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Abstract
We study the behavior of solutions to the problem{

ε (u′′
ε (t) +A1uε(t)) + u′

ε(t) +A0uε(t) = fε(t), t ∈ (0, T ),
uε(0) = u0ε, u′

ε(0) = u1ε,

as ε → 0, where A1 and A0 are two linear self-adjoint operators in a
Hilbert space H.
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1 Introduction

Let H be a real Hilbert space endowed with the inner product (·, ·) and the
norm | · |. Let Ai : D(Ai)→ H, i = 0, 1, be two linear self-adjoint operators.
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Consider the following Cauchy problem:{
ε (u′′ε(t) +A1uε(t)) + u′ε(t) +A0uε(t) = fε(t), t ∈ (0, T ),
uε(0) = u0ε, u′ε(0) = u1ε,

(Pε)

where ε > 0 is a small parameter(ε� 1), uε, fε : [0, T )→ H.
We will investigate the behavior of solutions uε(t) to the perturbed sys-

tem (Pε) when ε→ 0, u0ε → u0 and fε → f . We will establish a relationship
between solutions to the problem (Pε) and the corresponding solutions to
the following unperturbed system:{

v′(t) +A0v(t) = f(t), t ∈ (0, T ),
v(0) = u0.

(P0)

In our study we will use the following conditions:
(H1) The operator A0 : D(A0) ⊆ H → H is self-adjoint and positive

defined, i.e. there exists ω0 > 0 such that

(A0u, u) ≥ ω0 |u|2, ∀u ∈ D(A0);

(H2) The operator A1 : D(A1) ⊆ H → H is self-adjoint, D(A0) ⊆
D(A1) and there exists ω1 > 0 such that

|(A1u, u)| ≤ ω1 (A0u, u) , ∀u ∈ D(A0).

If, in some topology, uε(t) tends to the corresponding solutions v(t) of the
unperturbed system (P0) as ε → 0, then the system (P0) is called regularly
perturbed. In the opposite case system (P0) is called singularly perturbed. In
the last case, a subset of [0,∞), in which the solution uε(t) has a singular
behavior relative to ε, arises. This subset is called the boundary layer. The
function which defines the singular behavior of the solution uε(t) within the
boundary layer is called the boundary layer function.

Many physical processes are described by systems of type (Pε). For
example, the equation

ρvtt + γvt = σ∆v

(where ρ, γ, σ are the mass density per unit area of the membrane, the co-
efficient of viscosity of the medium, and the tension of the membrane, re-
spectively), which characterizes the vibration of a membrane in a viscous
medium, can be rewritten as

ε2utt + ut = ∆u,
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with ε = (ρσ)1/2/γ.

In the case when the medium is highly viscous (γ � 1), or the density ρ
is very small, we have ε→ 0 and the formal ”limit” of this equation will be
the following first order equation

ut = ∆u.

Let us mention some works dedicated to the study of singularly perturbed
Cauchy problems for differential equations of second order in Hilbert spaces.
In [2], [3], [4], [5], [7], [8], [9], the behaviour of the solutions uε to the abstract
linear Cauchy problem (Pε) has been studied as ε 7→ 0 in the case when A0

and A are positive operators, B = 0 or B is an linear integrodifferential
operator. All results from these papers were obtained using the theory of
semigroups of linear operators.

Our approach is based on two key points. The first one is the relationship
between the solutions of the problems (Pε) and (P0). The second key point
consists in obtaining a priori estimates for the solutions of the problems (Pε),
estimates which are uniform with respect to small parameter ε.

2 Preliminaries

The goal of this section is to remind the notations and main assertions which
will be used in that follows.

Let k ∈ N∗, 1 ≤ p ≤ +∞, (a, b) ⊂ (−∞,+∞) and let X be the Banach
space. We denote by W k,p(a, b;X) the Banach space of all vectorial distri-
butions u ∈ D′(a, b;X), u(j) ∈ Lp(a, b;X), j = 0, 1, . . . , k, endowed with the
norm

‖u‖Wk,p(a,b;X) =

 k∑
j=0

‖u(j)‖pLp(a,b;X)

1/p

for p ∈ [1,∞) and

‖u‖Wk,∞(a,b;X) = max
0≤j≤k

‖u(j)‖L∞(a,b;X)

for p =∞.
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In the particular case p = 2, we denote W k,2(a, b;X) = Hk(a, b;X). If
X is a Hilbert space, then Hk(a, b;X) is also a Hilbert space with the inner
product

(u, v)Hk(a,b;X) =
k∑
j=0

b∫
a

(
u(j)(t), v(j)(t)

)
X
dt.

For each arbitrary but fixed s ∈ R, k ∈ N and p ∈ [1,∞], we define the
Banach space

W k,p
s (a, b;H) = {f : (a, b)→ H; f (l)(·)e−st ∈ Lp(a, b;X), l = 0, . . . , k},

with the norm
‖f‖

Wk,p
s (a,b;X)

= ‖fe−st‖Wk,p(a,b;X).

Theorem 1. Let p ∈ [1,∞] and X be a reflexive Banach space. Then the
embedding W 1, p(0, T ; X) ↪→ C([0, T ];X) is continuous, i.e., there exists
C(T, p) > 0 such that, for each f ∈W 1,p(0, T ; X), we have

‖f‖C([0,T ];X) ≤ C(T, p) ‖f‖W 1,p(0,T ;X).

Theorem 2. Let k ∈ N, p ∈ [1,∞] and let X be a Banach space. Then there
exists C(k, p, T ) > 0 such that, for every f ∈W k, p(0, T ; X), there exists an
extension f̃ ∈W k, p(0,∞;X) of f satisfying

‖f̃‖Wk, p(0,∞;X) ≤ C(k, p, T ) ‖f‖Wk, p(0, T ;X).

Theorem 3. Let X be a reflexive Banach space. Let f : (0, T )→ X and let
fh(t) = h−1 (f(t+ h)− f(t)) , t, t+ h ∈ (0, T ).

(i) If 1 ≤ p ≤ +∞ and for each (a.b) ⊆ (0, T ) f ∈W 1,p(a, b;X), then

‖fh‖Lp(a,b;X) ≤ ‖f‖W 1,p(a,b;X), 0 < |h| < min{a/2, (T − b)/2}.

(ii) If 1 < p < +∞, f ∈ Lp(a, b;X) and there exists C > 0 such that

‖fh‖Lp(a,b;X) ≤ C, 0 < |h| < min{a/2, (T − b)/2},

then f ∈W 1, p(a, b; X) and

‖f‖W 1, p(a,b;X) ≤ C.
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Theorem 4. Let H be a real Hilbert space, and let A : D(A) ⊂ H → H
be a linear self-adjoint positive operator. If u ∈ W 1,2(0, T ;H) such that
u(t) ∈ D(A) a.e. for t ∈ [a, b] ⊆ [0, T ] and Au ∈ L2(0, T ;H), then the
function t→ (Au(t), u(t)) is absolutely continuous on [a, b] and

d

dt
(Au(t), u(t)) = 2(Au(t), u′(t)), a. e. t ∈ [a, b].

Definition 1. The operator A : D(A) ⊂ H → H is called monotone if

(Au1 −Au2, u1 − u2) ≥ 0, ∀u1, u2 ∈ D(A).

The operator A is called maximal monotone if it is monotone and A does
not have (possible multivalued) monotone extensions in H.

Theorem 5. [1] Let A : D(A) ⊂ H → H be a monotone operator in H. A
is maximal monotone if and only if for every λ > 0 (equivalently for some
λ > 0), R(I + λA) = H.

Theorem 6. [1] The linear monotone operator A : D(A) ⊂ H → H is
maximal monotone if and only if A is closed and (A∗u, u) ≥ 0, ∀u ∈ D(A∗),
where A∗ is the adjoint operator to A.

For a maximal monotone operator A : D(A) ⊂ H → H and λ > 0, we
denote by Jλ its resolvent Jλ = (I + λA)−1, and by Aλ = λ−1(I − Jλ) the
Yosida approximation.

