + PiεSiεPiε +Qi = 0, (38)

i = 1, ... , N ,have solutions Piε ≥ 0, where

Piε :=
[

Pi00 P Tif0Πε

ΠεPif0 ΠεPif

]
, Pi00 = P Ti00, Pif0

 Pi10
...

PiN0

 ,

Pif :=


Pi11 α12P

T
i21 α13P

T
i31 · · · α1NP

T
iN1

Pi21 Pi22 α23P
T
i32 · · · α2NP

T
iN2

...
...

...
. . .

...
Pi(N−1)1 Pi(N−1)2 Pi(N−1)3 · · · α(N−1)NP

T
iN(N−1)

PiN1 PiN2 PiN3 · · · PiNN

 ,

B1 :=


B10

B11

0
...
0

 , · · · , Bi :=


Bi0

...
Bii

...
0

 , · · · , BN :=


B0N

0
0
...

BNN

 ,
Siε := Φ−1

ε BiR
−1
ii B

T
i Φ−1

ε ,

Si := BiR
−1
ii B

T
i =


Si00 O Si0i O
O O O O
STi0i O Siii O
O O O O

 ,

Qi := CiC
T
i =


Qi00 O Qi0i O
O O O O
QTi0i O Qiii O
O O O O

 ,
Φε := block diag

(
In0 ε1In1 · · · εNInN

)
.

Then the closed-loop linear Nash equilibrium solutions to the full-order prob-
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lem are given by

u∗i (t) = −R−1
ii B

T
iεPiεξ(t). (39)

It should be noted that it is impossible to solve the CMARE (38) if the
small perturbed parameter εi are unknown. Thus, the purpose of this section
is to find the parameter-independent Nash strategies.

The parameter-independent Nash strategies for the MSPS will be studied
under the following basic assumption.

Assumption 3. The Hamiltonian matrices Tiii, i = 1, ... N are nonsingu-
lar, where

Tiii :=
[

Aii −Siii
−Qiii −ATii

]
. (40)

Under Assumptions 1-3, the following zeroth-order equations of the
CMAREs (38) are given as ||ε|| → +0.

P̄i00

As − N∑
j=1

Ssj P̄j00

+

As − N∑
j=1

Ssj P̄j00

T

P̄i00 + (41a)

+P̄i00SsiP̄i00 +Qsi = 0,
ATiiP̄iii + P̄iiiAii − P̄iiiSiiiP̄iii +Qiii = 0, (41b)
P̄ikl = 0, k > l, P̄ijj = 0, i 6= j (41c)[

P̄110 P̄210 · · · P̄N10

]
=
[
P̄111

−In1

]T
T−1

111T110

[
In0 0 · · · 0
P̄100 P̄200 · · · P̄N00

]
,

[
P̄120 P̄220 · · · P̄N20

]
=
[
P̄222

−In2

]T
T−1

222T220

[
0 In0 · · · 0

P̄100 P̄200 · · · P̄N00

]
,

...[
P̄1N0 P̄2N0 · · ·P̄NN0

]
=
[
P̄NNN
−InN

]T
T−1
NNNTNN0

[
0 0 · · · In0

P̄100 P̄200 · · ·P̄N00

]
, (41d)
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where[
As *
* −ATs

]
=
[
A0 *
* −AT0

]
−

N∑
i=1

Ti0iT
−1
iii Tii0,[

* −Ssi
−Qsi *

]
= Ti00 − Ti0iT−1

iii Tii0,

Ti00 =
[

A0 −Si00

−Qi00 −AT0

]
, Ti0i =

[
A0i −Si0i
−Qi0i −ATi0

]
, Tii0 =

[
Ai0 −STi0i
−QTi0i −AT0i

]
,

i = 1, ... , N.

The following theorem shows the relation between the solutions Pi and the
zeroth-order solutions P̄ikl i = 1, ... , N, k ≥ l, 0 ≤ k, l ≤ N .

det


ÂT
s ⊗ In0 +In0 ⊗ ÂT

s −(Ss2 P̄100)⊗ In0−In0 ⊗ (Ss2 P̄100) · · ·
−(Ss1 P̄200)⊗ In0−In0 ⊗ (Ss1 P̄200) ÂT

s ⊗ In0 +In0 ⊗ ÂT
s · · ·

...
...

. . .

