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Abstract

We consider a mathematical model which describes the frictional
contact between an electro-viscoelastic body and a conductive founda-
tion. The contact is modelled with normal compliance and a version
of Coulomb’s law of dry friction, in which the stiffness and friction
coefficients depend on the electric potential. We derive a variational
formulation of the problem and, under a smallness assumption, we
prove an existence and uniqueness result. The proof is based on argu-
ments on evolutionary variational inequalities and fixed point. Then,
we introduce the fully discretized problem and present numerical sim-
ulations in the study of a two-dimensional test problem which describe
the process of contact in a microelectromechanical swich.
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1 Introduction

Contact phenomena involving deformable bodies arise in industry and ev-
eryday life and play important roles in structural and mechanical systems.
Owning to the complicated surface physics involved, they lead to new and
nonstandard mathematical models. Considerable progress has been achieved
recently in modelling and mathematical analysis of phenomena of contact
and, as a result, a general Mathematical Theory of Contact Mechanics is
currently emerging as a discipline on its own right. Its aim is to provide a
sound, clear and rigorous background to the construction of models, their
variational analysis as well as their numerical simulations, see [9, 16] for
details.

Currently there is a considerable interest in contact problems involving
piezoelectric materials, i.e. materials characterized by the coupling between
the mechanical and electrical properties. This coupling, in a piezoelectric ma-
terial, leads to the appearance of electric potential when mechanical stress is
present and, conversely, mechanical stress is generated when electric potential
is applied. The first effect is used in mechanical sensors, and the reverse effect
is used in actuators, in engineering control equipments. Piezoelectric mate-
rials for which the mechanical properties are elastic are called electro-elastic
materials and those for which the mechanical properties are viscoelastic are
called electro-viscoelastic materials. General models for electro-elastic mate-
rials can be found in [6, 10, 14]. Frictional contact problems for electro-elastic
or electro-viscoelastic materials were studied in |7, 12, 13, 17|, under the as-
sumption that the foundation is insulated. The results in [7, 12| concern
mainly the numerical simulation of the problems while the results in [13, 17|
concern the variational formulation of the problems and their unique weak
solvability.

The study of mathematical models which describe the evolution of the
piezoelectric body in frictional or frictionless contact with a conductive foun-
dation is more recent see, for instance, |3, 4, 5, 11|. The problems studied
in [3, 4] are frictionless and describe a dynamic and a quasistatic mechanical
process for electro-viscoelastic materials, respectively. The problem studied
in [5] is frictional and is modeled with normal compliance and a version of
Coulomb’s law o dry friction, in which the stiffness and friction coefficients
depend on the electric potential; the material is assumed to be electro-elastic
and the process is static; an existence and uniqueness result was obtained,
a discrete scheme was considered, and numerical simulations were provided.
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The problem studied in [11] is frictional, too, and is modeled with the stan-
dard normal compliance contact condition and the Coulomb’s law of dry
friction; the material is assumed to be electro-viscoelastic and the process is
quasistatic; an existence and uniqueness result was obtained by using argu-
ments of evolutionary variational inequalitiesd and fixed point.

The results in the present paper are related and parallel our previous
results obtained in [5, 11]. Nevertheless, there are several major differences
between these papers, that we describe in what follows. First, we recall that
in [11] we used the standard normal compliance contact condition and the
Coulomb’s law of dry friction and, as a result, the mechanical and electrical
unknowns are decoupled on the frictional contact conditions. Unlike the
problem in [11], in the present paper the electric potential is involved in the
frictional contact conditions too, which increase the degree of nonlinearity of
the problem and requiers the use of new functionals and operators, different
to those used in [11]. Moreover, unlike [11], in the present paper we deal with
the numerical approach of the problem and provide numerical simulations. In
the present paper we use the boundary conditions on the contact surface used
recently in [5] in the study a static process for electro-elastic materials. But,
unlike 5], in the present paper we consider a quasistatic process for electro-
viscoelastic materials, which leads to an evolutionary model, different from
the stationnary model studied in [5].

To conclude, the novelty of this paper consists in the study of a frictional
contact problem for electro-viscoelastic materials which takes into account
the electric conductivity of the foundation. From the physical point of view,
the novelty arises in the fact that we let the frictional contact condition to
depend on the electric potential; from the mathematical point of view, the
novelty arises in the fact that here we provide the unique solvability of a
new model, involving new operators and new functionals, together with its
numerical approach and numerical simulations.