Theorem 7. Let A : D(A) ⊂ H → H be maximal monotone operator. Then
for every λ > 0:

(i) Jλ is lipschitzian on H with the constant 1;

(ii) Aλx = AJλx, ∀x ∈ H and Aλx = JλAx, ∀x ∈ D(A);

(iii) Aλ is a monotone and lipschitzian operator on H with the constant
λ−1 ;

(iv) |Aλx| ≤ |Ax|, ∀x ∈ D(A);

(v) limλ→0Aλx = Ax, ∀x ∈ D(A);

(vi) |Aλx|2 ≤ (Ax,Aλx), ∀x ∈ D(A).
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Definition 2. The function u : [a, b] → H is called strong solution to the
Cauchy problem {

u′(t) +Au(t) = f(t), t ∈ (a, b),
u(a) = u0

(2.1)

if u is absolutely continuous on [a, b], u′ ∈ L1(a, b;H), u(t) ∈ D(A) a.e. for
t ∈ (a, b), u(t) satisfies the first equality in (2.1) a.e. for t ∈ (0, T ) and
u(a) = u0.

Theorem 8. [1] Let A : D(A) ⊂ H → H such that A + ωI is maximal
monotone. If u0 ∈ D(A) and f ∈ W 1,1(0, T ;H) then there exists a unique
strong solution u ∈W 1,∞(0, T ;H) to the problem{

u′(t) +Au(t) = f(t), t ∈ (0, T ),
u(0) = u0

and

|u(t)|+
(∫ t

0
eγ (t−s) ((A+ ωI)u(s), u(s)) ds

)1/2

≤ eω t/2
(
|u0|+

∫ t

0
e−ω s/2 |f(s)| ds

)
, ∀t ∈ [0, T ],∣∣∣∣d+u

dt
(t)
∣∣∣∣ ≤ eωt |f(0)−Au0|+

∫ t

0
eω(t−s)

∣∣∣∣dfds(s)
∣∣∣∣ ds, ∀t ∈ [0, T ).

Lemma 1. [10] Let ψ ∈ L1(a, b) (−∞ < a < b < ∞) with ψ ≥ 0 a.e. on
(a,b) and c be a fixed real constant. If h ∈ C[a, b] verifies

1
2
h2(t) ≤ 1

2
c2 +

∫ t

a
ψ(s)h(s)ds, ∀t ∈ [a, b],

then

h(t) ≤ |c|+
∫ t

a
ψ(s)ds, ∀t ∈ [a, b].

3 Existence of strong solutions to both (Pε) and
(P0)

In this section we will study the solvability of problems (Pε) and (P0) and
also the regularity of their solutions.

The following two theorems were inspired by [1].
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Theorem 9. Let T > 0 and let us assume that A0 satisfies the condition
(H1). If u0 ∈ D(A0) and f ∈ W 1,1(0, T ;H), then there exists a unique
strong solution v ∈W 1,∞(0, T ;H) to the problem (P0). Moreover, v satisfies

|v(t)|+
(∫ t

0

∣∣∣A1/2
0 u(s)

∣∣∣ ds)1/2

≤ |u0|+
∫ t

0
|f(s)| ds, ∀t ∈ [0, T ],

∣∣v′(t)∣∣ ≤ |A0u0 − f(0)|+
∫ t

0

∣∣f ′(s)∣∣ ds, ∀t ∈ [0, T ].

Theorem 10. Let T > 0. Let us assume that A : D(A) ⊂ H → H is linear
self-adjoint and positive. If u0 ∈ D(A), u1 ∈ H and f ∈W 1,1(0, T ;H), then
there exists a unique function u : [0, T ]→ H such that :

u ∈W 2,∞(0, T ;H), A1/2u ∈W 1,∞(0, T ;H), Au ∈ L∞(0, T ;H),
A1/2u and u′ are differentiable from to the right in H for every t ∈ [0, T )

and
d+

dt

du

dt
(t) +

du

dt
(t) +Au(t) = f(t), t ∈ [0, T ), (3.1)

u(0) = u0, u′(0) = u1. (3.2)

In what follows this function will be called the strong solution to the
problem (3.1), (3.2).

Proof. Let us denote by H = D(A1/2) ×H which, endowed with the inner
product

(U1, U2)H = (A1/2u1, A
1/2u2) + (v1, v2), Ui = (ui; vi) ∈ H, i = 1, 2,

is the real Hilbert space. Let us further denote by L : D(L) ⊆ H → H, the
operator defined by

D(L) = D(A)×H, LU = (−v,Au+ v), ∀U = (u; v) ∈ D(L).

As
(LU,U)H = −(Av, u) + (Au+ v, v) = |v|2 ≥ 0, ∀U ∈ D(L),

it follows that L is monotone. Now we are going to show that it is maximal
monotone. To this aim, let us consider the equation (λI +L) U = F , λ > 0,
where F = (f, g) ∈ H and U = (u, v) ∈ D(L), which is equivalent to the
system {

λu− v = f
λv +Au+ v = g,
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i.e. {
λu− v = f
λ(λ+ 1)u+Au = g1,

(3.3)

where g1 = g + (λ+ 1)f.
As A is a positive self-adjoint operator, therefore using Theorem 6, we

can infer that A is a maximal monotone operator. Due to Theorem 5, we
have that

∀β > 0 D((βI +A)−1) = H, R((βI +A)−1) ⊆ D(A).

Therefore (3.3) is equivalent to the system{
λu− v = f
u = (βI +A)−1g1,

(3.4)

with β = λ(λ + 1). Hence, if f ∈ D(A1/2) and g ∈ H, it follows that
u = (βI + A)−1g1 ∈ D(A). From the first equation in (3.4), we deduce
that v = λu − f ∈ D(A1/2). So, for every F ∈ H there exists a unique
solution U ∈ D(L) to the equation (λI + L) U = F. So, R(λI + L) = H
and, by Theorem 5, the operator L is maximal monotone. By Theorem 8,
the problem {

U ′(t) + LU(t) = F (t), t ∈ (0, T ),
U(0) = U0,

(P.U)

where U(t) = (u(t); v(t)), U0 = (u0, u1), F (t) = (0, f(t)) has a unique
strong solution U = (u, v) ∈ W 1,∞(0, T ;H) which implies that A1/2u, v ∈
W 1,∞(0, T ;H). As the equation in (P.U) is equivalent to the system{

u′(t)− v(t) = 0
v′(t) +Au(t) + v(t) = f(t),

it follows that u satisfies (3.1) and (3.2). Thus, (3.1), (3.2) has a unique
strong solution u ∈W 2,∞(0, T ;H).

Finally, we have A1/2u ∈W 1,∞(0, T ;H) and Au ∈ L∞(0, T ;H) and this
completes the proof.
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4 A priori estimates for solutions to the
problem (Pε)

The goal of this section is to establish some a priori estimations for solutions
to (Pε) which are uniform relative to the small parameter ε.

Consider the following problem:{
ε (u′′ε(t) +A1uε(t)) + u′ε(t) +A0uε(t) = f(t), t ∈ (0, T ),
uε(0) = u0, u′ε(0) = u1.

(4.1)

Lemma 2. Let T > 0. Suppose that, for each ε ∈ (0, 1), the operator
A(ε) = (εA1 +A0) : D (A(ε)) ⊆ H → H is self-adjoint and satisfies

(A(ε)u, u) ≥ ω |u|2, ∀u ∈ D (A(ε)) , ω > 0, ε ∈ (0, 1]. (4.2)

If f ∈W 1,1(0, T ;H), u0 ∈ D (A(ε)), u1 ∈ H, then the unique strong solution,
uε, of the problem (4.1) satisfies

‖A1/2(ε)uε‖C([0, t];H) + ‖u′ε‖L2(0, t;H) ≤ C(ω)M(t), (4.3)

for each t ∈ [0, T ] and each ε ∈ (0, 1/2]. If, in addition, u1 ∈ D
(
A1/2(ε)

)
,

then
‖u′ε‖C([0, t];H) + ‖A1/2(ε)u′ε‖L2(0, t;H) ≤ C(ω)M1(t), (4.4)

for each t ∈ [0, T ], and each ε ∈ (0, 1], and

‖A(ε)uε‖L∞(0, t;H) ≤ C(ω)M1(t), ∀t ∈ [0, T ], ∀ε ∈ (0, 1], (4.5)

where

M(t) = M(t, u0, u1, f) =
∣∣∣A1/2(ε)u0

∣∣∣+ |u1|+ ‖f‖W 1,1(0,t;H) + |f(0)|,

M1(t) = M1(t, u0, u1, f) =
∣∣∣A1/2(ε)u1

∣∣∣+ |A(ε)u0|+ ‖f‖W 1,1(0,t;H) + |f(0)|.