−(Ss1 P̄N00)⊗ In0−In0 ⊗ (Ss1 P̄N00) −(Ss2 P̄N00)⊗ In0−In0 ⊗ (Ss2 P̄N00) · · ·

· · · −(SsN P̄100)⊗ In0−In0 ⊗ (SsN P̄100)
· · · −(SsN P̄200)⊗ In0−In0 ⊗ (SsN P̄200)

. . .
...

· · · ÂT
s ⊗ In0 +In0 ⊗ ÂT

s

 6= 0, (42)

where Âs := As −
N∑
j=1

Ssj P̄j00 and Âs are stable matrix.

Theorem 7. Suppose that the condition (42) holds. Under Assumptions 1
and 2, there is a neighborhood V (0) of ||ε|| = 0 such that for all ||ε|| ∈ V (0)
there exists a solution Pi = Pi(ε1, ... , εN ). These solutions are unique in a
neighborhood of P̄i = Pi(0, ... , 0). Then, the MARE (38) possess the power
series expansion at ||ε|| = 0. That is, the following form is satisfied.

Piε :=ΦεPi, Pi=P̄i +O(||ε||)=



P̄i00 0 · · · 0 0 0 · · · 0
P̄i10 0 · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

P̄ii0 0 · · · 0 P̄iii 0 · · · 0
...

...
. . .

...
...

...
. . .

...
P̄iN0 0 · · · 0 0 0 · · · 0


+O(||ε||). (43)
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5.2 Numerical Algorithms

When the parameters represent small unknown perturbations whose values
are not known exactly, the previously introduced composite design is very
useful. However, the composite Nash equilibrium solution achieves only a
performance level of O(||ε||), close to the full-order performance. Another im-
portant drawback is that since the closed-loop solution of the reduced Nash
problem depends on the path along ε1/ε2 as ||ε|| → +0, we cannot conclude
that the closed-loop solution of the full problem converges to the closed-
loop solution of the reduced problem [2]. Therefore, as long as the small
perturbation parameters εi are known, much effort should be made towards
finding the exact strategies which guarantees Nash equilibrium without ill-
conditioning. In this subsection, the iterative algorithms for solving the
CMAREs are summarized.

5.2.1 Recursive Computation

A recursive algorithm for solving singularly perturbed Nash games has been
attempted [53]. It has been shown that the recursive algorithm is very
effective in solving the CMAREs when the system matrices are functions of a
small perturbation parameter εi. However, the recursive algorithm converges
only to the approximation solution because the convergence solutions depend
on the zeroth-order solutions. In addition, the recursive algorithm has the
property of linear convergence. Thus, the convergence speed is very slow.

5.2.2 Newton’s Method

In order to improve the convergence rate of the recursive algorithm, we
propose the following algorithm which is based on the Newton’s method.

Φ(n)TP (n+1) + P (n+1)TΦ(n) −Θ(n)TP (n+1)J − JP (n+1)TΘ(n) + Ξ(n) = 0,
n = 0, 1, ... , (44)

⇔

{
Φ(n)T

1 P
(n+1)
1 + P

(n+1)T
1 Φ(n)

1 −Θ(n)T
2 P

(n+1)
2 − P (n+1)T

2 Θ(n)
2 + Ξ(n)

1 = 0,
Φ(n)T

2 P
(n+1)
2 + P

(n+1)T
2 Φ(n)

2 −Θ(n)T
1 P

(n+1)
1 − P (n+1)T

1 Θ(n)
1 + Ξ(n)

2 = 0,

where

Φ(n) :=Ã− S̃P (n) − J S̃P (n)J =

[
Φ(n)

1 0
0 Φ(n)

2

]
,
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Θ(n) :=S̃JP (n) =

[
0 Θ(n)

1

Θ(n)
2 0

]
,

Ξ(n) :=Q̃+ P (n)T S̃P (n) + JP (n)T S̃JP (n) + P (n)TJ S̃P (n)J

=

[
Ξ(n)

1 0
0 Ξ(n)

2

]
,

Φ(n)
i :=

 Φ(n)
00i Φ(n)

01i Φ(n)
02i

Φ(n)
10i Φ(n)

11i Φ(n)
12i

Φ(n)
20i Φ(n)

21i Φ(n)
22i

 , Θ(n)
i :=

 Θ(n)
00i Θ(n)

