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Abstract

Using a tangency condition expressed with a set of integrals, we es-
tablish several necessary and sufficient conditions for viability referring
to evolution equations on locally closed graphs.
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1 Introduction

Let X be a real Banach space, let I ⊆ R be a nonempty and bounded interval
and let K : I ; X and F : K ; X be two multi-functions with nonempty
values, where K := graph(K). Let A : D(A) ⊆ X → X be the infinitesimal
generator of a C0-semigroup {S(t); t ≥ 0}.

Our aim here is to prove some new necessary and sufficient conditions in
order that K be viable with respect to A+F . This paper is an extension of
the results established by Necula-Popescu-Vrabie [7].
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800201 Romania

62

Annals of the Academy of Romanian Scientists
Series on Mathematics and its Applications

ISSN 2066 - 5997 Volume 1, Number 1 / 2009



Viability for differential inclusions on graphs 63

To be more precise, let us consider the Cauchy Problem{
u′(t) ∈ Au(t) + F (t, u(t))
u(τ) = ξ.

(1.1)

Definition 1.1. By a mild solution of (1.1) on [τ, T ] ⊆ I, we mean a function
u ∈ C([τ, T ];X) satisfying (t, u(t)) ∈ K, u(τ) = ξ and for which there exists
f ∈ L1(τ, T ;X) with f(t) ∈ F (t, u(t)) a.e. for t ∈ [τ, T ] and

u(t) = S(t− τ)ξ +
∫ t

τ
S(t− s)f(s) ds (1.2)

for each t ∈ [τ, T ].

Definition 1.2. We say that the graph, K, of K : I ; X, is mild viable
with respect to A + F , where F : K ; X, if for each (τ, ξ) ∈ K, there
exists T > τ , such that [τ, T ] ⊆ I and (1.1) has at least one mild solution
u : [τ, T ] → X. If T ∈ (τ, sup I) can be taken arbitrary, we say that K is
globally mild viable with respect to A+ F .

The first two sections of the paper are concerned with some prerequisites
and basic concepts and results needed in the sequel. In Section 3 we prove
the main necessary condition of viability, in Section 4 we give a relationship
between two tangency conditions, Section 5 contains the statement of the two
sufficient conditions for viability and the statement and proof of a technical
approximation lemma, while in Section 6, we give the proofs of Theorems 5.1
and 5.2.

2 Preliminaries

If (Y, d) is a metric space, y ∈ Y and r > 0, D(y, r) denotes the closed
ball with center y and radius r > 0, i.e. D(y, r) = {x ∈ Y ; d(y, x) ≤ r},
while S(y, r) denotes the open ball with center y and radius r > 0, i.e.
S(y, r) = {x ∈ Y ; d(y, x) < r}. If B ⊆ Y and C ⊆ Y , we denote by

dist(y, C) := inf{d(y, z); z ∈ C}

and by
dist(B,C) := inf{d(x, y); x ∈ B, y ∈ C}.

Also B(Y ) denotes the family of all bounded subsets of Y .
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Definition 2.1. Let Y ⊆ X be nonempty. The function βY : B(X)→ R+,
defined by

βY (B) := inf

ε > 0;∃x1, x2, . . . , xn(ε) ∈ Y, B ⊆
n(ε)⋃
i=1

D(xi, ε)

 ,

is called the Hausdorff measure of noncompactness on X subordinated to Y .
If Y = X, we simply denote βX by β, and we simply call it the Hausdorff
measure of noncompactness on X.

Remark 2.1. We have the following properties:

(i) for each B ∈ B(X) and r > 0 with B ⊆ D(0, r), we have β(B) ≤ r ;

(ii) β(B) = 0 if and only if B is relatively compact ;

(iii) the restriction of βY to B(Y ) coincides with the Hausdorff measure of
noncompactness on Y ;

(iv) for each B ∈ B(Y ) we have β(B) ≤ βY (B) ≤ 2β(B).

The next lemma is due to Mönch [4].

Lemma 2.1. Let X be a separable Banach space and {fm; m ∈ N} a subset
in L1(τ, T ;X) for which there exists ` ∈ L1(τ, T ; R+) such that

‖fm(s)‖ ≤ `(s)

for each m ∈ N and a.e. for s ∈ [ τ, T ]. Then the mapping

s 7→ β({fm(s); m ∈ N})

is integrable on [ τ, T ] and, for each t ∈ [ τ, T ], we have

β

({∫ t

τ
fm(s) ds; m ∈ N

})
≤
∫ t

τ
β({fm(s); m ∈ N}) ds. (2.1)

For further details on the Haussdorf measure of noncompactness see
Cârjă, Necula, Vrabie [3], Section 2.7, pp. 48∼53.

Let X be a real Banach space, I ⊆ R a nonempty and bounded interval,
K : I ; X a multi-function with nonempty values and let K := graph(K).
Here and thereafter, K is conceived as a metric space, whose metric, d, is
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defined by d((τ, ξ), (θ, µ)) = max{|τ − θ|, ‖ξ − µ‖}, for all (τ, ξ), (θ, µ) ∈ K.
Also, λ denotes the Lebesgue measure on R. Furthermore, whenever we will
use the term strongly-weakly we will mean that the domain of the multi-
function in question is equipped with the strong topology, while the range
is equipped with the weak topology. Otherwise, both domain and range are
endowed with the strong, i.e. norm, topology.

Definition 2.2. The multi-function F : K ; X is called (strongly-weakly)
almost u.s.c. if for each ε > 0 there exists an open set Oε ⊆ I such that
λ(Oε) ≤ ε and F|[(I\Oε)×X]∩K is (strongly-weakly) u.s.c.

Definition 2.3. The multi-function F : K ; X is called integrally-bounded
if for each (τ, ξ) ∈ K there exist ρ > 0, δ > 0, `1 ∈ L1(I; R) and a negligible
set N1 ⊆ I satisfying: for each (t, u) ∈ (([τ − δ, τ + δ] \N1)× S(ξ, ρ)) ∩K,
we have

‖F (t, u)‖ ≤ `1(t).

Remark 2.2. (i) If X is separable we can choose N1 in Definition 2.3 the
same for all (τ, ξ) ∈ K and in this case for each (τ, ξ) ∈ ((I \N1)×X) ∩K,
F (τ, ξ) is bounded.