Proof. We begin with the proof of (4.3). Let us denote by

E(u, t) = ε
(
u′(t), u(t)

)
+
∫ t

0
(A(ε)u(τ), u(τ)) dτ +

1
2
|u(t)|2
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+ε
∫ t

0

∣∣u′(τ)
∣∣2 dτ + ε2

∣∣u′(t)∣∣2 + ε (A(ε)u(t), u(t)) .

For every solution, uε, of (4.1), by direct computation, we obtain

d

dt
E(uε, t) =

(
f(t), uε(t) + 2εu′ε(t)

)
, a.e. t ∈ (0, T ).

As
E(uε, t) ≥ 0,

∣∣uε(t) + 2εu′ε(t)
∣∣ ≤ 2 (E(uε, t))

1/2 ,

for each t ∈ [0, T ], and each ε ∈ (0, 1], it follows that

d

dt
E(uε, t) ≤ 2 |f(t)| (E(uε, t))

1/2 , a.e. ∀t ∈ (0, T ).

Integrating the last inequality, we obtain

1
2
E(uε, t) ≤

1
2
E(uε, 0) +

∫ t

0
|f(τ)| (E(uε, τ))1/2 dτ, ∀t ∈ [0, T ].

Applying Lemma 1 to the last inequality, we get

(E(uε, t))
1/2 ≤ (E(uε, 0))1/2 +

∫ t

0
|f(τ)| dτ, ∀t ∈ [0, T ],

from which we deduce

‖uε‖C([0, t];H) + ‖A1/2(ε)uε‖L2(0, t;H) ≤ C(ω)M(t), (4.6)

for each t ∈ [0, T ] and each ∀ε ∈ (0, 1]. Let now

E(u, t) = ε|u′(t)|2 + |u(t)|2 + (A(ε)u(t), u(t)) + 2(1− ε)
∫ t

0
|u′(s)|2ds

+2ε
(
u(t), u′(t)

)
+ 2

∫ t

0
(A(ε)u(s), u(s)) ds.

Then, for every strong solution uε to the problem (4.1), we have

d

dt
E(uε, t) = 2

(
f(t), uε(t) + u′ε(t)

)
, a.e. t ∈ (0, T ),
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and thus
E(uε, t) = E(uε, 0) + 2 (uε, f(t))− 2 (u0, f(0))

+2
∫ t

0

(
f(s)− f ′(s), uε(s)

)
ds, ∀t ∈ [0, T ]. (4.7)

Since
E(uε, 0) ≤ C(ω)M2(t), ∀t ∈ [0, T ], ∀ε ∈ (0, 1]

and, in view of (4.6), we have

2 |(uε, f(t))− (u0, f(0))| ≤ C(ω)M2(t), ∀t ∈ [0, T ], ∀ε ∈ (0, 1],

from (4.7), we get

E(uε, t) ≤ C(ω)M2(t), t ∈ [0, t], ∀ε ∈ (0, 1],

which implies (4.3).
Proof of (4.4). Let h > 0 such that t, t+ h ∈ [0, T ]. Denote by uεh(t) =

uε(t+ h)− uε(t), where uε is the strong solution to problem (4.1). Then for
uεh we have the equality

d

dt
E(uεh, t) =

(
fh(t), uεh(t) + 2ε u′εh(t)

)
a.e. ∈ (0, T − h).

Integrating this equality and applying Lemma 1 and Theorem 3, we obtain

(E(uεh, t))
1/2 ≤ (E(uεh, 0))1/2 +

∫ t

0

∣∣f ′(τ)
∣∣ dτ, ∀t ∈ [0, T − h].

As u′(0) = u1 and

lim
h↓0

ε
∣∣h−1 u′h(0)

∣∣ = |f(0)− u1 −A(ε)u0| ,

lim
h↓0

h−1
∣∣∣A1/2(ε)uεh(0)

∣∣∣ =
∣∣∣A1/2(ε)u1

∣∣∣ ,
dividing the last equality by h and passing to the limit as h → 0, we get
(4.4).

Proof of (4.5). Let Aλ(ε) be the Yosida approximation of the operator
A(ε). Let

E1(u, t) = ε
(
Aλ(ε)u′(t), u′(t)

)
+ (Aλ(ε)u(t), u(t))
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+ (Aλ(ε)u(t), A(ε)u(t)) + 2ε
(
Aλ(ε)u(t), u′(t)

)
+2(1− ε)

∫ t

0

(
Aλ(ε)u′(s), u′(s)

)
ds+ 2

∫ t

0
(Aλ(ε)u(τ), A(ε)u(s)) ds.

Then every strong solution, uε, of the problem (4.1) satisfies

d

dt
E1(uε, t) = 2

(
f(t),Aλuε(t) +Aλu′ε(t)

)
, a.e. t ∈ (0, T ).

Integrating this equality, we obtain

E1(uε, t) = E1(uε, 0) + I1(t, ε) + I2(t, ε), ∀t ∈ [0, T ], (4.8)

where
I1(t, ε) = 2 (f(t), Aλ(ε)uε(t))− 2 (f(0), Aλ(ε)u0) ,

I2(t, ε) = 2
∫ t

0

(
f(s)− f ′(s), Aλ(ε)uε(s)

)
ds.

Let us evaluate I1(t, ε), I2(t, ε). Using (iv), (vi) in Theorem 7, we get

|I1(t, ε)| ≤ 1
2
|Aλ(ε)uε(t)|2 + 2|f(t)|2 + |f(0)|2 + |Aλ(ε)u0|2

≤ 1
2

(Aλ(ε)uε(t), A(ε)uε(t)) + C(ω)M2
1 (t), ∀t ∈ [0, T ]. (4.9)

As (Aλ(ε)u, u) ≥ 0, ∀u ∈ H, it follows that

(Aλ(ε)u, v)2 ≤ (Aλ(ε)u, u) (Aλ(ε)v, v) , ∀u, v ∈ H.

Therefore, due to (vi) in Theorem 7, we get

ε
(
Aλ(ε)u′ε(t), u

′
ε(t)
)

+ (Aλ(ε)uε(t), uε(t)) + (Aλ(ε)uε(t), A(ε)uε(t))

+2ε
(
Aλ(ε)uε(t), u′ε(t)

)
= (1− ε) (Aλ(ε)uε(t), uε(t))

+ε
(
Aλ(uε(t) + u′ε(t)), (uε(t) + u′ε(t)

)
+ (Aλ(ε)uε(t), A(ε)uε(t))

≥ (Aλ(ε)uε(t), A(ε)uε(t)) ≥ |Aλ(ε)uε(t)|2 , ∀ε ∈ (0, 1].

As

E1(uε, t) ≥ 0, |Aλ(ε)uε| ≤ E1/2
1 (uε, t), ∀t ∈ [0, T ], ∀ε ∈ (0, 1],
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we have

|I2(t, ε)| ≤ 2
∫ t

0

(
|f(s)|+ |f ′(s)|

)
E

1/2
1 (uε, s) ds, ∀t ∈ [0, T ]. (4.10)

Due to (vi) in Theorem 7, we get

E1(uε, 0) ≤ C(ω)
(
|A(ε)u0|2 + |A1/2(ε)u1|2

)
, ∀ε ∈ (0, 1]. (4.11)

Using (4.9), (4.10) and (4.11), from (4.8), we obtain

E1(uε, t) ≤ C(ω)M2
1 (t)

+2
∫ t

0

(
|f(s)|+ |f ′(s)|

)
E

1/2
1 (uε, s) ds, (4.12)

for all t ∈ [0, T ] and all ε ∈ (0, 1].
Applying Lemma 1 to (4.12), we deduce

E
1/2
1 (uε, t) ≤ C(ω)M1(t), ∀t ∈ [0, T ], ∀ε ∈ (0, 1],

from which it follows that

(Aλ(ε)uε(t), A(ε)uε(t)) ≤ C(ω)M2
1 (t)∀ t ∈ [0, T ], ∀ε ∈ (0, 1].