01i Θ(n)
02i

Θ(n)
10i Θ(n)

11i Θ(n)
12i

Θ(n)
20i Θ(n)

21i Θ(n)
22i

 ,

Ξ(n)
i :=

 Ξ(n)
00i Ξ(n)

01i Ξ(n)
02i

Ξ(n)T
01i Ξ(n)

11i Ξ(n)
12i

Ξ(n)T
02i Ξ(n)T

12i Ξ(n)
22i

 , i = 1, 2,

P (n) :=

[
P

(n)
1 0
0 P

(n)
2

]
,

P
(n)
1 :=

 P
(n)
100 ε1P

(n)T
110 ε2P

(n)T
120

P
(n)
110 P

(n)
111

√
α21
−1P

(n)T
121

P
(n)
120

√
α21P

(n)
121 P

(n)
122

 ,

P
(n)
2 :=

 P
(n)
200 ε1P

(n)T
210 ε2P

(n)T
220

P
(n)
210 P

(n)
211

√
α21
−1P

(n)T
221

P
(n)
220

√
α21P

(n)
221 P

(n)
222

 ,
Ã:=

[
A 0
0 A

]
, Q̃ :=

[
Q1 0
0 Q2

]
, S̃ :=

[
S1 0
0 S2

]
,

J :=
[

0 In̄
In̄ 0

]
, A := ΦεAε.

and the initial condition P (0) has the following form

P (0) =

[
P

(0)
1 0
0 P

(0)
2

]
=



P̄100 ε1P̄
T
110 ε2P̄

T
120 0 0 0

P̄110 P̄111 0 0 0 0
P̄120 0 0 0 0 0

0 0 0 P̄200 ε1P̄
T
210 ε2P̄

T
220

0 0 0 P̄210 0 0
0 0 0 P̄220 0 P̄222

 . (45)
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Note that the considered algorithm (44) is original. The new algorithm
(44) can be constructed by setting P (n+1) = P (n) + ∆P (n) and neglect-
ing O(∆P (n)T∆P (n)) term. Newton’s method is well-known and is widely
used to find a solution of the algebraic equations, and its local convergence
properties are well understood.

Theorem 8. Under Assumptions 1-3, the new iterative algorithm (44) con-
verges to the exact solution P ∗ of the CMAREs (38) with the rate of quadratic
convergence. Furthermore, the unique bounded solution P (n) of the CMAREs
(38) is in the neighborhood of the exact solution P ∗. That is, the following
conditions are satisfied.

||P (n) − P ∗|| ≤ O(||ε||2n), n = 0, 1, ... , (46a)

||P (n) − P ∗|| ≤ 1
β̃L̃

[1−
√

1− 2θ̃], n = 0, 1, ... , (46b)

where

P = P ∗ =
[
P ∗1 0
0 P ∗2

]
, L̃ := 6||S̃||, β̃ := ||[∇F (P (0))]−1||, θ̃ := β̃η̃L̃,

η̃ := ||[∇F (P (0))]−1|| · ||F (P (0))||.

6 Stochastic MSPS Governed by Itô Equations

The various control problems for stochastic systems governed by Itô’s dif-
ferential equation have attracted considerable research interest. The stabi-
lization, LQ optimal control and H∞ control problems for singularly per-
turbed stochastic systems (SPSS) with state-dependent noise were investi-
gated [37, 43, 44]. Although these results are very elegant and despite it
being easy to obtain a controller, the multiparameter singularly perturbed
stochastic systems (MSPSS) remain to be considered. The problem of ex-
ponential stability of the zero state equilibrium of a linear stochastic system
modeled by a system of singularly perturbed Itô differential equations is
investigated in [20, 37, 42],

The LQ optimal stochastic control problem for MSPSS in which N lower-
level fast subsystems are interconnected through a higher-level slow subsys-
tem has been investigated [60]. The stochastic H∞ control problem for the
MSPSS has been discussed [61]. In particular, a new iterative algorithm for
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solving the stochastic multimodeling algebraic Riccati equation (SMARE)
that has sign-indefinite quadratic form has been proposed. Stochastic Nash
games have been studied for stochastic multimodeling systems [62]. The
main contribution of this paper is the new strategy set that is independent
of the small parameters. In [63], the guaranteed cost control problem for
MSPSS has been re-formulated as an extension of [56].