(ii) Moreover, if, in addition, F is closed valued and almost u.s.c., then,
for each continuous function u : I → X with (t, u(t)) ∈ K for each t ∈ I,
the multi-function t 7→ F (t, u(t)) has at least one locally integrable selection
on I. The same conclusion holds true if F is closed valued, strongly-weakly
almost u.s.c. and has separable range. The latter assertion follows from
Pettis’ Measurability Theorem 1.1.3, p. 3, in Vrabie [10].

The next special class of graphs was considered for the first time by
Necula [5].

Definition 2.4. Let K : I ; X be a multi-function with graph, K. By a
simple solution issuing from (τ, ξ) ∈ K we mean a pair of functions (g, v) ∈
L1(τ, T ;X) × C([τ, T ];X) such that for all t ∈ [τ, T ] we have (t, v(t)) ∈ K

and

v(t) = S(t− τ)ξ +
∫ t

τ
S(t− s)g(s) ds

Definition 2.5. The graph, K, of K is said to be A-mild viable by itself if
for each (τ, ξ) ∈ K, there exist T > τ , ρ > 0 and `2 ∈ L1(I; R), so that for
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each (τ̃ , ξ̃) ∈ ([τ, T )×S(ξ, ρ))∩K, there exist a simple solution (g̃, ṽ) issuing
from (τ̃ , ξ̃) defined on [τ̃ , T̃ ] such that

‖g̃(s)‖ ≤ `2(s) a.e. for s ∈ [τ̃ , T̃ ]

Remark 2.3. In other words, the graph, K, of K : I ; X is A-mild viable
by itself if and only if, for each (τ, ξ) ∈ K, there exist T > τ , ρ > 0 and
`2 ∈ L1(I; R), so that ([τ, T ) × S(ξ, ρ)) ∩ K is mild viable with respect to
A+G, where the multi-function G : ([τ, T )×X) ∩K ; X is defined by

G(t, ξ) := {v ∈ X; ‖v‖ ≤ `2(t)} ,

for each (t, ξ) ∈ ([τ, T )×X) ∩K

Remark 2.4. (i) Clearly, if K : I ; X is constant and S(t)K ⊆ K for each
t ≥ 0, then K is A-mild viable by itself. Indeed, in this case, `2 ≡ 0 and
G(t, ξ) ≡ {0} satisfy all the requirements in Definition 2.5.

(ii) If K is A-mild viable with respect to some integrally-bounded multi-
function F : K ; X then, one may easily check out that, for each (τ, ξ) ∈ K,
the function G, defined as in Remark 2.3, with ρ > 0 given by Definition 2.3,
and `2 = `1, where `1 are given by Definition 2.3, satisfies the conditions in
Remark 2.2, and thus K is viable by itself.

Let (τ, ξ) ∈ K and let E ∈ B(X).

Definition 2.6. We say that E is A-right-quasi-tangent to K at (τ, ξ) ∈ K

if

lim inf
h↓0

1
h

dist
(
S(h)ξ +

∫ h

0
S(h− s)FE ds,K(τ + h)

)
= 0, (2.2)

where
FE =

{
f ∈ L1

loc(R;X); f(s) ∈ E a.e. for s ∈ R
}
.

Throughout, we denote by QTSAK(τ, ξ) the set of all A-right-quasi-tangent
sets to K at (τ, ξ). If K is constant, E is A-right-quasi-tangent to K at (τ, ξ)
if and only if it is A-quasi-tangent to K at ξ in the sense of Cârjă, Necula,
Vrabie [2], [3]. The set QTSAK(τ, ξ) is used in Necula, Popescu, Vrabie [7] to
establish necessary and sufficient conditions for viability. Next we introduce
a new tangency condition which shall be used in the sequel, similar to the
one used in Popescu [8].

Let K be A-mild viable by itself, F : K ; X be integrally bounded and
let (τ, ξ) ∈ K. Let ` ∈ L1(I,R) such that `(s) ≥ max{`1(s), `2(s)} a.e. for
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s ∈ I where `1 is the function from Definition 2.3 and `2 is the function from
Definition 2.5.

Let us denote by Cτ,ξ,`,h the set of all continuous functions v : [τ, τ+h]→
X for which there exits g ∈ L1(τ, τ+h;X) such that (g, v) is a simple solution
issuing from (τ, ξ) and ‖g(s)‖ ≤ `(s) a.e. for s ∈ [τ, τ +h]. Obviously Cτ,ξ,`,h
is nonempty for h small enough.

Next, let us define by Eτ,ξ,`,h the set of all functions f ∈ L1(τ, τ+h;X) for
which there exits v ∈ Cτ,ξ,`,h such that f(s) ∈ F (s, v(s)) for all s ∈ [τ, τ +h].
If F satisfies the conditions in Remark 2.2 then Eτ,ξ,`,h is nonempty for h
small enough.

We consider the generalized tangency condition

lim inf
h↓0

1
h

dist
(
S(h)ξ +

∫ τ+h

τ
S(τ + h− s)Eτ,ξ,`,h ds,K(τ + h)

)
= 0 (2.3)

At this point, let us observe that (2.3) makes sense whenever Eτ,ξ,`,h
is nonempty. As we already pointed out, in order for the above set to be
nonempty it is sufficient that K be viable by itself and F : K ; X be
integrally bounded, closed valued and almost u.s.c. Here and thereafter,
when we say that (2.3) takes place, we understand that K is viable by itself,
F is integrally bounded and Eτ,ξ,`,h 6= ∅ for h small enough (sufficiently
for a certain h). The fact that (2.3) can take place even in the absence of
continuity or measurability conditions for F is illustrated by the first very
simple necessary condition for viability in the next section.

3 Necessary conditions for viability

The hypotheses we will use in the sequel are listed below.