The manuscript is structured as follows. In Section 2 we describe the
physical setting and present the mathematical model of the contact process.
In Section 3 we list the assumption on the problem data, derive the variational
formulation of the problem and state our main existence and uniqueness
result, Theorem 1. The proof of the theorem is provided in Section 4, based
on arguments of evolutionary variational inequalities and fixed point. Finally,
in Section 5 we introduce the discretized problem, then we present numerical
simulations in the study of a two-dimensional test problem.
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2 Problem statement

We consider a body made of a piezoelectric material which occupies the
domain 2 C R? (d = 2,3) with a smooth boundary dQ = I' and a unit
outward normal v. The body is acted upon by body forces of density f
and has volume free electric charges of density go. It is also constrained
mechanically and electrically on the boundary. To describe these constraints
we assume a partition of I' into three open disjoint parts I'y, I's and I's, on
the one hand, and a partition of I'y UT's into two open parts I', and 'y, on
the other hand. We assume that measI’y > 0 and measIT', > 0. The body is
clamped on I'; and, therefore, the displacement field vanishes there. Surface
tractions of density f5 act on I's. We also assume that the electrical potential
vanishes on I'; and a surface electrical charge of density g is prescribed
on I'y. In the reference configuration the body may come in contact over
I's with an electrically conductive support, the so called foundation. The
contact is frictional and we model it with normal compliance and a version
of Coulomb’s law of dry friction. Also, since the foundation is electrically
conductive, we assume that the stiffness coefficient and the friction bound
depend on the difference between the electric potential of the body’s surface
and the electric potential of the foundation. Finally, there may be electrical
charges on the part of the body which is in contact with the foundation and
which vanish when the contact is lost.

We are interested in the deformation of the body on the time interval
[0,T]. The process is assumed to be quasistatic, i.e. the inertial effects in
the equation of motion are neglected. We denote by € QUT and ¢ € [0, T
the spatial and the time variable, respectively and, to simplify the notation,
sometimes we do not indicate the dependence of various functions on @ or
t. In this paper ,j,k,l = 1,...,d, summation over two repeated indices is
implied, and the index that follows a comma represents the partial derivative

with respect to the corresponding component of x, i.e. f; = g—f . The dot

z;
above a variable represents the time derivatives, i.e. f = % .

We use the notation S? for the space of second order symmetric tensors
on R% and “-”, || -|| will represent the inner product and the Euclidean norm
on S% and RY, respectively, that is

wov=uwy, ) = (v-v)?
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for u = (u;), v = (v;) € R4, and
o1 =oymy. |7l = (r o)

for o = (0ij), T = (7i;) € S®. We also use the usual notation for the normal
components and the tangential parts of vectors and tensors, respectively,
given by v, = u-v, u; = u —u,v, o, = oy;vvj and o, = ov — o, V.

With the notation above, the classical model for the process is as follows.

Problem P. Find a displacement field u = (u;) : Q x [0,T] — R, a stress
field o = (045) : @ x [0,T] — S%, an electric potential ¢ : Q x [0,T] — R and
an electric displacement field D = (D;) : Q x [0,T] — R? such that

o = Ae(u) + Be(u) — EE(p) in Qx(0,7), (2.1)

D = E&e(u) + BE(yp) in Qx(0,7), (22)

Dive + f, =0 in Qx(0,7), (2.3)
divD — gy =0 inQx(0,7), (2.4)
u=0 onI'y x (0,7), (2.5)

ov =Ff, onI'y x (0,7), (2.6)

=0 onI'y x (0,7), (2.7)
D.-v=g onI'y x (0,7), (2.8)

—0, = hy(© — o) pu(uy — g) onI's x (0,7), (2.9)

HUTH < hT(SO - 900)])7(“1/ - 9)7
on 'y x (0,T), (2.10)

—0: = hr(p — o) pr (U — 9) ﬁ:” if 4, #0
D v =p(uy,—g)he(p — o) on I's x (0,7), (2.11)
u(0) = uo in Q. (2.12)

We now describe problem (2.1)-(2.12) and provide explanation of the
equations and the boundary conditions.