In this section, the numerical solution to the SMARE with a sign-indefinite
quadratic term related to the stochastic H∞ control problem with state-
dependent noise is investigated. It may be noted that a similar technique
can be used for several stochastic control problems [60, 62, 63].

We consider the following MSPSS that consist of N -fast subsystems with
specific structure of lower level interconnected through the dynamics of a
higher level slow subsystem.

dξ(t) = [Aεξ(t) +Bεu(t) +Dεv(t)]dt+
M∑
p=1

Apεξ(t)dwp(t), (47a)

z(t) =
[
Cξ(t)
Hu(t)

]
, (47b)

where

ξ(t) :=


x(t)
z1(t)

...
zN (t)

 ∈ <n̄, u(t) :=

 u1(t)
...

uN (t)

 ∈ <m̄,

v(t) :=

 v1(t)
...

vN (t)

 ∈ <l̄,
n̄ :=

N∑
j=0

nj , m̄ :=
N∑
j=1

mj , l̄ :=
N∑
j=1

lj ,

Apε :=
[

Ap0 µAp0f
Π−1
ε ε̄δApf0 Π−1

ε ε̄δApf

]
, Ap0f :=

[
Ap01 · · · Ap0N

]
,

Apf0 :=
[
ATp10 · · · ATpN0

]T
,

Apf := block diag
(
Ap11 · · · ApNN

)
,
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Dε :=
[

D0

Π−1
ε Df

]
, D0 :=

[
D01 · · · D0N

]
,

Df := block diag
(
D11 · · · DNN

)
,

H := block diag
(
H11 · · · HNN

)
.

vi(t) ∈ Lli2 (0, ∞), i = 1, ... , N is considered to be an unknown finite-energy
deterministic disturbance [45, 46]. z(t) ∈ <p is the controlled output. εi > 0,
i = 1, ... , N and µ > 0 are small parameters and δ > 1/2 is independent of
ε̄ := min{ε1, ... , εN}. It should be noted that the parameters µ and δ have
been introduced in [43, 44] for the first time. Moreover, the considered
MSPSS consists of N -fast subsystems as compared to [43]. wp(t) ∈ <,
p = 1, ... ,M is a one-dimensional standard Wiener process defined in the
filtered probability space. Note that one of the fast state matrices Aii,
i = 1, ... , N may be singular.

Remark 3. In stochastic problems, careful treatment is required to establish
the validity of the multimodel problem [11]. In addition to the usual difficul-
ties encountered in modeling a fast stochastic variable, the problem is rether
involved due to the presence of information patterns. To simplify this aspect,
the scaling parameter µ is considered.

Without loss of generality, the stochastic H∞ control problem for the
MSPSS is investigated under the following basic assumption [45, 46].

Assumption 4. HTH = Im̄.

It should be noted that the matrix pair (E, G) is deemed stable, if
dξ(t) = Eξ(t)dt+Gξ(t)dw is asymptotically mean square stable [46].

The stochastic H∞ control problem for MSPSS is given below [45, 46].
Given a constant γ > 0, find a matrix K satisfying the following condi-

tions:

i) The system

dξ(t) = [Aε +BεK]ξ(t)dt+
M∑
p=1

Apεξ(t)dwp(t) (48)

is exponentially mean-square stable (EMSS) internally, i.e. it satisfies
the following equation.

E||ξ(t)||2 ≤ ρe−ψ(t−s)E||ξ(s)||2, ∃ρ, ψ > 0. (49)
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ii) The closed-loop system

dξ(t) = [(Aε +BεK)ξ(t) +Dεv(t)]dt+
M∑
p=1

Apεξ(t)dwp(t), (50a)

z(t) =
[

C
HK

]
ξ(t), (50b)

corresponding to the system in equation (50) with feedback control u(t) =
Kξ(t), satisfies following condition.

sup
v ∈ Ll̄

2(0, ∞),
v 6= 0, ξ(0) = 0

||z||22
||v||22

:= sup
v ∈ Ll̄

2(0, ∞),
v 6= 0, x(0) = 0

E
∫ +∞

0 [ξT (t)CTCξ(t)+uT (t)u(t)]dt

E
∫ +∞

0 vT (t)v(t)dt
< γ2. (51)

The following result is well known [45, 46].