Finally, passing to the limit in the last inequality as λ→ 0 and using (v) in
Theorem 7, we get (4.5) and this completes the proof.

Let uε be a strong solution of the problem (4.1) and let us denote by

zε(t) = u′ε(t) + αe−t/ε, α = f(0)− u1 −A(ε)u0. (4.13)

Lemma 3. Let T > 0 and let us assume that, for each ε ∈ (0, 1), the operator
A(ε) = εA1 + A0 is self-adjoint and satisfies (4.2). If u1, f(0) − A(ε)u0 ∈
D (A(ε)) and f ∈ W 2,1(0, T ;H), then there exist C(ω) > 0, such that the
function zε, defined by (4.13), satisfies

‖A1/2(ε)zε‖C([0, t];H) + ‖z′ε‖C([0, t];H) +
∥∥∥A1/2(ε)z′ε

∥∥∥
L2(0, t;H)

≤ C(ω)M2(t), ∀t ∈ [0, T ], ∀ε ∈ (0, 1], (4.14)

where

M2(t) = |A(ε)f(0)−A2(ε)u0|+ ‖f‖W 2,1(0,t;H) + |A(ε)u1|+ |f ′(0)|.
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Proof. If u1, f(0)− A(ε)u0 ∈ D (A(ε)) and f ∈ W 2,1(0, T ;H), then, due to
Theorem 10, zε is the strong solution of the problem{

εz′′ε (t) + z′ε(t) +A(ε)zε(t) = F(t, ε), a.e. t ∈ (0, T ),
zε(0) = f(0)−A(ε)u0, z′ε(0) = 0,

where
F(t, ε) = f ′(t) + e−t/εA(ε)α.

Finally, let us observe that zε satisfies A1/2(ε)zε ∈ W 1,∞(0, T ;H), zε ∈
W 2,∞(0, T ;H) and A(ε)zε ∈ L∞(0, T ;H). Therefore, (4.14) follows from
Lemma 2 and the proof is complete.

5 The relationship between the solution of (Pε) and
(P0)

Now we are going to establish the relationship between the solution to the
problem (Pε) and the corresponding solution to the problem (P0). This
relationship was inspired by [6]. To this end, we begin by defining the
transformation kernel which realizes this relationship.

Namely, for ε > 0, let us denote

K(t, τ, ε) =
1

2 ε
√
π

(K1(t, τ, ε) + 3K2(t, τ, ε)− 2K3(t, τ, ε)) ,

where

K1(t, τ, ε) = exp
{

3t− 2τ
4ε

}
λ

(
2t− τ
2
√
εt

)
,

K2(t, τ, ε) = exp
{

3t+ 6τ
4ε

}
λ

(
2t+ τ

2
√
εt

)
,

K3(t, τ, ε) = exp
{τ
ε

}
λ

(
t+ τ

2
√
εt

)
, λ(s) =

∫ ∞
s

e−η
2
dη.

The properties of the kernel K(t, τ, ε) are collected in the next lemma.

Lemma 4. [11]. The function K(t, τ, ε) has the following properties :

(i) K ∈ C([0,∞)× [0,∞)) ∩ C2((0,∞)× (0,∞)) ;

(ii) Kt(t, τ, ε) = εKττ (t, τ, ε)−Kτ (t, τ, ε), ∀t > 0, ∀τ > 0 ;
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(iii) εKτ (t, 0, ε)−K(t, 0, ε) = 0, ∀t ≥ 0 ;

(iv) K(0, τ, ε) =
1
2ε

exp
{
− τ

2ε

}
, ∀τ ≥ 0 ;

(v) For every t > 0 and every q, s ∈ N, there exist C1(q, s, t, ε) > 0 and
C2(q, s, t) > 0 such that

|∂st ∂qτK(t, τ, ε)| ≤ C1(q, s, t, ε) exp{−C2(q, s, t)τ/ε}, ∀τ > 0 ;

Moreover, for every γ ∈ R, there exist C1 > 0, C2 > 0 and ε0 > 0,
depending on γ, such that :∫ ∞

0
eγ τ |Kt(t, τ, ε)| dτ ≤ C1 ε

−1 eC2t, ∀t ≥ 0, ∀ε ∈ (0, ε0],∫ ∞
0

eγ τ |Kτ (t, τ, ε)| dτ ≤ C1 ε
−1 eC2t ∀t ≥ 0, ∀ε ∈ (0, ε0],∫ ∞

0
eγ τ |Kτ τ (t, τ, ε)| dτ ≤ C1 ε

−2 eC2t, ∀t ≥ 0, ∀ε ∈ (0, ε0] ;

(vi) K(t, τ, ε) > 0, ∀t ≥ 0, ∀τ ≥ 0 ;

(vii) For every continuous ϕ : [0,∞) → H, with |ϕ(t)| ≤ M exp{γ t}, we
have :

lim
t→0

∥∥∥∥∫ ∞
0

K(t, τ, ε)ϕ(τ)dτ −
∫ ∞

0
e−τϕ(2ετ)dτ

∣∣∣∣
H

= 0,

for every ε ∈
(
0, (2 γ)−1

)
;

(viii) ∫ ∞
0

K(t, τ, ε)dτ = 1, ∀t ≥ 0.

(ix) For every γ > 0 and q ∈ [0, 1], there exist C1 > 0, C2 > 0 and ε0 > 0,
depending on γ and on q, such that :∫ ∞

0
K(t, τ, ε) eγτ |t− τ |q dτ ≤ C1 e

C2t εq/2, ∀t > 0, ∀ε ∈ (0, ε0].

If γ ≤ 0 and q ∈ [0, 1], then∫ ∞
0

K(t, τ, ε) eγτ |t− τ |q dτ ≤ C εq/2
(

1 +
√
t
)q
, ∀t ≥ 0, ∀ε ∈ (0, 1] ;
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(x) Let p ∈ (1,∞] and f : [0, ∞)→ H, f ∈W 1,p
γ (0,∞;H). If γ > 0, then

there exist C1 > 0, C2 > 0 and ε0 depending on γ and p, such that∥∥∥∥f(t)−
∫ ∞

0
K(t, τ, ε)f(τ)dτ

∥∥∥∥
H

≤ C1 e
C2t ‖f ′‖Lpγ(0,∞;H) ε

(p−1)/2p, ∀t ≥ 0, ∀ε ∈ (0, ε0].

If γ ≤ 0, then ∥∥∥∥f(t)−
∫ ∞

0
K(t, τ, ε)f(τ)dτ

∥∥∥∥
H

≤ C(γ, p) ‖f ′‖Lpγ(0,∞;H)

(
1 +
√
t
) p−1

p
ε(p−1)/2p, ∀t ≥ 0, ∀ε ∈ (0, 1].

(xi) For every q > 0 and α ≥ 0, there exists C(q, α) > 0 such that∫ t

0

∫ ∞
0

K(τ, θ, ε) e−q θ/ε |τ − θ|α dθ dτ ≤ C(q, α) ε1+α,

for each t ≥ 0, and each ε > 0.

Now we are ready to establish the relationship between the solution of
(Pε) and the solution of (P0).

