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Abstract

This work presents two models for the dynamic analysis of two rods
that are adhesively bonded. The first model assumes that the adhesive
is an elasto-plastic material and that complete debonding occurs when
the stress reaches the yield limit. In the second model the degradation
of the adhesive is described by the introduction of material damage.
Failure occurs when the material is completely damaged, or the dam-
age reaches a critical floor value. Both models are analyzed and the
existence of a weak solution is established for the model with damage.
In the quasistatic case, a new condition for adhesion is found as the
limit of the adhesive thickness tends to zero.
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1 Introduction

We study two different models for the dynamic process of debonding of two
slender rods that are adhesively bonded. In the first model, the adhesive
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is treated as a short rod made of a softer elasto-plastic material. System
failure, i.e., complete debonding, occurs when the stress reaches the yield
limit of the adhesive material. In the second model, the adhesive is treated
as a damageable rod via the use of a damage function. In this case, there
is a continuous decrease in the adhesive strength as cycles of tension and
compression progress. The adhesive undergoes cumulative damage, similar
to fatigue, and may completely fail, even if the cyclic stress never reaches
the yield limit.

There is considerable interest in the engineering literature in models for
material damage and metal fatigue, since predicting damage failure is of
paramount concern to the design engineer.

Recent mathematical models for material damage, following the funda-
mental idea of Kachanov in the 1960s (see [11] for details) of introducing
an internal variable, the damage function that measures the damage of the
material, can be found in the monographs [10, 18, 22, 25], as well as in the
recent papers [6, 7, 13, 17] and in the references therein. The various aspects
of general models of material damage were studied in these references. Mod-
els of damage in specialized settings, similar to the one in this paper, can be
found in [2, 3, 4]. Related mathematical models are those of adhesion, where
a surface internal variable, the bonding function, was introduced by Frémond
[10] and has a similar interpretation, namely, it measures the damage of the
surface bonds.

Mathematical models for adhesive contact can be found in the mono-
graphs [22, 25] and in recent papers [1, 8, 9, 15, 20, 21] (see also the references
therein).

In this paper we combine the two concepts of a damage function and
a bonding function, and use the first to derive the source function for the
debonding process. We consider a simplified one-dimensional model of two
rods glued together. In this model we obtain an evolution equation for the
bonding function by considering the evolution of the damage of the glue as
the glue layer becomes relatively thin.

This work is the continuation of [21], where the quasistatic model was
studied and numerically simulated. However, there the model did not al-
low for complete debonding in finite time. Models which allow complete
debonding can be found in [15, 20] and here. We note that some of the
models proposed and used in the above literature do not allow for complete
debonding, and the issue is under current study.
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As noted above, we consider a setting in which two thin rods are glued,
and the glue is considered as a third (shorter) rod. In one of the models,
the adhesive layer is considered as a damageable material. System failure
happens when the adhesive reaches complete damage, and then the rods
completely debond. The main interest in this work is in the models, and in
the limit when the thickness of the adhesive layer approaches zero.

We present the two dynamic models in Section 2: one without, and the
other one with material damage. We establish the existence of a weak solu-
tion for the second model in Section 4, and obtain interesting estimates on
the strain in Section 5. For the first model the existence of the unique solu-
tion is straightforward to show. Then, in Section 3, we study the quasistatic
problem, which reduces to a nonlinear ordinary differential equation for the
damage function, since the equations of motion for the displacements can be
integrated. Thus, we obtain expressions for the time to failure, i.e., the time
to complete debonding. We also pass to the limit when the glue thickness is
very small, and obtain an evolution equation for the adhesive as a limit of
the damage equation, Problem Pζ0. In this way, we obtain a new expression
(unlike any in the above references) for the debonding source function, in
the limit of the damage source function. This is the main modeling novelty
in the paper. Some of the estimates in Section 5 are new, too.

The paper concludes with Section 6, where some future research sugges-
tions can be found.

2 The model

Figure 1 depicts the setting of the two bonded rods. The left end of the first
rod is attached to a movable device. The reference configuration of the rods
are 0 ≤ x ≤ l1 and l2 ≤ x ≤ L (l1 < l2), and the interval [l1, l2] is occupied
by the adhesive, assumed to be a softer deformable material.

The horizontal displacements of the rods are ui = ui(x, t), where i = 1, 2
for rod 1 and rod 2, respectively. The displacement of the adhesive is u0 =
u0(x, t). Below, we use the subscripts 1 and 2 for the rods, and 0 for the
adhesive.

We are also interested in the limit case when the thickness of the adhesive
layer vanishes, i.e., |l2 − l1| → 0.

A body force of density fB = fB(x, t) (per unit length) is acting on the
rods, and on the adhesive segment. The left end (x = 0) of rod 1 is subjected
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Figure 1. Two rods in adhesive contact

to a dynamic axial displacement φ = φ(t). Thus u1(0, t) = φ(t). The right
end of rod 2 is fixed, so u2(L, t) = 0. When φ is negative, the rods are in
tension, and when φ is positive, the are in compression.

The dynamic motion of each one of the three rods is described by the
wave equation and the displacements are assumed to be continuous at the
interfaces x = l1, l2 where the tractions are equal, too.

We consider two different scenarios, which result in two different models.
In the first scenario, the adhesive is considered as an elasto-plastic material
with lower modulus of elasticity, as compared to the rods. The adhesion
between the two rods is assumed to break down, or completely debond,
when the stress in the adhesive region reaches the yield limit.

In the second model we assume that the adhesive material undergoes
damage as a result of the strains. Then, complete debonding occurs when
the damage reaches the threshold limit.

We denote by ρi and Ei, for i = 0, 1, 2, the density (per unit length) and
the elasticity modulus of the material in each region.

The classical formulation of the first model for the vibrations of two rods
in adhesive contact is:
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Problem Pcl. Find a triple of functions (u1, u0, u2) such that, for 0 < t ≤ T :

ρ1u1tt(x, t)− E1u1xx(x, t) = ρ1fB(x, t), x ∈ (0, l1), (1)
ρ0u0tt(x, t)− E0u0xx(x, t) = ρ0fB(x, t), x ∈ (l1, l2), (2)
ρ2u2tt(x, t)− E2u2xx(x, t) = ρ2fB(x, t), x ∈ (l2, L), (3)

u1(0, t) = φ(t), u2(L, t) = 0, (4)
u1(l1, t) = u0(l1, t), E1u1x(l1, t) = E0u0x(l1, t), (5)
u2(l2, t) = u0(l2, t), E2u2x(l2, t) = E0u0x(l2, t), (6)

u(x, 0) = uin(x), (7)
ut(x, 0) = vin(x). (8)

Here, uin and vin are the (prescribed) initial displacements and velocities,
respectively, with the understanding that u1(x, 0) = uin(x) and u1t(x, 0) =
vin(x) for x ∈ [0, l1], and similarly for the other two rods.