(H1) A : D(A) ⊆ X → X is the infinitesimal generator of a C0-semigroup
{S(t); t ≥ 0} of type (M,ω), i.e., ‖S(t)‖ ≤Meωt for each t ≥ 0 ;

(H2) the graph K is A-mild viable by itself ;

(H3) F has nonempty and closed values and is integrally bounded ;

(H4) F : K ; X is almost u.s.c. ;

(H5) F : K ; X is strongly-weakly almost u.s.c. ;
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(H6) there exists a set N ⊆ I, with λ(N) = 0, and such that for each
(τ, ξ) ∈ ((I \N)×X) ∩K, we have F (τ, ξ) ∈ QTSAK(τ, ξ).

(H7) there exists a set N ⊆ I, with λ(N) = 0, and such that for each
(τ, ξ) ∈ ((I \N)×X) ∩K, we have (2.3)

(H8) for each (τ, ξ) ∈ K, we have (2.3).

Theorem 3.1. If K is mild viable with respect to A + F where F is an
integrally bounded multi-function, then (H2) and (H8) hold true.

Proof. First let us observe that even if F is not closed valued and almost
u.s.c. the sets Cτ,ξ,`,h and Eτ,ξ,`,h are nonempty for h small enough. Indeed,
let ρ and δ from the Definition 2.3 and u : [τ, T ]→ S(ξ, ρ) be any solution of
(1.1) with T < τ+δ. Then there exists f ∈ L1(τ, T ;X) with f(t) ∈ F (t, u(t))
a.e. for t ∈ [τ, T ] and

u(t) = S(t− τ)ξ +
∫ t

τ
S(t− s)f(s) ds

for all t ∈ [τ, T ]. Hence, for each h ∈ (0, T−τ ] we have u ∈ Cτ,ξ,`,h, f ∈ Eτ,ξ,`,h
and

dist
(
S(h)ξ +

∫ τ+h

τ
S(τ + h− s)Eτ,ξ,`,h ds,K(τ + h)

)

≤ dist
(
S(h)ξ +

∫ τ+h

τ
S(τ + h− s)f(s) ds, u(τ + h)

)
= 0

and this completes the proof.
Let us remark that we have proved that for h sufficiently small

{S(h)ξ +
∫ τ+h

τ
S(τ + h− s)Eτ,ξ,`,h ds} ∩K(τ + h) 6= ∅

So, under more general hypotheses on F , (H7) is necessary in order for
K be viable with respect to F . In that follows, we shall see that, under some
additional natural assumptions on F , the converse statement is also true.
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4 The relationship between (H6) and (H7)

Definition 4.1. We say that the multi-function F : K ; X is almost ε–δ
l.s.c. if for each γ > 0, there exists an open set Oγ ⊂ I, with λ(Oγ) ≤ γ,
and such that the mapping (t, ξ) 7→ F (t, ξ) is ε–δ l.s.c. on ((I \Oγ)×X)∩K.

Theorem 4.1. Let X be separable and let K and F satisfy (H2) and (H3).

(i) If F is almost ε–δ l.s.c., then (H6) implies (H7).

(ii) If F is almost u.s.c., then (H7) implies (H6).

Proof. From (H3) and the fact that X is separable, it follows that there
exist a finite or at most countable set Γ, (τi, ξi)i∈Γ ⊂ K, (ρi)i∈Γ ⊂ (0,∞),
(δi)i∈Γ ⊂ (0,∞), (`i)i∈Γ ⊂ L1(I; R) and a negligible set N1 ⊂ I such that
K ⊆ ∪i∈Γ(τi − δi, τi + δi) × S(ξi, ρi) and, for all i ∈ Γ, and all (t, u) ∈
(((τi − δi, τi + δi) \N1)× S(ξi, ρi)) ∩K, we have ‖F (t, u)‖ ≤ `i(t).

We begin with the proof of (i). Since F is ε–δ l.s.c., it follows that, for
each n ∈ N, n ≥ 1 there exists In ⊂ I, with λ(I \ In) < 1

n , and such that the
mapping (t, ξ) 7→ F (t, ξ) is ε–δ l.s.c. on (In ×X) ∩K.

Let An ⊂ In the set of all density points of In which are also Lebesgue
points for `i for all i ∈ Γ. Let A = (∪n≥1An) ∩ (I \ (N1 ∪ N)), where N is
the negligible set in (H6). Obviously, λ(I \A) = 0.

Let (τ, ξ) ∈ (A×X) ∩K. We will show that

lim inf
h↓0

1
h

dist
(
S(h)ξ +

∫ τ+h

τ
S(τ + h− s)Eτ,ξ,`,h ds,K(τ + h)

)
= 0

Let i0 ∈ Γ and n0 ∈ N such that τ ∈ An0 ∩ (τi0 − δi0 , τi0 + δi0) and
ξ ∈ S(ξi0 , ρi0).From (H6), it follows that there exists hn ↓ 0, fn ∈ FF (τ,ξ)

and pn ∈ X, with ‖pn‖ → 0, and such that

S(hn)ξ +
∫ τ+hn

τ
S(τ + hn − s)fn(s) ds+ hnpn ∈ K(τ + hn) (4.1)

for all n ∈ N, n ≥ 1.
Let ε > 0 be arbitrary but fixed. Since K is viable by itself there exists

δ > 0 and v ∈ Cτ,ξ,`,δ. Diminishing δ if necessary we may assume that
τ + δ < τi0 + δi0 and v(t) ∈ S(ξi0 , ρi0) for all t ∈ [τ, τ + δ] and

F (τ, ξ) ⊂ F (t, v(t)) +D(0, ε) for all t ∈ [τ, τ + δ] ∩An0 .
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At this point, let us observe that, for each n ∈ N, n ≥ 1, the multi-function
t 7→ F (t, v(t))∩ (fn(t) +D(0, ε)) is measurable, nonempty and closed valued
from [τ, τ + δ] ∩ An0 to X. Since X is separable, from Kuratowski and
Ryll-Nardzewski Theorem 3.1.1, p. 86 in Vrabie [9], it follows that the
multi-function above has at least one measurable selection. Let us denote by
gn : [τ, T ]∩An0 → X such a selection. Next, let us extend gn to a measurable
selection of F (·, v(·)) on [τ, τ +δ], extension denoted, for simplicity, again by
gn. So, for each n ∈ N, n ≥ 1, and t ∈ [τ, τ + δ], we have

gn(t) ∈ F (t, v(t)).