Lemma 6. Suppose that Assumption 4 is satisfied. The stochastic H∞ state-
feedback control problem has a solution if and only if there exists a symmetric
non-negative definite solution Zε to the following SMARE

G(Zε) := ATε Zε + ZεAε +
M∑
p=1

ATpεZεApε

−Zε(BεBT
ε − γ−2DεD

T
ε )Zε + CTC = 0 (52)

such that the stochastic system

dξ(t) = [Aε −BεBT
ε Zε + γ−2DεD

T
ε Zε]ξ(t)dt+

M∑
p=1

Apεξ(t)dwp(t) (53)

is EMSS.
The controller solving this H∞ problem is given by equation (54).

u(t) = Kξ(t) = −BT
ε Zεξ(t). (54)
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6.1 Asymptotic Structure of SMARE

In this section, we need to first analyze the asymptotic structure of SMARE
(52) to obtain the controller. In order to simplify the presentation, the
following matrices are defined.

Ŝε := BεB
T
ε −γ−2DεD

T
ε =

[
Ŝ00 Ŝ0fΠ−1

ε

Π−1
ε ŜT0f Π−1

ε ŜfΠ−1
ε

]
,

Ŝ0f :=
[
Ŝ01 · · · Ŝ0N

]
, Ŝf := block diag

(
Ŝ11 · · · ŜNN

)
.

Let Z̄00, Z̄f0 and Z̄f be the limiting solutions of the above SMARE (52) as
µ→ +0, εi → +0, i = 1, ... , N , then we obtain the following reduced-order
equations (55).

Z̄00A0 +AT0 Z̄00 + Z̄Tf0Af0 +ATf0Z̄f0 +
M∑
p=1

ATp00Z̄00Ap00

−Z̄00S00Z̄00 − Z̄Tf0Sf Z̄f0 − Z̄00S0f Z̄f0 − Z̄Tf0S
T
0f Z̄00 +Q00 = 0, (55a)

ATf0Z̄f + Z̄00A0f + Z̄Tf0Af − Z̄00S0f Z̄f − Z̄Tf0Sf Z̄f +Q0f = 0, (55b)

Z̄Tf Af +ATf Z̄f − Z̄Tf Sf Z̄f +Qf = 0, (55c)

First, the following AREs are introduced.

Z̄∗iiAii +ATiiZ̄
∗
ii − Z̄∗iiŜiiZ̄∗ii +Qii = 0, i = 1, ... , N. (56)

Moreover, let us define the following sets.
Γfi = {γ > 0| the ARE (56) with Ŝii = BiiB

T
ii −γ−2DiiD

T
ii has a positive

semidefinite and stabilizing solution Z̄∗ii}, i = 1, ... , N .

Assumption 5. The sets Γfi are not empty.

Lemma 7. Under Assumption 5, the asymmetric ARE (55c) admits a unique
symmetric positive semidefinite stabilizing solution Z̄f which can be written
as

Z̄∗f := block diag
(
Z̄∗11 · · · Z̄∗NN

)
. (57)

Assumption 5 ensures that Aii − ŜiiZ̄∗ii, i = 1, ... , N are nonsingular.
Substituting the solution of (55c) into (55b) and substituting Z̄∗f0 into (55a)
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and making some lengthy calculations, we obtain the following zeroth-order
equations (58).

Z̄∗00Â + Â
T
Z̄∗00 +

M∑
p=1

ATp00Z̄
∗
00Ap00 − Z̄∗00ŜZ̄

∗
00 + Q̂ = 0, (58a)

Z̄∗Ti0 :=
[
Z̄∗ii −Ini

]
T̂−1
ii T̂i0

[
In0

Z̄∗00

]
, (58b)

Z̄∗iiAii +ATiiZ̄
∗
ii − Z̄∗iiŜiiZ̄∗ii +Qii = 0, (58c)

where Z̄∗f0 :=
[
Z̄∗T10 · · · Z̄∗TN0

]T ,[
Â −Ŝ

−Q̂ −Â
T

]
:= T̂00 −

N∑
j=1

T̂0j T̂
−1
jj T̂j0,

T̂00 :=
[

A0 −Ŝ00

−Q00 −AT0

]
, T̂0i :=

[
A0i −Ŝ0i

−Q0i −ATi0

]
,

T̂i0 :=
[

Ai0 −ŜT0i
−QT0i −AT0i

]
, T̂ii :=

[
Aii −Ŝii
−Qii −ATi

]
, i = 1, ... , N.