First, equations (2.1) and (2.2) represent the electro-viscoelastic consti-
tutive law in which e(u) = (ei;(u)) denotes the linearized strain tensor,
E(y) is the electric field, A and B are the viscosity and elasticity operators,
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respectively, £ = (e;;) represents the third-order piezoelectric tensor, £* is
its transpose and B denotes the electric permittivity tensor. We recall that
gij(u) = (u;j; +uj;)/2 and E(p) = =V ¢ = —(¢,;). Also, the tensors £ and
E* satisfy the equality

Eo-v=0 - Vo €S%, v eRY,

and the components of the tensor £ are given by e}, = ex;;. Equation (2.1)
indicates that the mechanical properties of the materials are described by a
viscoelastic Kelvin-Voigt constitutive relation (see [9] for details) which takes
into account the dependence of the stress field on the electric field. Relation
(2.2) describes a linear dependence of the electric displacement field D on
the strain and electric fields; such a relation has been frequently employed in
the literature (see, e.g., [6, 7] and the references therein).

Next, equations (2.3) and (2.4) are the balance equations for the stress
and electric-displacement fields, respectively, in which “Div” and “div” denote
the divergence operators for tensor and vector valued functions, i.e. Divo =
(04j,5), div.D = (D; ;). We use these equations since the process is assumed
to be quasistatic.

Conditions (2.5) and (2.6) are the displacement and traction boundary
conditions, whereas (2.7) and (2.8) represent the electric boundary condi-
tions; these conditions show that the displacement field and the electrical
potential vanish on I'; and I',, respectively, while the forces and free electric
charges are prescribed on I'y and 'y, respectively. Also, (2.12) represents the
initial condition in which wg is the given initial displacement field.

We turn to the boundary conditions (2.9)—(2.11), already used in [5],
which describe the mechanical and electrical conditions on the potential con-
tact surface I's; there, g represents the gap in the reference configuration
between I's and the foundation, measured along the direction of v, and g
denotes the electric potential of the foundation.

First, (2.9) represents the normal compliance contact condition in which
P, is a prescribed nonnegative function which vanishes when its argument
is negative and h, is a positive function, the stiffness coefficient. Equality
(2.9) shows that when there is no contact (i.e. when u, < g) then o, =0
and therefore the normal pressure vanishes; when there is contact (i.e. when
uy > g) then o, < 0 and therefore the reaction of the foundation is towards
the body.

Condition (2.10) is the associated friction law where p; is a given function
and h; is the coefficient of friction. According to (2.10) the tangential shear
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cannot exceed the maximum frictional resistance h. (¢ — o) pr(u, — g), the
so-called friction bound. Moreover, when sliding commences, the tangential
shear reaches the friction bound and opposes the motion.

Frictional contact conditions of the form (2.9), (2.10) have been used
in the study of various piezoelectric contact problems, see, e.g. [11, 17|
and the references therein. Unlike these references, we assume here that
the stiffness coefficient h, and the coefficient of friction h; depend on the
difference between the potential on the foundation and the body’s surface.

Finally, (2.11) is a regularized electrical contact condition on I's, similar
to that already used in [3, 4, 5, 11|. Here p. represents the electrical con-
ductivity coefficient, which vanish when its argument is negative, and h. is a
given function. Thus, condition (2.11) shows that when there is no contact
at a point on the surface (i.e. when u, < g) then the normal component of
the electric displacement field vanishes, and when there is contact (i.e. when
u, > g) then there may be electrical charges which depend on the difference
between the potential of the foundation and the body’s surface.

Because of the frictional condition (2.10), which is non-smooth, we do
not expect the problem to have, in general, any classical solutions. For this
reason, we derive in the next section a variational formulation of the problem,
then we investigate its weak solvability.

3 Variational formulation

We turn now to the variational formulation of the problem and, to this end,
we need additional notation and preliminaries. We use standard notation
for the LP and the Sobolev spaces associated with Q and I'; moreover, for
a function ¥ € HY(Q) we still write ¥ to denote its trace on I'. Besides
the space L4()? endowed with the canonic inner product (-, -) ra(q)e and the
associated norm || -{|L4(q)a, for the unknowns of Problem P we use the spaces

Q={7=(r): my=m€ LX)},
V={veH)?: v=0 on I},
W={yecH(Q): ¢v»=0 on T, }.