Also, for each n ∈ N, n ≥ 1, and t ∈ [τ, τ + δ] ∩An0 , we have

‖fn(t)− gn(t)‖ ≤ ε.

From (4.1) and the fact that gn ∈ Eτ,ξ,`,δ we deduce that for each hn ∈ (0, δ)

1
hn

dist
(
S(hn)ξ +

∫ τ+hn

τ
S(τ + hn − s)Eτ,ξ,`,hn ds,K(τ + hn)

)

≤
∥∥∥∥ 1
hn

∫ τ+hn

τ
S(τ + hn − s)(gn(s)− fn(s)) ds

∥∥∥∥+ ‖pn‖

≤Meωδ
1
hn

∫
[τ,τ+hn]∩An0

‖fn(s)− gn(s)‖ ds

+
1
hn

∫
[τ,τ+hn]\An0

‖fn(s)− gn(s)‖ ds+ ‖pn‖

≤Meωδε+
1
hn

∫
[τ,τ+hn]\An0

(‖fn(s)‖+ ‖gn(s)‖) ds+ ‖pn‖

≤Meωδε+
1
hn

∫
[τ,τ+hn]\An0

(`i0(τ) + `i0(s)) ds+ ‖pn‖

≤Meωδε+
1
hn

∫
[τ,τ+hn]\An0

|`i0(s)−`i0(τ)| ds+ 2
hn

∫
[τ,τ+hn]\An0

`i0(τ) ds+‖pn‖

≤Meωδε+
1
hn

∫ τ+hn

τ
| `i0(s)−`i0(τ) | ds+2`i0(τ)

λ([τ, τ + hn] \An0)
hn

+‖pn‖
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Passing to lim sup in the inequality above and taking into account that
τ is a density point and a Lebesgue point, we get

lim sup
n→∞

1
hn

dist
(
S(hn)ξ +

∫ τ+hn

τ
S(τ + hn − s)Eτ,ξ,`,hn ds,K(τ + hn)

)
≤Meωδε

and therefore (H7) holds true and this completes the proof of the first part
of Theorem 4.1.

Now let us prove (ii). Since F is almost u.s.c., it follows that for each
n ∈ N, n ≥ 1 there exists In ⊂ I, with λ(I \ In) < 1

n , such that the mapping
(t, ξ) 7→ F (t, ξ) is u.s.c. on (In ×X) ∩K.

Let An ⊂ In the set of all density points of In which are Lebesgue points
too for `i, for all i ∈ Γ. Let A = (∪n≥1An) ∩ (I \ (N1 ∪N)), where N is the
negligible set in (H7). Obviously, λ(I \A) = 0.

Let (τ, ξ) ∈ K. We will show that

lim inf
h↓0

1
h

dist
(
S(h)ξ +

∫ τ+h

τ
S(τ + h− s)FF (τ,ξ) ds,K(τ + h)

)
= 0.

Let i0 ∈ Γ and n0 ∈ N such that τ ∈ An0 ∩ (τi0 − δi0 , τi0 + δi0) and
ξ ∈ S(ξi0 , ρi0). From (H7), it follows that there exists hn ↓ 0, vn ∈ Cτ,ξ,`,hn ,
fn ∈ Eτ,ξ,`,hn and pn ∈ X, with ‖pn‖ → 0, such that for all n ∈ N, n ≥ 1 and
all t ∈ [τ, τ + hn] we have fn(t) ∈ F (t, vn(t)) and

S(hn)ξ +
∫ τ+hn

τ
S(τ + hn − s)fn(s) ds+ hnpn ∈ K(τ + hn) (4.2)

Let ε > 0 be arbitrary but fixed and let δ > 0 be such that

F (s, µ) ⊂ F (τ, ξ) +D(0, ε), for all (s, µ) ∈ ([τ, τ + δ] ∩An0 × S(ξ, δ)) ∩K

Since for all n ∈ N, n ≥ 1 and all t ∈ [τ, τ + hn] we have

‖vn(t)− ξ‖ ≤ ‖S(t− τ)ξ − ξ‖+Meωhn

∫ τ+hn

τ
`(s) ds

and diminishing δ, if necessary, we may suppose that τ + δ < τi0 + δi0 and
vn(t) ∈ S(ξi0 , ρi0) ∩ S(ξ, δ) for all n ≥ 1 with hn < δ and all t ∈ [τ, τ + hn].
Then, for all n ≥ 1 with hn < δ, we get

fn(t) ∈ F (t, vn(t)) ⊂ F (τ, ξ) +D(0, ε) for all t ∈ [τ, τ + hn] ∩An0
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Using the same arguments as in the first part of the proof we deduce
that there exists a measurable selection gn : [τ, τ + hn] ∩ An0 → F (τ, ξ) of
the multi-function t 7→ F (τ, ξ)∩ (fn(t) +D(0, ε)) on [τ, τ + hn]∩An0 . Next,
let us extend gn to R by using a fixed element in F (τ, ξ), extension denoted,
for simplicity, again by gn.

From (4.2) and the fact that gn ∈ FF (τ,ξ) we deduce that for each hn ∈
(0, δ)

1
hn

dist
(
S(hn)ξ +

∫ τ+hn

τ
S(τ + hn − s)FF (τ,ξ) ds,K(τ + hn)

)

≤
∥∥∥∥ 1
hn

∫ τ+hn

τ
S(τ + hn − s)(gn(s)− fn(s)) ds

∥∥∥∥+ ‖pn‖

From now on the proof is identical to the one used in the first part of
the Theorem.

5 Sufficient conditions for viability

Definition 5.1. We say that the graph K is :

(i) locally closed from the left if for each (τ, ξ) ∈ K there exist T > τ and
ρ > 0 such that, for each (τn, ξn) ∈ ([τ, T ] ×D(ξ, ρ)) ∩K, with (τn)n
nondecreasing, limn τn = τ̃ and limn ξn = ξ̃, we have (τ̃ , ξ̃) ∈ K ;

(ii) closed from the left if for each (τn, ξn) ∈ K, with (τn)n nondecreasing,
limn τn = τ̃ and limn ξn = ξ̃, we have (τ̃ , ξ̃) ∈ K ;

(iii) locally compact from the left if, it is locally closed from the left and,
for each (τ, ξ) ∈ K there exist T > τ and ρ > 0 such that, for each
(τn, ξn) ∈ ([τ, T ]×D(ξ, ρ))∩K, with (τn)n nondecreasing, and limn τn =
τ̃ , there exists a convergent subsequence (ξnk

)k of (ξn)n ;

(iv) compact from the left if, it is closed from the left and, for each (τn, ξn) ∈
K with (τn)n nondecreasing, limn τn = τ̃ , and (ξn)n bounded, there
exists a convergent subsequence (ξnk

)k of (ξn)n.