The problem consists of three coupled wave equations for the displace-
ments u1(x, t), u2(x, t), and u0(x, t).

To describe the second model, we follow [11] (see also [10, 18, 22, 25] and
the references therein) and introduce the damage function ζ = ζ(x, t), which
measures the pointwise fractional decrease in the strength of the adhesive
material. To describe the damage process of the material the damage-free
adhesive modulus of elasticity E0 is replaced with the effective modulus

Eeff = ζE0.

Then, it follows that
0 ≤ ζ(x, t) ≤ 1, (9)

and when ζ = 1 the material is damage-free; when ζ = 0 the damage is
complete and the system breaks at the point; and when 0 < ζ(x, t) < 1 the
material is partially damaged and has a decreased load carrying capacity.

Next, we need to describe the evolution of the damage function ζ. Fol-
lowing [10, 11, 22, 25] (see also the other references mentioned above), we
assume that the evolution of damage is caused by the growth of micro-cracks
and micro-cavities caused by the cyclic stress. The damage function has to
satisfy the growth equation

ζt − κζxx = Φ(ζ, u0x) + ξ,
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where, Φ = Φ(ζ, u0x) is the damage source function, which is described
shortly in (10), κ is the damage diffusion coefficient, and ξ is a ‘force’ that
prevents ζ from violating (9). To describe the latter, we let I[0,1] denote the
indicator function of the interval [0, 1], and then its subdifferential is the set-
valued mapping denoteb by ∂I[0,1](z). To enforce the condition 0 ≤ ζ ≤ 1, we
require that −ξ ∈ ∂I[0,1](ζ). Indeed, when 0 < ζ < 1 then ξ = 0; when ζ = 0
then ξ > 0 has the exact value that prevents ζ from becoming negative; and
when ζ = 1 then ξ < 0 has the exact value that prevents ζ from exceeding
the value one.

General damage source functions can be found in [10, 22, 25]; here, we use
a somewhat simple function which depends only on the mechanical energy
E0ζu

2
0x and the damage process is assumed to be irreversible so that once

micro-cavities or micro-crack are formed, they do not mend, thus

Φ(ζ, uax) = −d(ζu2
0x − ε0)+. (10)

Here, d is the damage rate coefficient, ε0 is the scaled damage threshold
energy, below which there is no damage change, and (r)+ is the positive
part function, i.e., (r)+ = r if 0 ≤ r and (r)+ = 0 if r < 0. The negative
sign makes the process irreversible. With this choice, the parabolic equation
for ζ (with ξ = 0) predicts that if initially ζin ≤ 1, then ζ ≤ 1 for 0 < t.

For the sake of generality, we also assume that the adhesive has viscosity
which we model with ν(ζu0tx)x, where ν is the viscosity coefficient, assumed
to be small.

Problem Pζ . Find a quadruple of functions (u1, u0, ζ, u2) such that, for
0 < t ≤ T (1), (3), (4), (7), and (8) hold, together with

ρ0u0tt(x, t)− E0(ζu0x)x(x, t)− ν(ζu0tx)x(x, t) = ρ0fB(x, t), x ∈ (l1, l2), (11)
ζt − κζxx + d(ζu2

0x − ε0)+ ∈ −∂I[0,1](ζ), x ∈ (l1, l2), (12)
u1(l1, t) = u0(l1, t), E1u1x(l1, t) = E0(ζu0x)(l1, t), (13)
u2(l2, t) = u0(l2, t), E2u2x(l2, t) = E0(ζu0x)(l2, t), (14)

ζx(l1, t) = 0 = ζx(l2, t), ζ(x, 0) = ζin(x). (15)

Here, ζin is the initial damage, which has the value one in a damage-free
material.

The analysis of problems Pcl and Pζ will be done in Section 4. Next, we
study the equations for the problems when the process is quasistatic and the
adhesive layer is thin.
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3 Quasistatic problems

We study three problems which model the process when it is quasistatic,
i.e., slow enough so that the acceleration terms may be neglected, and in the
absence of body forces (fB = 0).

3.1 Quasistatic version of Pcl

We begin with the quasistatic version of Problem Pcl. Since there are no
body forces and the second time derivatives are neglected, the displacements
are linear. Writing

u0(x, t) = α(t)x+ β(t), (16)

straightforward manipulations, using the facts that the displacements u1 and
u2 are linear and the boundary conditions (4)–(6), yield

α(t) =
−φ(t)

(l2 − l1) + E0
E2

(L− l2) + E0
E1
l1
, (17)

and

β(t) = −α
(
l2 + (L− l2)

E0

E2

)
. (18)

Moreover,

u1(x, t) =
E0

E1
α(t)x+ φ(t), u2(x, t) = −E0

E2
α(t)(L− x). (19)

We note that when the displacement φ is negative the system is under
tension and when it is positive the system is under compression.

In the limit when the thickness of the layer of glue tends to zero, l2 →
l1 = l, we find that

α(t) =
−φ(t)

E0
E2

(L− l) + E0
E1
l
, β(t) = −α

(
l + (L− l)E0

E2

)
.

Thus, the influence of the adhesive enters via its stiffness E0. The displace-
ment at x = l is given by

u1(l, t) = u2(l, t) =
φ(t)(L− l)E1

E1(L− l) + E2l
.
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The stress by p(t) = E1u1x(l, t) = E0α(t) = E2u2x(l, t). Therefore, this
system will debond (completely) only when the stress reaches the plasticity
yield or the debonding limit σ∗,

E0α(t) = σ∗.

Clearly, this formulation cannot take into account gradual degradation of
the strength of the bonds as a result of cycles in φ.

The quasistatic problem with a prescribe traction boundary condition
at x = 0 is straightforward to study, and is not very interesting, since in a
one-dimensional system the stress is uniform.

3.2 Quasistatic version of Pζ

We turn to the quasistatic version of Problem Pζ , which turns out to be
more interesting. In particular, it accounts for degradation of the strength
of the bonds as a result of cycles in φ. Since there are no body forces and
the second time derivatives are neglected, the displacements u1 and u2 are
linear. In equation (11) for u0 we neglect the viscosity term, and obtain
(ζu0x)x = 0. Therefore,

ζ(x, t)u0x(x, t) = γ(t), l1 ≤ x ≤ l2, (20)

where γ(t) is to be determined. Then, the boundary conditions (13) and
(14) yield

E1u1x(l1, t) = E0γ, E2u2x(l2, t) = E0γ.