Theorem 11. Suppose that A(ε) satisfies (H1). Let f ∈ L∞c (0,∞;H) and
let uε ∈ W 2,∞

c (0,∞;H) be the strong solution of the problem (4.1), with
Auε ∈ L∞c (0,∞;H), for some c ≥ 0. Then the function wε, defined by

wε(t) =
∫ ∞

0
K(t, τ, ε)uε(τ) dτ,

is the strong solution of the problem{
w′ε(t) +A(ε)wε(t) = F0(t, ε), t > 0,
wε(0) = ϕε,

(5.1)

where

ϕε =
∫ ∞

0
e−τuε(2ετ)dτ, F0(t, ε) = f0(t, ε)u1 +

∫ ∞
0

K(t, τ, ε) f(τ) dτ,

f0(t, ε) =
1√
π

[
2 exp

{
3t
4ε

}
λ

(√
t

ε

)
− λ

(
1
2

√
t

ε

)]
.
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Proof. Integrating by parts and using (i),(ii) and (iii) in Lemma 4, we get

(
ω′ε(t), η

)
=
(∫ ∞

0
Kt(t, τ, ε)uε(τ)dτ, η

)

=
(∫ ∞

0
[εKττ (t, τ, ε)−Kτ (t, τ, ε)] uε(τ)dτ, η

)
= − ([εKτ (t, 0, ε)−K(t, 0, ε)]uε(0), η) + (εK(t, 0, ε)u1, η)

+
(∫ ∞

0
K(t, τ, ε) (εu′′ε(τ) + u′ε(τ)) dτ, η

)

= (εK(t, 0, ε)u1, η) +
(∫ ∞

0
K(t, τ, ε) [f(τ)−A(ε)uε(τ)] dτ, η

)

=
(
εK(t, 0, ε)u1 +

∫ ∞
0

K(t, τ, ε) f(τ)dτ, η
)
− (A(ε)wε(t), η)

=
(
f0(t, ε)u1 +

∫ ∞
0

K(t, τ, ε) f(τ) dτ, η
)
− (A(ε)wε(t), η) ,

for each η ∈ D(A(ε)). Thus(
w′ε(t) +Awε(t)− F0(t, ε), η

)
= 0, ∀η ∈ D(A(ε)), a.e. t > 0.

Let us observe that F0(t, ε) ∈ L∞c1 (0,∞;H) and from (v) in Lemma 4,
we conclude that w′ε ∈ L∞c1 (0,∞;H) (with some c1 > 0), which implies that
A(ε)wε ∈ L∞c1 (0,∞;H). Since D(A) = H, it follows that wε(t) satisfies the
first equation in (5.1) a.e. t > 0.

As the initial condition is a simple consequence of (iv) and (vii) in Lemma
4, the proof is complete.

6 The limit of the solutions of the problem (Pε) as
ε→ 0

In this section we will study the behavior of solutions to the problem (Pε)
as ε→ 0.
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Theorem 12. Let T > 0 and p ∈ (1,∞]. Let us assume that the operators
A0 and A1 satisfy (H1) and (H2). If

u0, u0 ε ∈ D(A0), u1 ε ∈ H, f, fε ∈W 1,p(0, T ;H),

then there exist ε0 = ε0(ω0, ω1) ∈ (0, 1) and C = C(T, p, ω0, ω1) > 0 such
that

‖uε − v‖C([0,T ];H)

≤ C
(
Mε ε

β + |u0 ε − u0|+ ‖fε − f‖Lp(0,T ;H)

)
, (6.1)

for all ε ∈ (0, ε0], where uε and v are the strong solutions of problems (Pε)
and (P0) respectively,

β = min{1/4, (p− 1)/2p}

and
Mε =

∣∣∣A1/2
0 u0 ε

∣∣∣+ |u1 ε|+ ‖fε‖W 1,p(0,T ;H).

If, in addition, u1 ε ∈ D
(
A

1/2
0

)
, then, for each ε ∈ (0, ε0], we have

‖uε − v‖C([0,T ];H)

≤ C
(
M1 ε ε

(p−1)/2p + |u0 ε − u0|+ ‖fε − f‖Lp(0,T ;H)

)
, (6.2)

and
‖A1/2

0 uε −A1/2
0 v‖L2(0, T ;H)

≤ C
(
M1 ε ε

β + |u0 ε − u0|+ ‖fε − f‖Lp(0,T ;H)

)
, (6.3)

where β = min{1/4, (p− 1)/2p} and

M1 ε =
∣∣∣A1/2

0 u1 ε

∣∣∣+ |A0u0 ε|+ |A1u0 ε|+ ‖fε‖W 1,p(0, T ;H).

Proof. From (H1) and (H2), it follows that there exists γ = 3ω1 > 0 such
that

|(A1u, v)| ≤ |((A1 + ω1A0)u, v)|+ ω1 |A1/2
0 u| |A1/2

0 v|

≤ ((A1 + ω1A0)u, u)1/2 ((A1 + ω1A0)v, v)1/2 + ω1 |A1/2
0 u| |A1/2

0 v|

≤ (2ω1 (A0u, u))1/2 (2ω1 (A0v, v))1/2
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+ω1

∣∣∣A1/2
0 u

∣∣∣ ∣∣∣A1/2
0 v

∣∣∣ ≤ γ ∣∣∣A1/2
0 u

∣∣∣ ∣∣∣A1/2
0 v

∣∣∣ , ∀u, v ∈ D(A0). (6.4)

If fε ∈ W l,p(0, T ;H) with p ∈ (1,∞] and l ∈ N?, then, due to Theorems
1 and 2, we have that fε ∈ C([0, T ];H) and there exists an extension f̃ε ∈
W l,p(0,∞;H) such that

‖f̃ε‖C([0,∞);H) + ‖f̃ε‖W l,p(0,∞;H) ≤ C(T, p, l) ‖fε‖W l,p(0,T ;H). (6.5)

Let us denote by ũε the unique strong solution to the problem (Pε) and by
ṽ the unique strong solution to the problem (P0), defined on (0,∞) instead
of (0, T ), and fε by f̃ε. From Theorem 10, we have{

ũε ∈W 2,∞(0, T ;H), A1/2(ε)ũε ∈W 1,∞(0, T ;H),
A(ε)ũε ∈ L∞(0, T ;H), ∀T ∈ (0,∞).

From Lemma 2 and (6.4), it follows that{
ũε ∈W 2,∞(0,∞;H), A1/2

0 ũε ∈W 1,2(0,∞;H),
A(ε)ũε ∈ L∞(0,∞;H).

Moreover, due to the same lemma and to (6.4) and (6.5), we get

‖A1/2
0 ũε‖C([0, t];H) + ‖ũ′ε‖L2(0, t;H) ≤ CMε,∀t ≥ 0, ∀ε ∈ (0, ε0]. (6.6)

If in addition, u1 ε ∈ D
(
A

1/2
0

)
, then

‖ũ′ε‖C([0, t];H) + ‖A1/2
0 ũ′ε‖L2(0, t;H) ≤ CM1 ε, (6.7)

for all t ∈ [0, T ] and all ε ∈ (0, ε0].
Proof of (6.1). According to Theorem 4, the function

wε(t) =
∫ ∞

0
K(t, τ, ε) ũε(τ) dτ,

is the strong solution to the problem{
w′ε(t) +A(ε)wε(t) = F (t, ε), t > 0, ı̂n H,
wε(0) = w0,
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for 0 < ε ≤ ε0, where

F (t, ε) = f0(t, ε)u1 ε +
∫ ∞

0
K(t, τ, ε) f̃ε(τ) dτ,

f0(t, ε) =
1√
π

[
2 exp

{
3t
4ε

}
λ

(√
t

ε

)
− λ

(
1
2

√
t

ε

)]
,

w0 =
∫ ∞

0
e−τ ũε(2ετ)dτ.