Remark 5.1. Let (ξnk
)k be the subsequence of (ξn)n whose existence is

ensured by (ii) in Definition 5.1 and let ξ = limk ξnk
. Then (τ, ξ) ∈ K.
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Definition 5.2. By a Carathéodory uniqueness function we mean a function
α : I ×R+ → R+ such that:

(i) for each x ∈ R+, t 7→ α(t, x) is locally integrable;

(ii) for a.e. t ∈ I, x 7→ α(t, x) is continuous, nondecreasing;

(iii) for each τ ∈ I, the only absolutely continuous solution of the Cauchy
problem {

x′(t) = α(t, x(t))
x(τ) = 0

is x ≡ 0.

Definition 5.3. We say that A+ F is β-compact if for all (τ, ξ) ∈ K there
exists δ > 0, ρ > 0, a Carathéodory uniqueness function, α : I ×R+ → R+,
a negligible set N ⊂ I and a continuous function m : [0,∞) → [0,∞), such
that, for all B ⊆ D(ξ, ρ), all t ∈ (0,∞) and all s ∈ [τ − δ, τ + δ] \N we have

β(S(t)F (({s} ×B) ∩K)) ≤ m(t)α(s, β(B)). (5.1)

Remark 5.2.

(i) If the C0-semigroup {S(t); t ≥ 0} is compact and F is integrally
bounded then A+ F is β-compact.

(ii) If F is β-compact (see definition 5.3 in Popescu [8]), then A + F is
β-compact.

Theorem 5.1. Let K be locally closed from the left and let F : K ; X be
nonempty, convex and weakly compact valued. If (H2), (H3) and (H5) are
satisfied and A + F is β-compact then a necessary and sufficient condition
in order that K be mild viable with respect to A+ F is (H7).

Theorem 5.2. Let K be locally compact from the left and let F : K ; X be
nonempty, convex and weakly compact valued. If (H2), (H3) and (H5) are
satisfied, then a necessary and sufficient condition in order that K be viable
with respect to A+ F is (H7).

From Theorems 5.1, 5.2 and Brezis-Browder Ordering Principle, i.e. The-
orem 2.1.1, p. 30 in Cârjă, Necula, Vrabie [3], we easily deduce the two global
viability results stated below.
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Theorem 5.3. Let K be closed from the left and let F : K ; X be nonempty,
convex and weakly compact valued. If (H2), (H3) and (H5) are satisfied and
A + F is β-compact then a necessary and sufficient condition in order that
K be globally mild viable with respect to A+ F is (H7).

Theorem 5.4. Let K be compact from the left and let F : K ; X be
nonempty, convex and weakly compact valued. If (H2), (H3) and (H5) are
satisfied, then a necessary and sufficient condition in order that K be globally
viable with respect to A+ F is (H7).

The next lemma, essentially inspired from Cârjă, Monteiro-Marques [1],
is the main step through the proof of both Theorems 5.1 and 5.2.

Lemma 5.1. Let I be a nonempty and bounded interval and K : I ; X a
multi-function with locally closed from the left graph, K, let (τ, ξ) ∈ K and let
F : K ; X be a nonempty valued multi-function. Suppose (H1), (H2), (H3)
and (H7) are satisfied. Let Z ⊆ I be a negligible set including the negligible
set in (H7) and ` ∈ L1(I,R) be the function from the definition of Eτ,ξ,`,h.

Let ρ > 0 and T > τ be such that:

(1) ([τ, T ]×D(ξ, ρ)) ∩K is closed from the left ;

(2) ‖F (t, u)‖ ≤ `(t) a.e. for t ∈ [τ, T ] and for all u ∈ K(t) ∩D(ξ, ρ) ;

(3) T and ρ satisfy Definition 2.5 ;

(4) supt∈[τ,T ] ‖S(t−τ)ξ−ξ‖+Meω(T−τ)
∫ T
τ l(s)ds+Meω(T−τ)(T −τ) < ρ.

Then, for each ε ∈ (0, 1) and each open set O ⊆ I, with Z ⊆ O, there exist a
family PT = {[tm, sm);m ∈ Γ}, of disjoint intervals, with Γ finite or at most
countable, and five functions f, r, v ∈ L1(τ, T ;X), θ : {(t, s); τ ≤ s ≤ t ≤
T} → [0, T − τ ] measurable, and u ∈ C([τ, T ];X) such that :

(i) ∪[tm, sm) = [τ, T ) and sm − tm ≤ ε, for all m ∈ Γ ;

(ii) if tm ∈ O, then [tm, sm) ⊆ O ;

(iii) u(tm) ∈ D(ξ, ρ) ∩K(tm), for all m ∈ Γ, u(T ) ∈ D(ξ, ρ) ∩K(T ) ;

(iv) θ(t, s) ≤ t − s; t 7→ θ(t, s) nonexpansive on (s, T ] and, for each t ∈
(τ, T ], s 7→ θ(t, s) measurable on [τ, t) ;
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(v) v ∈ C([tm, sm);X); (t, v(t)) ∈ ([τ, T ) × S(ξ, ρ)) ∩ K for all t ∈ [τ, T )
and ‖v(t)− u(tm)‖ ≤ ε for all t ∈ [tm, sm) ;

(vi) f(s) ∈ F (s, v(s)) a.e. for s ∈ [tm, sm) if tm /∈ O and ‖f(s)‖ ≤ l(s) a.e.
for s ∈ [τ, T ] ;

(vii) ‖r(s)‖ ≤ ε a.e. for s ∈ [τ, T ] ;

(viii) u(t) = S(t−τ)ξ+
∫ t
τ S(t−s)f(s)ds+

∫ t
τ S(θ(t, s))r(s)ds for all t ∈ [τ, T ] ;

(ix) ‖u(t)− u(tm)‖ ≤ ε for all t ∈ [tm, sm) and m ∈ Γ.