Thus,

u1x(l1, t) =
E0

E1
γ(t), u2x(l2, t) =

E0

E2
γ(t),

and then,

u1(x, t) =
E0

E1
γ(t)x+ φ(t), u2(x, t) = −E0

E2
γ(t)(L− x).

Next, integration in (20) yields

u0(x, t) = γ(t)
∫ x

l1

1
ζ(x, t)

dx+ δ(t), (21)
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for l1 ≤ x ≤ l2, where δ is a constant of integration. It follows from the
continuity of the displacements that

u1(l1, t) =
E0

E1
γ(t)l1 + φ(t) = δ(t),

u2(l2, t) = −E0

E2
γ(t)(L− l2) = γ(t)

∫ l2

l1

1
ζ(x, t)

dx+ δ(t).

Let
c12 =

E0

E2
(L− l2) +

E0

E1
l1.

Substituting δ from the first equation and rearranging yields

γ(t) =
−φ(t)

c12 +
∫ l2
l1

1
ζ(x,t) dx

. (22)

Then,

δ(t) =
E0

E1
γ(t)l1 + φ(t) = φ(t)− E0l1φ(t)

E1c12 + E1

∫ l2
l1

1
ζ(x,t) dx

. (23)

It follows that once ζ is found, the problem is solved. To obtain ζ, we
note that u0x = γ/ζ, hence

Φ(uax) = −d(ζu2
ax − ε0)+ = −d

(
γ2

ζ
− ε0

)
+

= −d (Θ(φ; ζ, t)− ε0)+ ,

where we defined

Θ(φ; ζ, t) =
φ2(t)

ζ
(
c12 +

∫ l2
l1

1
ζ(x,t) dx

)2 .

Now, the problem for ζ is the following.

Problem Pquas−ζ . Given φ, find a function ζ = ζ(x, t) such that, for 0 <
t ≤ T ,

ζt − κζxx = −d(Θ(φ; ζ, t)− ε0)+, x ∈ (l1, l2), (24)

ζ(x, 0) = ζin, ζx(l1, t) = ζx(l2, t) = 0. (25)
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We note that the problem is nonlocal, since the source term on the right-
hand side of (24) depends on

∫ l2
l1

1
ζ(x,t) dx. It is somewhat unusual and has

mathematical interest in and of itself, and will be analyzed elsewhere.
Next, we consider the limit lim l1 = lim l2 = l. It follows from the

boundary conditions (25) that ζ = ζ(t) only, as it does not depend on x.
Also,

lim
|l2−l1|→0

Θ(φ; ζ, t) = Θ0(ζ, t) =
φ2(t)
c2

12ζ
.

Therefore, the limit problem is as follows.

Problem Pζ0. Find a function ζ = ζ(t) such that, for 0 < t ≤ T ,

ζ ′ = −d
(
φ2(τ)
c2

12ζ
− ε0

)
+

, (26)

ζ(0) = ζin. (27)

The problem is a nonlinear ordinary differential equation with non-Lipschitz
right-hand side. We study it in Section 4.

We note that when ε0 is negligible, as compared to the average of φ2(t)/c2
12,

the equation for ζ becomes

ζ ′ = −dΘ0(ζ, t) = −dφ
2(t)

c2
12ζ

.

Using the initial condition, we obtain

ζ2(t) = ζ2
in −

2d
c2

12

∫ t

0
φ2(τ) dτ.

It follows that the time to failure t∗0 is given in this case implicitly by∫ t∗0

0
φ2(τ) dτ =

c2
12ζ

2
in

2d
.

A simple comparison argument shows that if t∗ is the time to failure of
the solution of (26) and (27), then t∗0 ≤ t∗, as one would expect.

Problem Pζ0 connects material damage and adhesion at the joint point
and it has a very different structure from the usual bonding conditions used
in the literature (see, e.g., [21]). Indeed, there, the bonding was assumed to
be of the form

ζ ′ = −dζ(u2
x − ε0)+,
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which doesn’t allow for failure, i.e., complete debonding in finite time, or a
more recent condition ([15])

ζ ′ = −dζα(u2
x − ε0)+,

which allows for failure when 0 ≤ α < 1. Here, we find that α = −2, and
this makes the analysis quite different.

3.3 Quasistatic version of Pζ with traction condition

We describe briefly the case when instead of the displacement φ, a trac-
tion q = q(t) is applied at the left end (x = 0). This is often the case
in experimental settings. Thus, we replace the first condition in (4) with
E1u1x(0, t) = q(t). Then,

u1(x, t) =
1
E1
q(t)x+ b(t),

where b(t) is to be determined. At x = l1 we have E1u1x(l1, t) = q(t) =
E0γ(t), hence

γ(t) =
1
E0
q(t).

Moreover, u2(x, t) = (q(t)/E2)(x− L). It follows from (21) that

u0(x, t) =
1
E0
q(t)

∫ x

l1

1
ζ(x, t)

dx+ δ(t), (28)

for l1 ≤ x ≤ l2, and δ is a constant. The displacements’ continuity implies

1
E1
q(t)l1 + b(t) = δ(t),

1
E0
q(t)

∫ l2

l1

1
ζ(x, t)

dx+ δ(t) =
1
E2
q(t)(l2 − L).

It follows that

δ(t) = −q(t)
(

1
E2

(L− l2) +
1
E0

∫ l2

l1

1
ζ(x, t)

dx

)
. (29)

Also,

b(t) = −q(t)
(

1
E1
l1 +

1
E2

(L− l2) +
1
E0

∫ l2

l1

1
ζ(x, t)

dx

)
. (30)
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It is seen that once ζ is found, the displacements u1, u2, and u0 are given
by the expressions above. It remains to obtain an equation for ζ. We have

Φ(u0x) = −d(ζu2
0x − ε0)+ = −d

(
q2(t)
E2

0ζ
− ε0

)
+

.

We conclude that the quasistatic problem for ζ, when a traction q is
prescribed at x = 0, is the following.

Problem Pζq. Given q(t), find a function ζ = ζ(x, t) such that, for 0 < t ≤
T ,

ζt − κζxx = −d
(
q2(t)
E2

0ζ
− ε0

)
+

, x ∈ (l1, l2), (31)

ζ(x, 0) = ζin, ζx(l1, t) = ζx(l2, t) = 0. (32)

We note that this problem is local, but is also somewhat unusual and
has mathematical interest in and of itself, and will be analyzed elsewhere.