Using Hölder’s inequality, (vi), (viii), (ix) (x) in Lemma 4, and (6.6), we
obtain

‖ũε(t)− wε(t)‖H =
∥∥∥∥ũε(t)− ∫ ∞

0
K(t, τ, ε) ũε(τ) dτ

∥∥∥∥
H

≤
∫ ∞

0
K(t, τ, ε) ‖ũε(t)− ũε(τ)‖H dτ

≤
∫ ∞

0
K(t, τ, ε)

∥∥∥∥∫ τ

t
‖ũ′ε(s)‖H ds

∥∥∥∥ dτ
≤ ‖ũ′ε‖L2(0,∞;H)

∫ ∞
0

K(t, τ, ε) |t− τ |1/2 dτ ≤ CMε ε
1/4,

for all t ∈ [0, T ] and all ε ∈ (0, ε0]. It then follows

‖ũε − wε‖C([0, T ];H) ≤ CMε ε
1/4, ∀ε ∈ (0, ε0]. (6.8)

Let us denote by R(t, ε) = ṽ(t)−wε(t) which clearly is the strong solution
of the problem{

R ′(t, ε) +A0R(t, ε) = εA1wε(t) + F(t, ε), t > 0,
R(0, ε) = R0,

(6.9)

where R0 = u0 − w0 and

F(t, ε) = f̃(t)−
∫ ∞

0
K(t, τ, ε)f̃ε(τ) dτ − f0(t, ε)u1 ε. (6.10)

Taking the inner product by R in the equation in (6.9) and then integrating,
we obtain

|R(t, ε)|2 + 2
∫ t

0

∣∣∣A1/2
0 R(s, ε)

∣∣∣2 ds
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= |R0|2 + 2
∫ t

0
|F(s, ε)| |R(s, ε)| ds+ 2 ε

∫ t

0
(A1wε(s), R(s, ε)) ds,

for all t ≥ 0. Using (6.4), from the last equality, we get

|R(t, ε)|2 +
∫ t

0

∣∣∣A1/2
0 R(s, ε)

∣∣∣2 ds ≤ |R0|2

+2
∫ t

0
|F(s, ε)| |R(s, ε)| ds+ γ2 ε2

∫ t

0

∣∣∣A1/2
0 wε(s)

∣∣∣2 ds, (6.11)

for all t ≥ 0. Applying Lemma 1 to (6.11), we obtain

|R(t, ε)|+
(∫ t

0

∣∣∣A1/2
0 R(s, ε)

∣∣∣2 ds)1/2

≤ |R0|

+
∫ t

0
|F(s, ε)| ds+ γ ε

(∫ t

0

∣∣∣A1/2
0 wε(s)

∣∣∣2 ds)1/2

, ∀t ≥ 0. (6.12)

From (6.6), we deduce

|R0| ≤ |u0 ε − u0|+
∫ ∞

0
e−s |ũε(2εs)− u0 ε| ds ≤ |u0 ε − u0|

+
∫ ∞

0
e−s

∫ 2εs

0

∣∣ũ′ε(τ)
∣∣ dτ ds ≤ |u0 ε − u0|+ CMε ε

1/2, (6.13)

for all ε ∈ (0, ε0]. Using (x) in Lemma 4 and (6.5), we get∣∣∣∣f̃(t)−
∫ ∞

0
K(t, τ, ε) f̃ε(τ) dτ

∣∣∣∣
≤
∣∣∣f̃(t)− f̃ε(t)

∣∣∣+
∫ ∞

0
K(t, τ, ε)

∣∣∣f̃ε(t)− f̃ε(τ)
∣∣∣ dτ ≤ ∣∣∣f̃(t)− f̃ε(t)

∣∣∣
+C(T, p) ‖f ′ε ‖Lp(0, T ;H) ε

(p−1)/2 p, ∀t ≥ 0, ∀ε ∈ (0, ε0]. (6.14)

As eτλ(
√
τ) ≤ C for all τ ≥ 0, we have∫ t

0
exp

{
3τ
4ε

}
λ

(√
τ

ε

)
dτ ≤ C ε

∫ t
ε

0
e−τ/4 dτ ≤ C ε

∫ ∞
0

e−τ/4 dτ ≤ Cε
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and ∫ t

0
λ

(
1
2

√
τ

ε

)
dτ ≤ ε

∫ ∞
0

λ

(
1
2
√
τ

)
dτ ≤ C ε,

for all t ≥ 0. Hence∣∣∣∣∫ t

0
f0(τ, ε) dτ u1 ε

∣∣∣∣ ≤ C ε |u1 ε|, ∀t ≥ 0. (6.15)

Using (6.10), from (6.14) and (6.15), we get∫ t

0
|F(s, ε)| ds ≤ C

(
Mε ε

(p−1)/2p + ‖fε − f‖Lp(0,T ;H)

)
, (6.16)

for every t ∈ [0, T ] and every ε ∈ (0, ε0].
As A1/2

0 is closed, using (6.6), we obtain∣∣∣A1/2
0 wε(t)

∣∣∣ ≤ ∫ ∞
0

K(t, τ, ε)
∣∣∣A1/2

0 ũε(τ)
∣∣∣ dτ ≤ CMε, (6.17)

for every t ∈ [0, T ] and every ε ∈ (0, ε0].
Thanks to (6.13), (6.16) and (6.17), from (6.12), it follows that

‖R‖C([0, T ];H) +
∥∥∥A1/2

0 R
∥∥∥
L2(0, T ;H)

≤ C
(
Mε ε

(p−1)/2 p + |u0 ε − u0|+ ‖fε − f‖Lp(0,T ;H)

)
, (6.18)

for every ε ∈ (0, ε0]. Finally, from (6.8) and (6.18), it follows that

‖ũε − ṽ‖C([0,T ];H) ≤ ‖ũε − wε‖C([0,T ];H) + ‖R‖C([0,T ];H)

≤ C
(
Mε ε

β + |u0 ε − u0|+ ‖fε − f‖Lp(0,T ;H)

)
, (6.19)

for every ε ∈ (0, ε0]. According to Theorems 9 and 10, we have that uε(t) =
ũε(t) and ṽ(t) = v(t) for t ∈ [0, T ]. Therefore, from (6.19), we deduce (6.1).

Proof of (6.2). If u1 ε ∈ D
(
A

1/2
0

)
, then, using (vi), (viii), (x) in Lemma

4 and (6.7), we get

‖ũε(t)− wε(t)‖H =
∥∥∥∥ũε(t)− ∫ ∞

0
K(t, τ, ε) ũε(τ) dτ

∥∥∥∥
H
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≤
∫ ∞

0
K(t, τ, ε) ‖ũε(t)− ũε(τ)‖H dτ

≤
∫ ∞

0
K(t, τ, ε)

∣∣∣∣∫ τ

t
‖ũ′ε(s)‖H ds

∣∣∣∣ dτ
≤ ‖ũ′ε‖C([0,∞);H)

∫ ∞
0

K(t, τ, ε) |t− τ | dτ ≤ CM1 ε ε
1/2,

for every t ∈ [0, T ] and every ε ∈ (0, ε0]. This yields

‖ũε − wε‖C([0, T ];H) ≤ CM1 ε ε
1/2, ∀ε ∈ (0, ε0].

As, for p ∈ (1,∞], we have (p − 1)/2p ≤ 1/2, the proof of (6.2) follows in
the same way as the proof of (6.1).

Proof of (6.3). Using (vi), (viii), (x) in Lemma 4 and (6.7), we get∣∣∣A1/2
0 (ũε(t)− wε(t)

∣∣∣ ≤ ∫ ∞
0

K(t, τ, ε)
∣∣∣A1/2

0 (ũε(t)− ũε(τ)
∣∣∣ dτ

≤
∫ ∞

0
K(t, τ, ε)

∣∣∣∣∫ t

τ

∥∥∥A1/2
0 ũ′ε(s)

∥∥∥
H
ds

∣∣∣∣ dτ
≤
∫ ∞

0
K(t, τ, ε) |t− τ |1/2

∣∣∣∣∫ t

τ

∥∥∥A1/2
0 ũ′ε(s)

∥∥∥2

H
ds

∣∣∣∣1/2 dτ
≤ CM1 ε ε

1/4, ∀t ≥ 0, ∀ε ∈ (0, ε0].

Hence uε(t) = ũε(t), for t ∈ [0, T ], and therefore∥∥∥A1/2
0 (uε − wε)

∥∥∥
C([0, T ];H)

≤ CM1 ε ε
1/4, ∀ε ∈ (0, ε0]. (6.20)

From (6.18), it follows that∥∥∥A1/2
0 R

∥∥∥
L2(0, T ) ;H)

≤ C
(
Mε ε

(p−1)/2 p

+ |u0 ε − u0|+ C ‖fε − f‖Lp(0,T ;H)

)
, ∀ε ∈ (0, ε0]. (6.21)

Finally, (6.20) and (6.21) imply (6.3) and this completes the proof.
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Remark 6.1. If, in the conditions of Theorem 12, we assume that f, fε ∈
W 1,∞(0, T,H), then (6.1), (6.2) and (6.3) take the form

‖uε − v‖C([0,T ];H) ≤ C
(
Mε ε

1/4 + |u0 ε − u0|+ ‖fε − f‖L∞(0,T ;H)

)
,

where
Mε =

∣∣∣A1/2
0 u0 ε

∣∣∣+ |u1 ε|+ ‖fε‖W 1,∞(0,T ;H),

‖uε − v‖C([0,T ];H) ≤ C
(
M1 ε ε

1/2 + |u0 ε − u0|+ ‖fε − f‖L∞(0,T ;H)

)
,

and
‖A1/2

0 uε −A1/2
0 v‖L2(0, T ;H)

≤ C
(
M1 ε ε

1/4 + |u0 ε − u0|+ |fε − f‖L∞(0,T ;H)

)
,

with
M1 ε =

∣∣∣A1/2
0 u1 ε

∣∣∣+ |A0u0 ε|+ |A1u0 ε|+ ‖f‖W 1,∞(0, T ;H).

for all ε ∈ (0, ε0].