Proof. Let ε be arbitrary but fixed in (0, 1) and let O ⊆ R be an open
subset with Z ⊆ O. We will show that there exist δ = δ(ε,O) ∈ (τ, T )
and Pδ, f, r, v, θ, u such that (i)∼(ix) hold true with δ instead of T . We
distinguish between the following different cases.

Case 1. If τ ∈ O, we take Γ = {1}, t1 = τ , s1 = δ with δ ∈ (τ, T )
small enough in order to [τ, δ) ⊆ O, τ − δ ≤ ε and there exists a simple
solution (f, v) issuing from (τ, ξ), defined on [τ, δ] with ‖f(s)‖ ≤ `(s) a.e.
for s ∈ [τ, δ]. Further, let us diminish δ such that ‖v(t)− ξ‖ < min{ε, ρ} for
all t ∈ [τ, δ] and let us define Pδ = {[τ, δ)}, θ = 0, r = 0 and u(t) = v(t) for
all t ∈ [τ, δ].

Case 2. If τ /∈ O then τ /∈ Z which implies that there exist hn ↓ 0, vn ∈
Cτ,ξ,`,hn , fn ∈ Eτ,ξ,`,hn such that fn(s) ∈ F (s, vn(s)) a.e. for s ∈ [τ, τ + hn]
and pn ∈ X, with ‖pn‖ → 0, such that

S(hn)ξ +
∫ τ+hn

τ
S(τ + hn − s)fn(s) ds+ pnhn ∈ K(τ + hn)

for all n ∈ N, n ≥ 1. Let n0 ∈ N and δ = τ + hn0 be such that δ ∈ (τ, T ),
hn0 < ε, ‖pn0‖ < ε and

sup
t∈[τ,τ+hn0 ]

‖S(t− τ)ξ − ξ‖+Meωhn0

∫ τ+hn0

τ
`(s) ds+ hn0 ≤ min{ε, ρ}

We define Pδ = {[τ, δ)}, f(s) = fn0(s), θ(t, s) = 0 for τ ≤ s ≤ t ≤ δ,
r(s) = pn0 , v(s) = vn0(s) for s ∈ [τ, δ], and let u : [τ, δ] → X be given by
(viii). We may easily see that (i)∼(ix) are satisfied.

Let

U = {(Pδ, f, r, v, θ, u); δ ∈ (τ, T ], (i)∼(ix) hold true with δ instead of T}.
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As we already have shown, U 6= ∅. On U we define a partial order by:

(Pδ1 , f1, r1, v1, θ1, u1) � (Pδ2 , f2, r2, v2, θ2, u2),

if 
δ1 ≤ δ2, Pδ1 ⊆ Pδ2 ,
f1(s) = f2(s), r1(s) = r2(s), v1(s) = v2(s) a.e. for s ∈ [τ, δ1]
θ1(t, s) = θ2(t, s) for τ ≤ s ≤ t ≤ δ1

u1(s) = u2(s), for all s ∈ [τ, δ1].

We will prove that each nondecreasing sequence in U is bounded from above.
Let (Pδj , fj , rj , vj , θj , uj)j≥1 be a nondecreasing sequence in U and let δ =
supj≥1δj . If there exists j0∈N such that δj0 =δ, then (Pδj0 ,fj0 ,rj0 ,vj0 ,θj0 ,uj0)
is an upper bound for the sequence. So, let us assume that δj < δ, for all
j ≥ 1. Obviously, δ ∈ (τ, T ]. We define Pδ = ∪j≥1Pδj , f(s) = fj(s), θ(t, s) =
θj(t, s) for τ ≤ s ≤ t ≤ δj , v(s) = vj(s) and r(s) = rj(s) for all j and all s ∈
[τ, δj). Clearly, f, r, v ∈ L1(τ, δ;X). Since |θj(δj , s)− θi(δi, s)| ≤ |δj − δi| for
all i, j ≥ 1 and τ ≤ s < min{δi, δj}, we may define θ(δ, s) = limj→∞ θj(δj , s)
for all τ ≤ s < δ. One may easily see that θ satisfies (iv). Next, we define
u : [τ, δ]→ X by

u(t) = S(t− τ)ξ +
∫ t

τ
S(t− s)f(s) ds+

∫ t

τ
S(θ(t, s))r(s) ds,

for all t ∈ [τ, δ]. We have u ∈ C([τ, δ];X) and u(s) = uj(s), for all j ≥ 1 and
all s ∈ [τ, δj ]. Since u(δ) = limt↑δ u(t) = limj→∞ u(δj) = limj→∞ uj(δj), and
uj(δj) ∈ D(ξ, ρ) ∩ K(δj) and the latter is closed from the left, we deduce
that u(δ) ∈ D(ξ, ρ)∩K(δ). The rest of conditions in lemma being obviously
satisfied, it follows that (Pδ, f, r, v, θ, u) is an upper bound for the sequence.
Thus, the partially ordered set (U,�) and the function N : (U,�) → R,
defined by N(Pδ, f, r, v, θ, u) = δ, for each (Pδ, f, r, v, θ, u) ∈ U, satisfy the
hypotheses of the Brezis-Browder Ordering Principle, i.e. Theorem 2.1.1,
p. 30 in Cârjă, Necula, Vrabie [3]. Accordingly, there exists an N-maximal
element in U. This means that there exists (Pδ∗ , f∗, r∗, v∗, θ∗, u∗) ∈ U such
that, whenever

(Pδ∗ , f∗, r∗, v∗, θ∗, u∗) � (Pδ, f , r, v, θ, u),

we necessarily have

N(Pδ∗ , f∗, r∗, v∗, θ∗, u∗) = N(Pδ, f , r, v, θ, u).
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We will show that δ∗ = T . To this aim, let us assume by contradiction that
δ∗ < T . We distinguish between two cases.