The problem for a thin layer of glue is obtained in the limit lim l2 = l1 = l.

Problem Pζq0. Given q(t), find a function ζ = ζ(t) such that, for 0 < t ≤ T ,

ζ ′ = −d
(
q2(t)
E2

0ζ
− ε0

)
+

, (33)

ζ(0) = ζin. (34)

We note that whereas problems Pquas−ζ and Pζq are substantially differ-
ent, the limit problems Pζ0 and Pζq0 are very similar, with q2/E2

0 replacing
φ2/c2

12. Therefore, the existence of the unique solution of Problem Pζq0
follows from Theorem 1 below.

In this case, if we neglect the Dupré energy ε0, we find that the time to
complete debonding t∗0 is given implicitly by∫ t∗0

0
q2(τ) dτ =

E2
0ζ

2
0

2d
.

4 Analysis

We first study Problem Pζ0, (26) and (27), and establish the existence of
a unique local (in time) solution. Then, we prove the existence of a weak
solution to the dynamic problem with damage, Problem Pζ .
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4.1 Problem Pζ0

For the sake of generality, we replace the function φ2(t)/c2
12 in (26) with a

more general nonnegative smooth and bounded function ψ = ψ(t). Then,
the problem is as follows.

Problem Pζψ. Given a function ψ, find a function ζ = ζ(t) ≥ 0, such that,
for 0 < t ≤ T ,

ζ ′ = −d
(
ψ(t)
ζ
− ε0

)
+

, (35)

ζ(0) = ζin. (36)

We make the following assumptions on the problem data.

H1. The function ψ : [0, T ]→ [0,∞) is continuous and bounded.
H2. The constants d and ε0 are positive and ζin ∈ (0, 1].

Theorem 1. Assume that H1 and H2 hold. Then there exists T ∗ > 0 such
that there exists a unique solution ζ of Problem Pζψ on the time interval
[0, T ∗). Moreover,

ζ ∈ C1([0, T ∗)). (37)

Proof. Let 0 < a < ζin and let ga (ζ, t) be a function with the graph of
a straight line through (0, 0) and −d

(
ψ(t)
a − ε0

)
, and let

F (ζ, t) ≡ max
(
−d
(
ψ(t)
ζ
− ε0

)
+

, ga (ζ, t)
)
.

Then, F (ζ, t) is Lipschitz in ζ and so there exists a unique solution to

ζ ′ = F (ζ, t) , ζ (0) = ζin.

Letting t∗a be the value of t at which ζ (t) first equals a, then, since 0 < a is
arbitrary, the theorem follows when we choose T ∗ = sup(t∗a), for a ∈ (0, ζin).

4.2 Problem Pζ

We turn to Problem Pζ , and establish the existence of its weak solution. The
weak formulation is obtained in the usual manner, and we use the following
notation: u represents the displacements, and is such that u = u1 on [0, l1],
u = u0 on [l1, l2], and u = u2 on [l2, L]. Similarly, we define the functions
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ρ(x) and c(x) as ρ = ρ1, c = E1 on [0, l1], ρ = ρ0, c = E0 on [l1, l2], and
ρ = ρ2, c = E2 on [l2, L]. Finally, for the sake of generality we add a viscosity
term in (1) and (3), and let the viscosity ν(x) be defined in the same way.
We also extend the definition of the unknown function ζ as 1 outside of the
interval [l1, l2], and replace c with cζ in (1)–(3).

We now multiply equations (1)–(3) by a test function ϕ, integrate by
parts and use the boundary conditions to obtain the following weak formu-
lation for u, for a.a. t ∈ (0, T ),∫ L

0
ρ(x)utt(x, t)ϕ(x) dx+

∫ L

0
c(x)ζ(x, t)ux(x, t)ϕx(x) dx

+
∫ L

0
ν(x)ζ(x, t)uxt(x, t)ϕx(x) dx =

∫ L

0
ρ(x)fB(x, t)ϕ(x) dx.

Similarly, using θ as a test function, we obtain from (12),∫ l2

l1

ζt(x, t)θ(x) dx+ κ

∫ l2

l1

ζx(x, t)θx(x) dx

≥ −d
∫ l2

l1

(ζ(x, t)u2
x(x, t)− ε0)+θ(x) dx.

Actually, as explained below, we can eliminate the subgradient term because
the source term for damage is sufficient to keep the damage parameter in
the interval of interest.

We regard the adhesive and the two rods as a single continuum, as de-
scribed above, but damage is assumed to affect only the adhesive.

To proceed with the analysis we need the following spaces.

V ≡ H1
0 (0, L) , H ≡ L2 (0, L) ,

and
V ≡ L2 (0, T ;V ) , H ≡ L2 (0, T ;H) .

We use on V and V the (equivalent) norms

||w||2V =
∫ L

0
w2
xds, ||w||2V =

∫ T

0

∫ L

0
w2
x dsdt.

We need to introduce a truncation to preserve the coercivity of the prob-
lem, which becomes noncoercive in the limit ζ → 0. To that end we let η
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be a truncation function, assumed to be smooth and nondecreasing with the
following properties:

η (r) ≤ 2 if r ≥ 1, η (r) = δ if r < δ, η (r) = r if r ∈ (2δ, 1],

where δ is assumed to be very small, in particular, δ << ε0. We note that
these problems, typically, possess only local solutions, so this is not a serious
restriction. Moreover, we show below that η is not active (i.e., η(ζ) = ζ) on
some interval of time.

Now, we define the operator A : V → V ′ as follows: for ζ in H let

〈A (ζ, u) , v〉 ≡
∫ L

0
c (x) η (ζ (x))ux (x) vx (x) dx.

We note that c (x) is discontinuous, and bounded away from zero, as it takes
the values E1, E0, E2 in the different intervals. We also assume that

φ ∈ C2 ([0, T ]) .

To obtain homogeneous boundary conditions at x = 0, x = L we define a
new variable w (x, t) = u (x, t) − φ (t) (1− x/L) and obtain a similar equa-
tion for w involving only a change in fB (x, t), but with w satisfying zero
boundary conditions at x = 0 and x = L. Therefore, we assume at the
outset that φ (t) = 0 to make the presentation simpler. To slightly simplify
the presentation we also assume that the density ρ (x) is a constant, rescaled
as ρ = 1. In addition, we let

v (t) ≡ u′ (t) , v (t) ∈ V, u (t) ≡ u0 +
∫ t

0
v (s) ds.