Theorem 13. Let T > 0 and p ∈ (1,∞]. Suppose that the operators A0 and
A1 satisfy (H1) and (H2). If

u0, u0ε, A0u0, A1u0ε, A0u0ε, u1ε, f(0), fε(0) ∈ D(A0)

and
f, fε ∈W 2,p(0, T ;H),

then there exist ε0 = ε0(ω0, ω1) ∈ (0, 1) and C = C(T, p, ω0, ω1) > 0 such
that ∥∥∥u′ε − v′ + αε e

− t
ε

∥∥∥
C([0, T ];H)

≤ C
(
M2 ε ε

(p−1)/2p +Dε

)
, (6.22)∥∥∥A1/2

0

(
u′ε − v′ + αε e

− t
ε

)∥∥∥
L2(0, T ;H)

≤ C
(
M2 ε ε

β +Dε

)
, (6.23)

where v and uε are the strong solutions of the problems (P0) and (Pε) re-
spectively, β = min{1/4, (p− 1)/2p}, αε = fε(0)− u1 ε −A(ε)u0 ε,

Dε = ‖fε − f‖W 1, p(0, T ;H) + |A0(u0ε − u0)| ,

M2 ε = |A(ε)u1 ε|+ ‖fε‖W 2,p(0, T ;H) + |A1u0 ε|+ |A(ε)αε| .
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Proof. Within this proof, for ũε, ṽ, f̃ and f̃ε, we will use the same notations
as in the proof of Theorem 12.

Let us denote by

z̃ε(t) = ũ′ε(t) + αεe
− t
ε , αε = fε(0)− u1 ε −A(ε)u0 ε.

If u1 ε + αε ∈ D (A0) and f ∈ W 2,1(0, T ;H), then, due to (6.4) and (6.5),
u1 ε + αε ∈ D (A(ε)) and f̃ ∈ W 2,1(0,∞;H). According to Theorem 10, z̃ε
is the strong solution in H to the problem{

εz̃′′ε (t) + z̃′ε(t) +A(ε)z̃ε(t) = F̃(t, ε), t > 0,
z̃ε(0) = fε(0)−A(ε)u0 ε, z̃′ε(0) = 0,

where
F̃(t, ε) = f̃ ′ε(t) + e−t/εA(ε)αε.

From Lemma 3 and (6.4), it follows that

z̃ε ∈W 2,∞(0,∞;H), A1/2
0 z̃ε ∈W 1,2(0,∞;H), A(ε)z̃ε ∈ L∞(0,∞;H).

Moreover, from the same lemma, (6.4) and (6.5), we get

‖A1/2
0 z̃ε‖C([0,∞];H) + ‖z̃′ε‖C([0,∞);H)

+
∥∥∥A1/2

0 z̃′ε

∥∥∥
L2(0,∞;H)

≤ CM2 ε, ∀ε ∈ (0, ε0]. (6.24)

According to Theorem 4, the function

w1 ε(t) =
∫ ∞

0
K(t, τ, ε) z̃ε(τ)dτ

is a strong solution of{
w′1 ε(t) +A(ε)w1ε(t) = F1(t, ε), t > 0,
w1 ε(0) =

∫∞
0 e−τ z̃ε(2 ε τ)dτ,

where
F1(t, ε) =

∫ ∞
0

K(t, τ, ε)
(
f̃ ′ε(τ) + e−

τ
ε A(ε)αε

)
dτ.

Moreover,∣∣∣A1/2
0 w1 ε(t)

∣∣∣ ≤ ∫ ∞
0

K(t, τ, ε)
∣∣∣A1/2

0 z̃ε(τ)
∣∣∣ dτ ≤ CM2 ε, (6.25)
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for all t ≥ 0. Using (vi), (viii), (x) in Lemma 4 and (6.24), we get

‖z̃ε(t)− w1 ε(t)|H =
∥∥∥∥z̃ε(t)− ∫ ∞

0
K(t, τ, ε) z̃ε(τ) dτ

∥∥∥∥
H

≤
∫ ∞

0
K(t, τ, ε) ‖z̃ε(t)− z̃ε(τ)‖H dτ

≤
∫ ∞

0
K(t, τ, ε)

∣∣∣∣∫ τ

t
‖z̃′ε(s)‖H ds

∣∣∣∣ dτ
≤ ‖z̃′ε‖C([0,∞);H)

∫ ∞
0

K(t, τ, ε) |t− τ | dτ ≤ CM2 ε ε
1/2,

for all t ∈ [0, T ] and all ε ∈ (0, ε0],∥∥∥A1/2
0 (z̃ε(t)− w1 ε(t))

∥∥∥
H

=
∥∥∥∥A1/2

0 z̃ε(t)−
∫ ∞

0
K(t, τ, ε)A1/2

0 z̃ε(τ) dτ
∥∥∥∥
H

≤
∫ ∞

0
K(t, τ, ε)

∥∥∥A1/2
0 (z̃ε(t)− z̃ε(τ))

∥∥∥
H
dτ

≤
∫ ∞

0
K(t, τ, ε)

∣∣∣∣∫ τ

t
‖A1/2

0 z̃′ε(s)‖H ds
∣∣∣∣ dτ

≤ ‖A1/2
0 z̃′ε‖L2(0,∞;H)

∫ ∞
0

K(t, τ, ε) |t− τ |1/2 dτ ≤ CM2 ε ε
1/4,

for all t ∈ [0, T ] and all ε ∈ (0, ε0]. It then follows that

‖z̃ε − w1 ε‖C([0, T ];H) ≤ CM2 ε ε
1/2, ∀ε ∈ (0, ε0], (6.26)∥∥∥A1/2

0 (z̃ε − w1 ε)
∥∥∥
L2(0, T ;H)

≤ CM2 ε ε
1/4, ∀ε ∈ (0, ε0]. (6.27)

LetR1(t, ε) = ṽ′(t)−w1ε(t). If f(0)−A0u0 ∈ D(A0) and f ∈W 2,1(0, T ;H),
then, according to Theorem 3.1, ṽ ∈W 2,∞(0,∞;H), A1/2

0 ṽ ∈W 1,2(0,∞;H).
Therefore R1 ∈W 1,∞(0,∞;H) and{

R′1(t, ε) +A0R1(t, ε) = f̃ ′(t)−F1(t, ε) + εA1w1 ε(t), t > 0,
R1(0, ε) = f(0)−A0u0 − w1 ε(0).
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Similarly to (6.12), we deduce

|R1(t, ε)|+
(∫ t

0

∣∣∣A1/2
0 R1(s, ε)

∣∣∣2 ds)1/2

≤ |R1(0, ε)|

+
∫ t

0

∣∣∣f̃ ′(s)−F1(s, ε)
∣∣∣ ds+ γ ε

(∫ t

0

∣∣∣A1/2
0 w1 ε(s)

∣∣∣2 ds)1/2

, (6.28)

for all t ≥ 0. Using (6.24), we get:

|R1(0, ε)| ≤ |f(0)− fε(0)|+ |A0(u0 − u0 ε)|+ ε |A1u0 ε|

+
∫ ∞

0
e−s |z̃ε(2 ε s)− z̃ε(0)| ds

≤ C Dε + ε |A1u0 ε|+M2 ε ε ≤ C Dε +M2 ε ε, ∀ε ∈ (0, ε0]. (6.29)