Case 1. If δ∗ ∈ O, we take δ ∈ (δ∗, T ) such that [δ∗, δ] ⊆ O and δ−δ∗ < ε
and there exists a simple solution (g, v) issuing from (δ∗, u∗(δ∗)) defined on
[δ∗, δ] with ‖g(s)‖ ≤ `(s) a.e. for s ∈ [δ∗, δ]. We may diminish δ such that
‖v(t)− u∗(δ∗)‖ ≤ ε for all t ∈ [δ∗, δ]. Let us define

f(s) =
{
f∗(s) for s ∈ [τ, δ∗]
g(s) a.e for s ∈ (δ∗, δ]

, r(s) =
{
r∗(s) for s ∈ [τ, δ∗]
0 for s ∈ (δ∗, δ]

,

θ(t, s) =


θ∗(t, s) for τ ≤ s ≤ t ≤ δ∗
t− δ∗ + θ∗(δ∗, s) for τ ≤ s < δ∗ < t < δ

0 for δ∗ ≤ s < t ≤ δ
,

v(s) =
{
v∗(s), for s ∈ [τ, δ∗)
v(s), for s ∈ [δ∗, δ]

, u(s) =
{
u∗(s), for s ∈ [τ, δ∗]
v(s), for s ∈ (δ∗, δ]

and Pδ = Pδ∗ ∪ {[δ∗, δ)}.
It follows that (Pδ, f , r, v, θ, u)∈U, (Pδ∗, f∗, r∗, v∗, θ∗, u∗)�(Pδ, f , r, v, θ, u),

but δ∗ < δ which contradicts the maximality of (Pδ∗ , f∗, r∗, v∗, θ∗, u∗).
Case 2. If δ∗ /∈ O then δ∗ /∈ Z which implies that there exist hn ↓ 0,

vn ∈ Cδ∗,u∗(δ∗),`∗,hn
, fn ∈ Eδ∗,u∗(δ∗),`∗,hn

such that fn(s) ∈ F (s, vn(s)) a.e.
for s ∈ [δ∗, δ∗ + hn] and pn ∈ X, with ‖pn‖ → 0, such that

S(hn)u∗(δ∗) +
∫ δ∗+hn

δ∗
S(δ∗ + hn − s)fn(s) ds+ pnhn ∈ K(δ∗ + hn)

for all n ∈ N, n ≥ 1. Since by (4) in Lemma 5.1 u∗(δ∗) ∈ S(ξ, ρ) we may
choose n0 ∈ N and δ = δ∗ + hn0 be such that δ ∈ (τ, T ), hn0 < ε, ‖pn0‖ < ε
and

sup
t∈[δ∗,δ∗+hn0 ]

‖S(t−δ∗)u∗(δ∗)−u∗(δ∗)‖+Meωhn0

∫ δ∗+hn0

δ∗
`∗(s) ds+Meω(T−τ)hn0 ≤ ν

where ν = min{ε, ρ− ‖u∗(δ∗)− ξ‖}.
Let us define Pδ = Pδ∗ ∪ {[δ∗, δ)}, θ as in Case 1 and

f(s)=
{
f∗(s), s ∈ [τ, δ∗]
fn0(s), s ∈ (δ∗, δ]

, r(s)=
{
r∗(s), s ∈ [τ, δ∗]
pn0 , s ∈ (δ∗, δ]

, v(s)=
{
v∗(s), s ∈ [τ, δ∗]
vn0 , s ∈ (δ∗, δ]

,
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u(t) =
{
u∗(t), t ∈ [τ, δ∗]
S(t− δ∗)u∗(δ∗) +

∫ t
δ∗ S(t− s)fn0(s) ds+ (t− δ∗)pn0 , for t ∈ (δ∗, δ].

We can easily see that (i)∼(ix) are satisfied. So, (Pδ, f , r, v, θ, u) ∈ U and,
in addition, (Pδ∗ , f∗, r∗, v∗, θ∗, u∗) � (Pδ, f , r, v, θ, u). But δ∗ < δ which
contradicts the maximality of (Pδ∗ , f∗, r∗, v∗, θ∗, u∗). Hence δ∗ = T , and
Pδ∗ , f∗, r∗, v∗, θ∗ and u∗ satisfy all the conditions (i)∼(ix). The proof is
complete.

Definition 5.4. Let ε > 0, Z and O be as in Lemma 5.1. An element
(PT , f, r, v, θ, u) satisfying (i)∼(ix) in Lemma 5.1, is called an (ε,O)-approxi-
mate solution of (1.1).

6 Proof of Theorems 5.1 and 5.2

Proof. Since the necessity follows from Theorem 3.1, we will confine ourselves
only to the proof of the sufficiency.

Let Z ⊆ R be a negligible set including the negligible sets appearing in
(H7) and Definition 5.3. Let εn ∈ (0, 1), with εn ↓ 0, let (On)n≥1 ⊆ R be a
sequence of open sets, and let ` the function in Lemma 5.1. We notice that
we may assume with no loss of generality that the sequence (On)n≥1 is so
chosen to satisfy :

(a) Z ⊆ On for each n ∈ N, n ≥ 1 ;

(b) On+1 ⊆ On and λ([τ, T ] ∩ On) ≤ εn for each n ∈ N, n ≥ 1 ;

(c) F|[(I\On)×D(ξ,ρ)]∩K is strongly-weakly u.s.c., for each n ∈ N, n ≥ 1 ;

Let ρ > 0 and T > τ be as in Lemma 5.1, and such that ρ satis-
fies Definition 5.3 and let n ∈ N, n ≥ 1 be arbitrary but fixed. Let
((PnT , fn, rn, vn, θn, un))n be a sequence of (εn,On)-approximate solutions
of (1.1), sequence whose existence is ensured, again by Lemma 5.1. If
PnT = {[tnm, snm); m ∈ Γn} with Γn finite or at most countable, we denote
by an : [τ, T ) → [τ, T ) the step function, defined by an(s) = tnm for each
s ∈ [tnm, s

n
m). Clearly

lim
n
an(s) = s (6.1)

uniformly for s ∈ [τ, T ).
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We will show that, on a subsequence at least, (un)n is uniformly conver-
gent on [τ, T ] to some function u.