The truncated problem is as follows. Find v ∈ V such that,

v′ +A (ζ, v) +A (ζ, u) = f, (38)
v (0) = v0, (39)

u (t) ≡ u0 +
∫ t

0
v (s) ds, u0 ∈ V. (40)

Here f is a body force, assumed in H. The problem for the damage is to
find ζ ∈W 1,2 ((0, L)× (0, T )) such that,

ζ ′ −∆ζ = −d
(
η (ζ)X[l1,l2]QM (ux)− ε0

)
+
, (41)

ζ (0) = ζ0 ∈ H1 (0, L) , ζ0 (x) ∈ (3δ, 1]. (42)
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We let ζ0(x) = 1 for x /∈ [l1, l2]. This forces the extension of ζ to the rest
of [0, L] to equal 1. Then, the requirement ζ ∈ H1 (0, L) guarantees that
ζ = 1 at the end points x = l1, l2, so damage is happening in the interior
of this interval but not at the ends. Also, we obtain the natural boundary
conditions ζx = 0 at the endpoints of the adhesion interval.

Moreover, QM (r) is a truncation of ux, making it easier to obtain some
of the estimates below. It is a bounded Lipschitz continuous function which
equals r2 whenever |r| < M , say

QM ∈ C1(R), 0 ≤ Q (r) ≤M2. (43)

The characteristic function X[l1,l2] of the middle interval is used to guarantee
that the damage process is taking place only in the glue layer.

We show below that on a suitable interval the truncation is inactive but,
to begin with, it is convenient to include it. The source term for damage
in (41) is such that together with the assumptions on ζ0, it implies that
ζ (x, t) ∈ (δ, 1] a.e. x for all t. It is a consequence of maximum principle
arguments and a proof can be found in [13].

We begin with the study of the mechanical part of the problem.

Lemma 1. Let ζ ∈ H. Then there exists a unique solution to (38) − (40).
Also, if vζ is the solution corresponding to ζ then the map ζ → vζ is contin-
uous from H to V.

Proof. We consider the existence part first. It follows from standard
theorems in Lions, [19], that there exists a unique solution vu to (38) for
each u ∈ V. Also, the operator Av (t) ≡ A (ζ (t) , v (t)) is monotone, hemi-
continuous, bounded, and coercive as a map from V to V ′, so the the main
existence theorem in [16] is applicable. Consider now the map Ψ : V → V,
given by

Ψ(u (t)) ≡ u0 +
∫ t

0
vu (s) ds.

Then,

Ψ(u (t))−Ψ(w (t)) =
∫ t

0
(vu (s)− vw (s)) ds.

Next, simple manipulations, using (38), yield

1
2
‖vu (t)− vw (t) ‖2H +

δ

2
a

∫ t

0
||vu − vw||2V ds ≤ Cδ

∫ t

0
||w − u||2V ds.
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It follows that

‖Ψ(u (t))−Ψ(w (t))‖2V ≤ CT

∫ t

0
||vu (s)− vw (s)||2V ds

≤ CTCδ

∫ t

0
||u (s)− w (s)||2V ds,

and this implies that a large enough power of Ψ is a contraction mapping
on V, so there exists a unique solution (v, u) to (38)–(40).

Let (v, u) be a solution of this initial value problem. Then, it follows
from the equation that

1
2
‖v (t) ‖2H +

δ

2
a

∫ t

0
||v||2V ds

≤ 1
2
‖v0‖2H + Cδ

∫ t

0
||u||2V ds+ C (f) +

∫ t

0
‖v‖2Hds

≤ CδT
∫ t

0

∫ s

0
||v||2 drds+ C (f, ||u0||V ) +

∫ t

0
‖v‖2Hds.

Here and below, we denote by C = C(· · · ) a constant that depends only
on the argument and the problem constants. It follows from Gronwall’s
inequality that there exists a constant, depending on the indicated quantities,
such that

‖v (t) ‖2H +
∫ t

0
||v||2V ds ≤ C

(
|v0|2H , f, ||u0||V , δ

)
. (44)

Next, we show the continuous dependence of the solution (v, u) on ζ. Let
vi correspond to ζi, i = 1, 2. Then, from the initial value problem (38)–(40),
together with routine manipulations, we obtain

1
2
‖v1 (t)− v2 (t) ‖2H +

δ

2
a

∫ t

0
||v1 (s)− v2 (s)||2V ds

≤ Cδ
∫ t

0

∫
Ω
|η (ζ1)− η (ζ2)|2 |v1x|2 dxds

+Cδ

∫ t

0

∫
Ω
|η (ζ1)− η (ζ2)|2 |u1x|2 dxds. (45)
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Assume that the map ζ → vζ is not continuous. Then, there exists ζ ∈ H
and a sequence {ζn} such that ζn → ζ pointwise, as well as in H, but for
some ε > 0, ∫ T

0
||vn (s)− v (s)||2V ds ≥ ε,

where v is the solution of (38)–(40) that corresponds to ζ and vn corresponds
to ζn. Now, let t = T and v2 = vn, v1 = v in (45). Since η is a bounded
function, the dominated convergence theorem applies and the right-hand
side of (45) converges to zero, which is a contradiction. This proves the
lemma.

The next two theorems are used below, and can be found in Lions [19]
and Simon [24], respectively.

Theorem 2. Assume p ≥ 1, q > 1, and W ⊆ U ⊆ Y , where the inclusion
map W → U is compact and the inclusion map U → Y is continuous. Let

SR = {u ∈ Lp(0, T ;W ) : u′ ∈ Lq(0, T ;Y ), ||u||Lp(0,T ;W )+||u′||Lq(0,T ;Y ) < R}.

Then SR is precompact in Lp(0, T ;U).

Theorem 3. Let W,U, and Y be as in Theorem 2, q > 1, and let

SRT = {u : ||u(t)||W + ||u′||Lq(0,T ;Y ) ≤ R, t ∈ [0, T ]}.

Then SRT is precompact in C(0, T ;U).