Remark 4. For each i ∈ {1, ... , N} equation (56) is a Riccati equation
arising in connection with the deterministic H∞ problem. Hence, if Γfi is
not empty then Γfi = (γfi , ∞). On the other hand, if γ ∈ Γfi then the matrix
Aii − ŜiiZ̄∗ii is a stable matrix. Therefore the hamiltonian T̂ii is invertible.

The ARE (58c) produces a positive semidefinite solution if γ is sufficiently
large. Hence, let us define the set.
Γs = {γ > 0| the SARE (58a) has a positive semidefinite and stabilizing
solution Z̄∗00}.

We introduce the assumption:

Assumption 6. The set Γs is not empty and it has the form Γs = (γs, ∞).

Remark 5. a) In the considered general case it is not clear how the co-
efficients Â, Ŝ, Q̂ are depending upon γ. That is why we have to
introduce as an assumption the fact that the set Γs takes the form of
a right unbounded interval. It is worth mentioning that this happens if
all matrices Aii are invertible.
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b) The fact that Z̄∗00 is the stabilizing solution of (58a) means that the
trajectory x(t) = 0 of the Itô differential equation

dx(t) = [Â− ŜZ̄∗00]x(t)dt+
M∑
p=1

Ap00x(t)dwp(t) (59)

is EMSS. This is equivalent to the fact that the Lyapunov operator
X → [Â− ŜZ̄∗00]TX +X[Â− ŜZ̄∗00] +

∑M
p=1A

T
p00XAp00 are located in

the half plane Reλ < 0. This means that (59) is true.

The limiting behavior of Zε is described by the following theorem.

Theorem 9. Under Assumptions 5 and 6, if a parameter γ > γ̄ :=
max{γs, γf1 , ... , γfN } is selected, there exists a small σ∗ such that for
all ||ν|| ∈ (0, σ∗), the SMARE (52) admits the unique symmetric positive
semidefinite stabilizing solution Zε for stochastic system (47) which can be
written as

Zε = Φε

[
Z̄∗00 +O(||ν||) [Z̄∗f0 +O(||ν||)]TΠε

Z̄∗f0 +O(||ν||) Z̄∗f +O(||ν||)

]
=
[

Z̄∗00 +O(||ν||) [Z̄∗f0 +O(||ν||)]TΠε

Πε[Z̄∗f0 +O(||ν||)] Πε[Z̄∗f +O(||ν||)]

]
, (60)

where ν :=
[
ε1 · · · εN µ

]
∈ <N+1.

It should be noted that there is no solution of to the SMARE (52) as
long as there are no positive semi-definite solutions Z̄ii to the SARE (58c).
Conversely, the asymptotic structure of the solution to the SMARE (52) can
be established by using the reduced-order solution Z̄ii of the SARE (58c)
via an implicit function theorem. Therefore, the existence of the reduced-
order solution Z̄ii of the SARE (58c) will play an important role in this
study. In this case, it is easy to verify that the magnitude of the disturbance
attenuation level γfi influences the existence of the reduced-order solution
Z̄ii. In fact, when γfi tends to zero, it is hard to obtain the reduced-order
solution Z̄ii except for the special case. Finally, the problem considered in
this study is restricted for the disturbance attenuation level γfi such that
the reduced-order SAREs (58c) have the solutions Z̄ii.



148 Hiroaki Mukaidani, Vasile Dragan

6.2 Newton’s Method

Let us consider Newton’s method (61).

Z(n+1)
ε (Aε − ŜεZ(n)

ε ) + (Aε − ŜεZ(n)
ε )TZ(n+1)

ε

+
M∑
p=1

ATpεZ
(n+1)
ε Apε + Z(n)

ε ŜεZ
(n)
ε +Q = 0, (61)

where n = 0, 1, ... , and the initial conditions are chosen as follows.

Z(0)
ε := Φε

[
Z̄∗00 Z̄∗Tf0 Πε

Z̄∗f0 Z̄∗f

]
= ΦεZ̄. (62)

Using the asymptotic structure of (60), it should be noted that the initial
condition is chosen as (62).

The algorithm represented by equation (61) has the feature given in the
following theorem for the MSPSS.