We analyze first the case when X is separable. From (vii) in Lemma 5.1,
it follows that, for each t ∈ [τ, T ], we have

β

({∫ t

τ
S(θn(t, s))rn(s) ds; n ≥ 1

})
= 0. (6.2)

Next, let us observe that

‖fn(t)‖ ≤ `(t) (6.3)

for each n ≥ 1 and a.e for t ∈ [τ, T ].
From (v) and (ix), we deduce that

lim
n
‖un(an(s))− un(s)‖ = 0 and lim

n
‖un(an(s))− vn(s)‖ = 0

uniformly for s ∈ [τ, T ). So we have limn ‖vn(s)− un(s)‖ = 0 uniformly for
s ∈ [τ, T ). Then

β({vn(s)− un(s); n ≥ 1}) = 0 (6.4)

for each s ∈ [τ, T ).
Next, by (viii) in Lemma 5.1, we obtain

un(t) = S(t− τ)ξ +
∫ t

τ
S(t− s)fn(s) ds+

∫ t

τ
S(θn(t, s))rn(s) ds (6.5)

for all n ≥ 1 and t ∈ [τ, T ].
Let k ∈ N, k ≥ 1 and t ∈ [τ, T ]. In view of (6.2), (6.5) and Lemma 2.1,

we have
β({un(t); n ≥ k})

≤ β
({∫ t

τ
S(t− s)fn(s) ds; n ≥ k

})
+β
({∫ t

τ
S(θn(t, s))rn(s) ds; n ≥ k

})
≤
∫

[τ,t]\Ok

β({S(t− s)fn(s); n ≥ k}) ds+
∫

Ok

β({S(t− s)fn(s); n ≥ k}) ds

(6.6)
Since fn(s) ∈ F (s, vn(s)) a.e. for s ∈ [τ, T ] \Ok and A+ F is β-compact

we deduce that

β ({S(t− s)fn(s); n ≥ k}) ≤ m(t− s)α(s, β({vn(s); n ≥ k}))
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for all t ∈ [τ, T ] and a.e. for s ∈ [τ, T ] \ Ok. Let α0 = (sups∈[0,T−τ ]m(s))α,
then α0 is a Carathéodory uniqueness function, too.

So, from (6.6) and (6.3) it follows that

β({un(t); n ≥ k}) ≤
∫

[τ,t]\Ok

α0(s, β({vn(s); n ≥ k}) ds+Meω(T−τ)

∫
Ok

`(s) ds

Since by (6.4) we have β({un(t); n ≥ k}) = β({vn(t); n ≥ k}) and
β({un(t); n ≥ k}) = β({un(t); n ≥ 1}), passing to the limit for k → ∞
in the inequality above and taking into account that α0 is a Carathéodory
uniqueness function, it follows that β({un(t); n ≥ 1}) = 0. Thus {un(t); n ≥
1} is relatively compact for each t ∈ [τ, T ]. In view of (6.3) and using (6.2)
and Theorem 8.4.1, p. 194 in Vrabie [10] we conclude that, on a subsequence
at least, (un)n is uniformly convergent on [τ, T ] to some function u. But
limn vn(t) = u(t), uniformly for t ∈ [τ, T ), and hence, for each k ≥ 1, the set

Ck = {(t, vn(t)); n ≥ k, t ∈ [τ, T ) \ Ok}

is compact. Since F is strongly-weakly u.s.c. and has weakly compact values,
by Lemma 2.6.1, p. 47, in Cârjă, Necula, Vrabie [3], it follows that, for each
k ≥ 1, the set

Bk := conv

⋃
n≥k

⋃
t∈[τ,T ]\Ok

F (t, vn(t))


is weakly compact. We notice that ‖fn(s)‖ ≤ `(s) a.e. for s ∈ [τ, T ] and
fn(s) ∈ Bk for each k ≥ 1 and n ≥ k and a.e. for s ∈ [τ, T ] \ Ok. Since
` ∈ L1(τ, T ; R), Bk is weakly compact and limk λ(Ok) = 0, by Diestel’s
Theorem 1.3.8, p. 10, in Cârjă, Necula, Vrabie [3], it follows that, on a
subsequence at least, limn fn = f weakly in L1(τ, T ;X). As limn vn(t) = u(t)
uniformly for t ∈ [τ, T ], and, by Lemma 5.1, for each k ≥ 1, each n ≥ k, we
have fn(s) ∈ F (s, vn(s)) a.e. for s ∈ [τ, T ] \ Ok, from Theorem 3.1.2, p. 88,
in Vrabie [9], we conclude that f(s) ∈ F (s, u(s)) for each k ≥ 1 and a.e. for
s ∈ [τ, T ] \ Ok. Since limk λ(Ok) = 0, we get

f(s) ∈ F (s, u(s)) a.e. for s ∈ [τ, T ] (6.7)

Finally, passing to the limit both sides in (6.5), for n→∞, we get

u(t) = S(t− τ)ξ +
∫ t

τ
S(t− s)f(s) ds,
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for each t ∈ [τ, T ]. Since vn(t) ∈ K(t) and limn vn(t) = u(t) for all t ∈ [τ, T )
and K is locally closed from the left, it follows that u(t) ∈ K(t) for each
t ∈ [τ, T ]. By (6.7), we conclude that u is a mild solution of (1.1), and this
completes the proof when X is separable.

If X is not separable, we have to observe that there exists a separable
and closed subspace Y ⊆ X such that the families: {S(·)fn(·); n ≥ 1},
{S(·)un(·); n ≥ 1}, {S(·)vn(·); n ≥ 1} and {S(·)rn(·); n ≥ 1} are Y -valued.
Then, to complete the proof, it suffices to follows the very same arguments
as before and to make use of (iv) in Remark 2.1.

The proof of Theorem 5.2 is exactly the same with the exception of
obtaining the fact that {un(t); n ≥ 1} is relatively compact. Indeed, since
K is locally compact from the left, it follows that the set {vn(t);n ≥ 1} is
relatively compact. Moreover, recalling that

lim
n
‖vn(s)− un(s)‖ = 0

for s ∈ [τ, T ), it follows that {un(t); n ≥ 1} is relatively compact for all
t ∈ [τ, T ). The remaining of the proof is identical to the one of Theorem
5.1.
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