We now consider the question of existence for a solution (v, ζ) of (38)
–(42). To that end let ζ ∈ H be given. Then, let (vζ , uζ) denote the
unique solution of problem (38)–(40). Using ζ and uζ in the right side
of (41) and (42), it follows from a well known results of Brezis ([5]), see
also Showalter ([23]), since the differential operator −∆ is a subgradient of a
proper lower semicontinuous functional, that there exists a unique function
ξ ∈ L2

(
0, T ;H2 (0, L)

)
, ξ′ ∈ H, ζx = 0 at x = 0 and L, which satisfies (41)

and (42). Let Φ (ζ) ≡ ξ. Thus, this Φ is a map from H to H. It was shown
in Lemma 1 that the map ζ → vζ is continuous from H to V. From the
definition of uζ as an integral of vζ given in (40), it follows that ζ → uζ
is continuous from H to C ([0, T ] ;V ). Therefore, since all the truncation
functions in the source term for damage in (41) are bounded and Lipschitz
continuous, it follows from simple manipulations, such as those above, that
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ζ → Φ (ζ) is continuous as a map fromH toH. In fact, more can be said, but
this is enough for our purposes. We note the fact that Φ is not only contin-
uous, but maps H into a compact subset of H. This follows from Theorem 2
and the following interesting lemma which is stated in more generality than
needed here.

Lemma 2. Assume that the boundary of Ω is in C1,1. Let y, y′ ∈ L2(0, T ;
L2 (Ω)), y (0) = y0 ∈ H1 (Ω), assume also that y ∈ L2

(
0, T ;H2 (Ω)

)
and it

satisfies ∂y/∂n = 0 on ∂Ω. Then,∫ t

0

(
y′,−∆y

)
L2(Ω)

ds =
1
2
‖∇y (t) ‖2

L2(Ω)d −
1
2
‖∇y0‖2L2(Ω)d .

Proof. Let Ly ≡ −∆y, where y ∈ D (L) is given by{
y ∈ L2

(
0, T ;L2 (Ω)

)
; ∆y ∈ L2

(
0, T ;L2 (Ω)

)
, ∂y/∂n = 0 on ∂Ω

}
.

Then, L is a maximal monotone operator. Also, since C∞0 (Ω) is dense in
L2(Ω), it follows that D (L) is dense in L2

(
0, T ;L2 (Ω)

)
. Let

yε ≡ (I + εL)−1 y,

for a small ε > 0. Thus, y′ε = (I + εL)−1 y′ ∈ D (L) and it is routine to
verify that∫ t

0

(
y′ε, (−∆yε)

)
L2(Ω)

ds =
1
2
‖∇yε (t) ‖2

L2(Ω)d −
1
2
‖∇yε (0) ‖2

L2(Ω)d .

Moreover, since D (L) is dense in L2
(
0, T ;L2 (Ω)

)
, it follows from stan-

dard results on maximal monotone operators (see, e.g., [5]) that, as ε→ 0,

−∆yε = Lyε = L (I + εL)−1 y = (I + εL)−1 Ly → Ly = −∆y,
(I + εL)−1 y′ = y′ε → y′ in L2

(
0, T ;L2 (Ω)

)
.

In addition,

∇yε = ∇ (I + εL)−1 y = (I + εL)−1∇y → ∇y,
∇yε (0) = ∇ (I + εL)−1 y0 = (I + εL)−1∇y0 → ∇y0,
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and by using subsequences, if necessary, all these convergence results take
place for a.a. t. Therefore, for a.a. t,

1
2
‖∇y (t) ‖2

L2(Ω)d −
1
2
‖∇y0‖2L2(Ω)d

= lim
ε→0

1
2
‖∇yε (t) ‖2

L2(Ω)d −
1
2
‖∇yε (0) ‖2

L2(Ω)d

= lim
ε→0

∫ t

0

(
y′ε,−∆yε

)
L2(Ω)

ds =
∫ t

0

(
y′,−∆y

)
L2(Ω)

ds.

Now, using the fact the source term for damage in (41) is bounded inde-
pendently of ζ and ux, it follows from the lemma that

1
2
‖ζx (t) ‖2H +

1
2

∫ t

0
‖∆ζ (s) ‖2Hds ≤

1
2
‖ζ0x‖2H + C (M) .

This estimate, along with (41), shows that ζ ′ is bounded in H. Thus, we
obtain an estimate of the form,

‖ζ ′‖2H +
1
2
‖ζx (t) ‖2H +

1
2

∫ t

0
‖∆ζ (s) ‖2Hds ≤

1
2
‖∇ζ0‖2H + C (M) .

Using now Theorem 3, it follows that the image Φ (H) belongs to a compact
subset of C ([0, T ] ;U) ⊆ H, where U ≡ Hα (0, L), and α < 1 is large enough
so that the embedding of U into C ([0, L]) is compact. We conclude by
the Schauder fixed point theorem that there exists a fixed point of Φ in
C ([0, T ] ;U). This proves the existence part of the following theorem, which
is one of the the main results in this work.

Theorem 4. There exists a unique solution (v, u, ζ) to problem (38)–(42)
and it satisfies:

v ∈ V, u ∈ C ([0, T ] ;V ) , v′ ∈ V ′,

ζ ′ ∈ H, ζ ∈ L∞
(
0, T ;H1 (0, L)

)
∩ L2

(
0, T ;H2 (0, L)

)
∩ C ([0, T ] ;U) .

For each t ∈ [0, T ]
ζ (x, t) ∈ [δ, 1] a.e. x.
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Proof. It only remains to verify the uniqueness of the solution. Suppose
that (vi, ui, ζi), for i = 1, 2, are two solutions. We find from (38), using
simple manipulations involving the relation between u and v, that

1
2
‖v1 (t)− v2 (t) ‖2H +

δ

2

∫ t

0
||v1 (s)− v2 (s)||2V ds

≤ Kδ

∫ t

0
||ζ1 (s)− ζ2 (s)||2L∞(0,L)

(
||v1 (s)||2V + 1

)
ds. (46)

Now, using Lemma 2 again to the difference between the equations solved
by ζi, we obtain

1
2
‖ζ1x (t)− ζ2x (t) ‖2H +

1
2

∫ t

0
‖∆ (ζ1 − ζ2) ‖2Hds

≤ K (M)
∫ t

0

(
‖ζ1 − ζ2‖2H + ‖u1x − u2x‖2H

)
ds.

Therefore, there is a positive constant C, independent of the solutions, such
that

‖ζ1x (t)− ζ2x (t) ‖2H +
∫ t

0
‖ζ1 − ζ2‖2H2(0,L) ds

≤ C
∫ t

0

(
‖ζ1 − ζ2‖2H +

∫ s

0
||v1 − v2||2V dr

)
ds.

Similar, but somewhat simpler, computations using (41) yield

1
2
‖ζ1 (t)− ζ2 (t) ‖2H +

1
2

∫ t

0
‖ζ1x − ζ2x‖2Hds

≤ C
∫ t

0

(
‖ζ1 − ζ2‖2H +

∫ s

0
||v1 − v2||2V dr

)
ds.