Theorem 10. Suppose that Assumptions 5 and 6 are satisfied. If the
parameter-independent reduced-order SARE (58c) has a positive semidefi-
nite solution, there exists a positive scalar σ̂ such that for all ε ∈ H with
0 < ||ε|| ≤ σ̂, the iterative algorithm represented by equation (61) converges
to the exact solution of Zε with a rate equal to that of quadratic convergence;
here, Z(n)

ε is positive semidefinite. Moreover, the convergence solutions equal
those of Zε in the SMARE (52) in the neighborhood of the initial condition
Z

(0)
ε = ΦεZ̄. In other words, the following condition is satisfied.

||Z(n)
ε − Zε|| =

(2θ̂)2n

2nβ̂L̂
= O(||ν||2n), n = 0, 1, ... , (63)

where
L̂ = 2||Ŝε|| <∞, β̂ = ||[∇G(Z(0)

ε )]−1||, θ̂ = β̂η̂L̂ < 2−1 η̂ =
||[∇G(Z(0)

ε )]−1|| · ||G(Z(0)
ε )||.

7 Simulation Example

In order to demonstrate the efficiency of the stochastic H∞ control for
MSPSS, we present results for practical multiarea electric energy systems.
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The state variable model of the megawatt-frequency control problem was
developed in [47].

In developing the state space model, the following basis equations were
used:

∆Ptiei =
∑
v

T ∗iv

(∫
∆fidt−

∫
∆fvdt

)
,

∆Pgi −∆Pdi =
2Hi

f∗
d

dt
∆fi +Di∆fi + ∆Ptiei,

d

dt
∆Pgi = − 1

Tti
∆Pgi +

1
Tti

∆Xgvi,

d

dt
∆Xgvi = − 1

Tgvi
∆Xgvi −

1
TgviRi

∆fi +
1
Tgvi

∆Pci.

Some system parameters used in our study are referred to [47] for details.
For a two-area MSPSS, the following state, control and disturbance vari-

ables can be defined.

ξ(t) :=
[∫

∆Ptie1dt
∫

∆f1dt ∆f1

∫
∆f2dt ∆f2 ∆Pg1 ∆Pg2 ∆Xgv1 ∆Xgv2

]T
=
[
x(t) z1(t) z2(t)

]T
,

u(t) :=
[

∆Pc1 ∆Pc2
]T
, v(t) :=

[
∆Pd1 ∆Pd2

]T
.

The following system data were used for the numerical calculation.

Pr1 = Pr2 = 2000 [MW], H1 = H2 = 5 [sec],
D1 = D2 = 8.33× 10−3 [puMW/Hz],
Tt1 = Tt2 = 0.3 [sec], Tgv1 = 0.030,
Tgv2 = 0.029 [sec], δ∗1 − δ∗2 = 60 [degree],
R1 = R2 = 2.4 [Hz/puMW], f∗ = 60 [Hz],
T ∗12 = 0.315 [puMW], ∆Pdi = 0.1 [puMW].

A00 =



0 0.315 0 −0.315 0 0 0
0 0 1 0 0 0 0
0 −1.888 −0.0498 1.888 0 6 0
0 0 0 0 1 0 0
0 1.888 0 −1.888 −0.0498 0 0
0 0 0 0 0 −3.333 0
0 0 0 0 0 0 −3.333


,
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A01 =



0
0
0
0
0

3.333
0


, A02 =



0
0
0
0
6
0

3.333


,

A10 =
[

0 0 0.41666 0 0 0 0
0 0 0 0 −0.41666 0 0

]
,

A20 =
[

0 0 0.41666 0 0 0 0
0 0 0 0 −0.41666 0 0

]
, A11 = A22 = −1,

A100 = block diag
(

0 0 0.00249 0 0.00249 0 0
)
,

A110 = A120 = 0 ∈ <1×7, A111 = A112 = A122 = 0, B01 = B02 = 0 ∈ <7×1,

B11 = 1, B22 = 1, D01 =
[

0 0 −0.6 0 0 0 0
]T
,

D02 =
[

0 0 0 0 −0.6 0 0
]T
, D11 = D22 = 0,

Q = block diag (I7 0.25I2) .

The system matrices are given by the top of this page. It is assumed that
time constant of the governors represents the small singular perturbations.
Hence, small parameters are Tgv1 := ε1 = 0.030 and Tgv2 := ε2 = 0.029.
Moreover, it should be noted that µ = 0.