As∣∣∣f̃ ′(s)−F1(s, ε)
∣∣∣ ≤ ∣∣∣f̃ ′(s)− f̃ ′ε(s)∣∣∣+

∫ ∞
0

K(s, τ, ε)
∣∣∣f̃ ′ε(τ)− f̃ ′ε(s)

∣∣∣ dτ
+
∫ ∞

0
K(s, τ, ε) e−

τ
ε dτ |A(ε)αε| ,

then, due to (ix), (xi) in Lemma 4, we obtain∫ t

0

∣∣∣f̃ ′(s)−F1(s, ε)
∣∣∣ ds ≤ C (Dε +M2 ε ε

(p−1)/2p + |A(ε)αε| ε
)

≤ C
(
Dε +M2 ε ε

(p−1)/2p
)
, ∀t ∈ [0, T ], ∀ε ∈ (0, ε0]. (6.30)

Using (6.25), (6.29), (6.30), from (6.28) we get

‖R1‖C([0, T ];H) +
∥∥∥A1/2

0 R1

∥∥∥
L2(0, T ;H)

≤ C
(
Dε +M2 ε ε

(p−1)/2p
)
, (6.31)

for all ε ∈ (0, 1].
Finally, as (6.26), (6.27) and (6.31) imply (6.22) and (6.23), the proof is

complete.
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Remark 6.2. If, in the conditions of Theorem 13, we assume that f, fε ∈
W 2,∞(0, T,H), then (6.22) and (6.23) take the form∥∥∥u′ε − v′ + αε e

− t
ε

∥∥∥
C([0, T ];H)

≤ C
(
M2 ε ε

1/2 +Dε

)
,∥∥∥A1/2

0

(
u′ε − v′ + αε e

− t
ε

)∣∣∣
L2(0, T ;H)

≤ C
(
M2 ε ε

1/4 +Dε

)
,

Dε = ‖fε − f |W 1,∞(0, T ;H) + |A0(u0ε − u0)| ,

M2 ε = |A(ε)u1 ε|+ ‖fε|W 2,∞(0, T ;H) + |A1u0 ε|+ |A(ε)αε| .

7 An Example

Let Ω ⊂ Rn be an open bounded set with C1 boundary ∂Ω. In the real
Hilbert space L2(Ω), with the usual inner product

(u, v) =
∫

Ω
u(x) v(x) dx,

we consider the following Cauchy problem
ε∂2
t uε(x, t) + ∂t uε(x, t) +A0uε(x, t) + εA1uε(x, t) = f(x, t),

x ∈ Ω, t > 0,
uε(x, 0) = u0ε(x), ∂t uε(x, 0) = u1ε(x)

(7.1)

where D(Ai) = H2(Ω) ∩H1
0 (Ω), i = 0, 1,

A0u(x) = −
n∑

i,j=1

∂xi
(
aij(x)∂xju(x)

)
+ a(x)u(x), u ∈ D(A0),

aij ∈ C1(Ω), a ∈ C(Ω), a(x) ≥ 0, aij(x) = aji(x), x ∈ Ω, (7.2)

and
n∑

i,j=1

aij(x)ξi ξj ≥ a0 |ξ|2, x ∈ Ω, ξ ∈ Rn, a0 > 0. (7.3)

A1u(x) = −
n∑

i,j=1

∂xi
(
bij(x)∂xju(x)

)
+ b(x)u(x) +

∫
Ω
K(x, y)u(y)dy,
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for u ∈ D(A1),
K : Ω× Ω 7→ R, K ∈ L2(Ω× Ω), (7.4)

bij ∈ C1(Ω), b ∈ C(Ω), bij(x) = bji(x), x ∈ Ω, (7.5)

|b(x)| ≤ b1a(x),

∣∣∣∣∣∣
n∑

i,j=1

bij(x)ξi ξj

∣∣∣∣∣∣ ≤ b0
n∑

i,j=1

aij(x)ξi ξj (7.6)

for x ∈ Ω and ξ ∈ Rn. Under the hypotheses (7.2)-(7.3), the operator A0 is
positive and self-adjoint with D(A1/2

0 ) = H1
0 (Ω) and

‖A1/2
0 u‖2L2(Ω) =

∫
Ω

 n∑
i,j=1

aij(x) ∂xiu(x) ∂xju(x) + a(x)u2(x)

 dx,

for u ∈ H1
0 (Ω). If (7.5) holds, the operator A1 is self-adjoint with

‖A1/2
1 u‖2L2(Ω) =

∫
Ω

 n∑
i,j=1

bij(x) ∂xiu(x) ∂xju(x) + b(x)u2(x)

 dx

+
∫

Ω

∫
Ω
K(x, y)u(x)u(y)dy dx, ∀u ∈ H1

0 (Ω).

Moreover, (7.2)-(7.6) imply (H2) with

ω1 = max{b0, b1}+ ‖K‖L2(Ω×Ω)/ω0.

Let us now consider the unperturbed problem associated to (7.1){
∂t v(x, t) +A0v(x, t) = f(x, t), x ∈ Ω, t > 0,
v(x, 0) = u0(x).

(7.7)

Using Theorem 12, we obtain:

Theorem 14. Let Ω ⊂ Rn be an open bounded set with C1 boundary ∂Ω.
Let T > 0 and p ∈ (1,∞]. Let us assume that (7.2)-(7.6) are satisfied. If

u0, u0 ε ∈ H2(Ω) ∩H1
0 (Ω), u1 ε ∈ L2(Ω), f, fε ∈W 1,p(0, T ;L2(Ω)),

then there exist ε0 = ε0(ω0, ω1) ∈ (0, 1) and C = C(T, p, n, ω0, ω1) > 0 such
that, for every ε ∈ (0, ε0], we have

‖uε − v‖C([0,T ];L2(Ω))
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≤ C
(
M̃ε ε

β + |u0 ε − u0|+ ‖fε − f‖Lp(0,T ;L2(Ω))

)
,

where uε and v are the strong solutions of (7.1) and (7.7) respectively,

β = min{1/4, (p− 1)/2p}

and
M̃ε =

∣∣∣A1/2
0 u0 ε

∣∣∣+ |u1 ε|+ ‖fε‖W 1,p(0,T ;L2(Ω)).

If, in addition, u1 ε ∈ H1
0 (Ω), then

‖uε − v‖C([0,T ];L2(Ω))

≤ C
(
M̃1 ε ε

(p−1)/2p + |u0 ε − u0|+ ‖fε − f‖Lp(0,T ;L2(Ω))

)
,

for each ε ∈ (0, ε0], where β = min{1/4, (p− 1)/2p} and

M̃1 ε =
∣∣∣A1/2

0 u1 ε

∣∣∣+ |A0u0 ε|+ |A1u0 ε|+ ‖fε‖W 1,p(0, T ;L2(Ω)).

Using Theorem 13, we deduce:

Theorem 15. Let Ω ⊂ Rn be an open bounded set with C1 boundary ∂Ω.
Let T > 0 and p ∈ (1,∞]. Let us assume that (7.2)-(7.6) are satisfied. If

u0, u0ε, A0u0, A1u0ε, A0u0ε, u1ε, f(0), fε(0) ∈ H2(Ω) ∩H1
0 (Ω),

and
f, fε ∈W 2,p(0, T ;L2(Ω)),

then there exist ε0 = ε0(ω0, ω1) ∈ (0, 1) and C = C(T, p, n, ω0, ω1) > 0 such
that, for every ε ∈ (0, ε0], we have

∥∥∥u′ε − v′ + αε e
− t
ε

∥∥∥
C([0, T ];L2(Ω))

≤ C
(
M̃2 ε ε

(p−1)/2p + D̃ε

)
,

where v and uε are the strong solutions of (7.1) and (7.7) respectively,
β = min{1/4, (p− 1)/2p}, αε = fε(0)− u1 ε −A(ε)u0 ε,

D̃ε = ‖fε − f‖W 1, p(0, T ;H1
0 (Ω)) + |A0(u0ε − u0)| ,

M̃2 ε = |A(ε)u1 ε|+ ‖fε‖W 2,p(0, T ;H1
0 (Ω)) + |A1u0 ε|+ |A(ε)αε| .
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Chişinău, 2008