Therefore,

||ζ1 (t)− ζ2 (t)||2V +
∫ t

0
||ζ1 − ζ2||2H2(0,L) ds

≤ C
∫ t

0

(
‖ζ1 − ζ2‖2H +

∫ s

0
||v1 − v2||2V dr

)
ds.
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We use (46) to substitute into this inequality and obtain

||ζ1 (t)− ζ2 (t)||2V +
∫ t

0
||ζ1 − ζ2||2H2(0,L) ds

≤ Cδ
∫ t

0

(
‖ζ1 (s)− ζ2 (s) ‖2H

+
∫ s

0

(
||ζ1 (r)− ζ2 (r)||2L∞(0,L)

(
||v1 (r)||2V + 1

))
dr

)
ds

We let r < 2 be large enough so that Hr embedds continuously into L∞ and
by the compactness of the embedding of H2 into Hr, if ε > 0 we find

||ζ1 (t)− ζ2 (t)||2V +
1
ε

∫ t

0
||ζ1 − ζ2||2Hr(0,L) ds

≤ Cε
∫ t

0
‖ζ1 − ζ2‖2Hds+ Cδ

∫ t

0

(
‖ζ1 (s)− ζ2 (s) ‖2H

+
∫ s

0

(
||ζ1 (r)− ζ2 (r)||2Hr(0,L)

(
||v1 (r)||2V + 1

))
dr

)
ds.

Now, choosing ε small enough,

||ζ1 (t)− ζ2 (t)||2V +
1
2ε

∫ t

0
||ζ1 − ζ2||2Hr(0,L) ds

≤ C (δ, ε)
∫ t

0

∫ s

0

(
||ζ1 (r)− ζ2 (r)||2Hr(0,L)

(
||v1 (r)||2V + 1

))
drds,

and by Gronwall’s inequality ζ1 = ζ2, which implies by Lemma 1 that v1 =
v2. This proves the theorem.

We note that the proof above implies the following corollary.

Corollary 1. Consider problem (38) − (42), then there exists T ∗ > 0 such
that for t ∈ [0, T ∗] the function ζ in the solution provided in Theorem 4 stays
within the interval (2δ, 1] so that every occurrence of η (ζ) in (38− 42) may
be replaced with ζ.

Proof. It follows from the fact that ζ ∈ C ([0, T ] ;U), where U embeds
continuously into C ([0, L]), and ζ0.
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5 Estimates on strain

In this section we remove the truncation QM . Since the problem is one-
dimensional, it suffices to obtain an estimate for u in L∞

(
0, T ;H2 (0, L)

)
.

We make additional assumptions on the problem data to obtain such an
estimate, which involves pointwise bounds on ux.

We assume the compatibility conditions on the initial data,

∆ζ0 −
(
ζ0X[l1,l2]QM (u0x)− ε0

)
+
∈ H1 (0, L),

(cu0x)x ∈ H.
(47)

Let ξ ≡ ζ ′ and note that the time derivative of the source term in (41),
g (ζ ′, vx) is in H. Therefore, there exists a unique solution to the problem

ξ′ −∆ξ = g
(
ζ ′, vx

)
,

ξ (0) = ∆ζ0 −
(
ζ0X[l1,l2]QM (u0x)− ε0

)
+
∈ H,

which satisfies ξ′ ∈ H, ξ ∈ L2
(
0, T ;H2 (0, L)

)
. Then using Lemma 2, again,

we obtain, for a.a. t,

‖ζ ′x (t) ‖2H = ‖ξx (t) ‖2H ≤ C (ζ0,∆ζ0, u0x) . (48)

Similarly, an easier estimate for ‖ξ (t) ‖2H is

ξ = ζ ′ ∈ L∞
(
0, T ;H1 (0, L)

)
. (49)

Also, as above, we obtain an estimate on ||∆ξ||L2(0,T ;H2(0,L)) which yields
the pointwise estimate

||ζ||L∞(0,T ;H2(0,L)) ≤ C (ζ0,∆ζ0, u0x) ,

which, in particular, implies that

||ζx||L∞(0,T ;L∞(0,L)) ≤ C (ζ0,∆ζ0, u0x) , (50)

since in one dimension H1 (0, L) embedds continuously into L∞ (0, L). One
would need to work much harder if the problem were in a higher dimension.

We define the following time dependent family of functionals on H, which
are convex, proper, and lower semicontinuous,

φ (t, u) ≡


1
2

∫ L

0
c (x) ζ (x, t)u2

x (x) dx if u ∈ V,

+∞ if u /∈ V
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Here, t ∈ [0, T ], and D (φ (t, ·)) = V is independent of t because δ ≤ ζ ≤ 1.
Also, for u ∈ V,

‖φ (t, u)− φ (s, u) ‖H ≤
1
2

∫ L

0
c (x) |ζ (x, t)− ζ (s, x)|u2

x (x) dx

≤ b

2
||ζ (t)− ζ (s)||L∞(0,L)

∫ L

0
u2
x (x) dx

≤ b

2
||ζ (t)− ζ (s)||L∞(0,L) φ (r, u)

≤ Cφ (r, u)
∫ t

s

∣∣∣∣ζ ′ (τ)
∣∣∣∣
V
dτ ≤ Cφ (r, u) |t− s| , (51)

where r ∈ [0, T ] is arbitrary and we used (49). Also, the subgradient of
φ (t, ·) is given by ∂φ (t, ·) = − (c (·) ζ (·, t)ux)x, and its domain is

{u ∈ V : (c (·) ζ (·, t)ux)x ∈ H} .

Now consider (38)–(40) in which ζ is the solution satisfying (49), thanks
to the compatibility condition (47) made on ζ0. We have the following.

Lemma 3. Assume that (47) holds and v0 ∈ V . Then the solution to (38)−
(40) satisfies v′ ∈ H and (ζvx)x ∈ H.