It should be noted that the deterministic disturbance distribution v(t) :=
[∆Pd1 ∆Pd2]T = [0.1 0.1]T and the state-dependent noise related to the
load frequency constant [47] are both considered compared with the existing
results [48, 49]. We suppose that the error in the load frequency constant
is within 5% of the nominal value. Therefore, the proposed design method
is very useful because the resulting strategy can be implemented on more
practical MSPSS.

For every boundary value γ > γ̄ := max{γs, γf1 , γf2} = 2.2608e − 1,
the SMARE (52) has a positive definite stabilizing solution because the
AREs (55c) and the SARE (55a) have a positive definite solution, where
γs = 2.2608e− 1, γf1 = γf2 =∞.

Now, we choose γ = 0.3 (> γ̄) to solve the MSARE (7). The efficiency of
Newton’s method (61) is demonstrated. It is easy to verify that algorithm
(61) converges to the exact solution with an accuracy of ||G(Z(n)

ε )|| < 1.0e−11
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after five iterations.

Table 1. Errors per iterations.
n ||G(Z(n)

ε )||
0 1.5667
1 4.2489e− 01
2 3.3631e− 03
3 2.0470e− 05
4 1.5710e− 11
5 9.1508e− 12

In order to verify the accuracy of the solution, the remainder per iteration
is substituted as Z(n)

ε into SMARE (52). In Table 1, the results of the error
||G(Z(n)

ε )|| per iteration are given. It can be seen that algorithm (61) yields
quadratic convergence. Using the obtained iterative solution, the high-order
approximate stochastic H∞ controller is given as follows.

u(5)(t) =
[

1.5893 9.4531e− 1 4.1393 1.6120 1.8547e− 1
−7.8321e− 1 1.7522e− 3 2.3204e− 1 1.1581 9.5872e− 1

4.2214 −2.8374e− 2 4.6816e− 1 2.1536e− 2
2.6205e− 1 9.3331e− 2 2.2279e− 2 2.6668e− 1

]
ξ(t).

In addition, when the small parameters εi, i = 1, 2 are unknown, we can
obtain the parameter-independent control as follows by using the similar
technique in section 3.3.

uapp(t) =
[

1.3707 8.7785e− 1 3.5978 1.3178 1.3358e− 1
−7.8269e− 1 −4.5742e− 2 1.8744e− 1 1.1557 9.1813e− 1

3.5938 −2.5123e− 2 1.1803e− 1 0
2.1534e− 1 1.0543e− 1 0 1.1803e− 1

]
ξ(t).

This control will also be reliable because they seem to be close.

8 Conclusion

The existing results and recent research trends in the various multimodel-
ing analysis and design methods have been briefly summarized. A thorough
study of both the parameter-independent methodology and the numerical
algorithms revealed the properties of the different methods have been given.
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The following conclusion can be drawn: When the small perturbation pa-
rameters εi are not known, it is strongly recommended that the two-time-
scale decomposition method or descriptor systems approach be used. On
the other hand, as long as the small perturbation parameters εi are known,
effort should be made towards finding the exact solutions by means of numer-
ical algorithm. In particular, since the closed-loop solution of the reduced
Nash problem depends on the path, the required solution has to be solved
numerically.

This survey has mostly concentrated on some classical and recent devel-
opments in parameter-independent and computational methods for design-
ing the strategy. Although the choice of topics was necessarily somewhat
limited, there are some topics which deserve further attention. For example,
the mathematical model described by Itô, i.e. differential equations with
Markovian switching in the multimodel situation, is very interesting. This
problem will be addressed in future investigations.
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[18] Z. Gajić, D. Petkovski and X. Shen, Singularly Perturbed and Weakly
Coupled Linear System - a Recursive Approach: Lecture Notes in Con-
trol and Information Sciences, 140, Springer-Verlag, Berlin, 1990.

[19] Z. Gajić and M.-T. Lim, Optimal Control of Singularly Perturbed Lin-
ear Systems and Applications, Marcel Dekker, New York, 2001.

[20] E.Ya. Gorelova, Stability of singularly perturbed stochastic systems,
Automation and Remote Control, vol. 58, nr. 7, pp. 112-121, 1997.
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