Proof. Problem (38)–(40) is just an abstract form of the initial boundary
value problem

vt − (cζvx)x − (cζux)x = f, (52)
v (0, t) = v (L, t) = 0, (53)
v (0) = v0, (54)

u (t) = u0 +
∫ t

0
v (s) ds. (55)

The partial differential equation is of the form

vt − ζx (cvx)− ζ (cvx)x − ζx (cux)− ζ (cux)x = f,

and when (ζcvx)x ∈ H, it follows from the regularity of ζ, established earlier,
that (cvx)x ∈ H. Let W ≡ {v ∈ V : (cvx)x ∈ H} and

W ≡ {v ∈ V : (cvx)x ∈ H}
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with the norm ||v||W ≡ ||(cvx)x||H.
Let v1 ∈ W and define u1 (t) ≡ u0 +

∫ t
0 v1 (s) ds. Then, it follows from

the main existence theorem in [14] that, given such ζ, there exists a unique
solution v to the problem

vt − (cζvx)x − ζxcu1x − ζ (cu1x)x
= vt − ζx (cvx)− ζ (cvx)x − ζxcu1x − ζ (cu1x)x = f, (56)
v (0) = v0,

which satisfies vt ∈ H and (ζcvx)x ∈ H. Denote this v by Φ (v1). Then
consider v1, v2 ∈ W with the corresponding u1, u2. A similar argument as in
Lemma 2 implies that we can multiply both sides of (56) by

− (cΦ (v1)x)x −
(
− (cΦ (v2)x)x

)
and integrate by parts, eventually obtaining the estimate

1
2
‖
√
c (Φ (v1)x (t)− Φ (v2)x (t)) ‖2H +

δ

2

∫ t

0
‖ (cΦ (v1)x)x − (cΦ (v2)x)x ‖

2
Hds

≤ C
∫ t

0
‖cΦ (v1)x (s)− cΦ (v2)x (s) ‖2Hds

+C
∫ t

0
‖cu1x (s)− cu2x (s) ‖2H + ‖ (cu1x)x (s)− (cu2x)x (s) ‖2Hds

where here and below C = C (δ, ζ0,∆ζ0, u0x), and we used the fact ζ ≥ δ
and the pointwise bound on ζx which follows from (50). After adjusting the
constants, this simplifies to

‖Φ (v1)x (t)− Φ (v2)x (t) ‖2H +
∫ t

0
‖ (cΦ (v1)x)x − (cΦ (v2)x)x ‖

2
Hds

≤ C

∫ t

0
‖cΦ (v1)x (s)− cΦ (v2)x (s) ‖2Hds

+C
∫ t

0

∫ s

0
‖ (cv1x)x − (cv2x)x ‖

2
Hdrds.

Then,
‖Φ (v1)x (t)− Φ (v2)x (t) ‖2H
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≤ C
[∫ t

0
‖cΦ (v1)x (s)− cΦ (v2)x (s) ‖2Hds +

∫ t

0

∫ s

0
||v1 − v2||2W drds

]
,

and by Gronwall’s inequality and adjusting the constants, we obtain

‖Φ (v1)x (t)− Φ (v2)x (t) ‖2H ≤ C
∫ t

0

∫ s

0
||v1 − v2||2W drds.

Now, integration over t yields∫ t

0
||Φ (v1)− Φ (v2)||2W ds ≤ C

∫ t

0

∫ s

0
||v1 − v2||2W drds,

where, as above C = C (δ, ζ0,∆ζ0, u0x).
This estimate shows that a high enough power of Φ is a contraction

mapping on W, so there exists a unique fixed point v for Φ. This v is then
the unique solution to (52) - (55). However, by the uniqueness of the weak
solution to (38)-(40), it follows that v is the solution to the weak abstract
problem. Also, we note that the construction yields

cvx ∈ L∞ (0, T ;H) .

This proves the lemma.

Now, since (cζvx)x ∈ H, it follows that cζvx ∈ L2
(
0, T ;H1 (0, L)

)
and

so cζvx ∈ L2 (0, T ;C ([0, L])), therefore

vx ∈ L2 (0, T ;L∞ (0, L)) ,

thus ux ∈ C ([0, T ] ;L∞ (0, L)), hence,

ux ∈ C ([0, T ] ;L∞ (0, L)) .

This is the desired estimate on the strain which allows the elimination of
the truncation function QM , proving the following local existence theorem.

Theorem 5. Assume that the compatibility condition (47) holds, u0x (x) <
M on [0, L], where M is the truncation constant of QM (43), and ζ0 (x) ∈
(3δ, 1]. Then, there exists T ∗ > 0 such that, for t ∈ [0, T ∗), the unique
solution (v, u, ζ) of (38)− (42) satisfies η (ζ (t)) = ζ (t) and

QM (ux (t))X[l1,l2] (x) = u2
x (t)X[l1,l2] (x) .

In addition, this solution has the following regularity,

cζvx ∈ L2
(
0, T ;H1 (0, L)

)
, v′ ∈ H,

ζ ∈ C
(
[0, T ] ;H2 (0, L)

)
, ζ ′ ∈ L2

(
0, T ;H2 (0, L)

)
.
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6 Conclusions

Two models for the dynamic adhesive contact between two rods were pre-
sented. The first model assumes that the adhesive may be described as a
rod made of an elastic-plastic material and then complete debonding occurs
when the stress reaches the plasticity yield limit. In the second model the
adhesive is also assumed to be a rod and the degradation of the adhesive is
described by the introduction of material damage. Failure occurs when the
material is completely damaged, or the damage reaches a critical floor value.

The analysis of the first model is routine. The second model was shown,
in Section 4, to have a unique local (in time) weak solution. The proof was
based on truncation of the strain energy and the damage function in the
equation of motion. These allowed the use of standard tools to establish the
existence of a weak global solution. Then, it was shown in Section 5 that with
the appropriate initial conditions the weak solution is sufficiently regular so
that the constraints (the truncations) are inactive on a time interval [0, T ∗),
which means that the solution of the truncated problem is also the solution
to the original problem.

Two quasistatic versions of the problem with material damage, with dis-
placement or traction boundary condition at x = 0, were investigated in
Section 3. The fact that the problems are one-dimensional allowed us to
obtain a new condition for the damage source function, leading to the same
and unusual parabolic nonlinear and nonlocal problem for the damage ζ,
Pquas−ζ or Pζq. The analysis of this problem will be done elsewhere.

In the limit when the thickness of the adhesive rod tends to zero a new
adhesion source function was obtained, see the right-hand side of (26), which
is unusual in that it contains ζ−1 which makes it non-Lipschitz, and different
from the source functions used in [1, 2, 10, 20, 21, 22]. The problem was
analyzed in Section 4.

Some future work, related issues, and unresolved questions follow. First,
it may be of considerable interest to verify the model by comparing its pre-
dictions with experimental results. In this manner the model parameters
may be estimated and then it may be used to predict the evolution of real
systems. Because of the relative simplicity of the problem, it may be used
as a bench-mark in applications, too.
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