The space @ is a real Hilbert space endowed with the inner product

(O',T)Q/O'ijﬂ'jdl‘
Q
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and the associated norm || - [|g. Also, since measI'y > 0 and measT'y > 0, it
is well known that V and W are real Hilbert spaces endowed with the inner
products

(u7 U)V = (E(u)7€(v))Q7 (907¢)W = (V% Vf‘/})Lz(Q)d

and the associated norms || - ||y and || - ||w, respectively. Moreover, by the
Sobolev trace theorem, there exists two positive constants ¢y and ¢y which
depend on €, I'y and I's such that

[0llr2rge < collvlly Vo eV, ([lzmy,) <colvllw VoeW. (3.1)

Finally, if (X,| - ||lx) represents a real Banach space, we denote by
C([0,7); X) and C1([0, T]; X) the spaces of continuous and continuously dif-
ferentiable functions on [0, 7] with values on X, with the norms

= t
e o,77:x) e ()] x,

x .x) = max ||x(t + max ||ax(t .

Il o) = mase [2(0)]x + max e (0)]x
Recall that, here and below, the dot represents the derivative with respect
to the time variable.

In the study of the mechanical problem (2.1)—(2.12) we assume that the
viscosity operator A, the elasticity operator 13, the piezoelectric tensor £ and
the electric permittivity tensor 3 satisfy

((a) A: QxS? — §9,

(b) There exists L4 > 0 such that
A, €,) — Az, £)]| < Lallé; — &
VELE, €S ae Q.

(c) There exists m_4 > 0 such that
(A, &) — A, &,)) - (&1 — &) > mall€, — &l
VE € €SY ae e

(d) The mapping ® — A(x, &) is Lebesgue measurable on §2,
for any & € S%.

(e) The mapping « — A(x, 0) belongs to Q.

(3.2)
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(a) B: Q xS — s,
(b) There exists Lg > 0 such that

1B(,€,) — Bla,&,)|| < L€, — &

VE & € Sd, a.e. ¢ € . (3.3)
(¢) The mapping x — B(x, £) is measurable on €2,

for any & € S%.

(d) The mapping x — B(x,0) belongs to Q.

(a) £: QxS — R4
(b) E(x,T) = (eijr(x)TjK) VT = (T45) € St ae xcQ.  (34)
(c) eijk = eik; € L(Q).

(a) B: QxR — RY.

(b) B(z, E) = (8;j()E;) VE = (E) € R, ae zcq.

(c) Bij = Bji € L=(Q). (3.5)
(d) There exists mg > 0 such that B;(z)E;E; > mg| E|?

VE = (E;) € R%, ae. x Q.
The functions p, and h, (for r = v, 7, e) are such that

(a) pr: '3 x R — R.
(b) There exists L, > 0 such that
Ipr(,u1) — pr(x,uz)| < Lplup — ug| Yuy, us € IR, ae. x € Ts.
(c) There exists p, > 0 such that (3.6)
0<p(x,u) <P, Vue R, ae. xels.
(d) The mapping « — p,(x,u) is measurable on I's, for any u € IR.
(e) pr(x,u) =0 Yu<0, ae. x el

( (a) hy : I's xR — IR, forr=v, 7, e.
(b) There exists I, > 0 such that
|he(®,01) = ho (@, 02)| < lr|p1 — 2
Vo1, p2 € R, ae. x € 's, forr=v, 7, €.
(c) There exists h, > 0 such that
0<hp(x,0) <h.VoeR, ae. ¢ €Iz, forr=v, .
(d) There exists he > 0 such that
|he(z,0)| < he Vo € R, ae. x € 3.
(e) The mapping @ +— h,(x,u) is measurable on I's,
for any ¢ € R, for r =v, 7, e.

(3.7)
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The forces, tractions, volume and surface free charge densities satisfy
foe C(O.THLXQ)Y),  fo€C(0.TL*T2)Y),  (3.8)
@ € C(0, T} L*(Q)),  a € C(10,T]; L*(I'y)). (3.9)

Finally, we assume that the gap function, the potential of the foundation
and the initial displacement satisfy

ge L*T3), ¢g>0 ae onls, (3.10)
o € L*(T), (3.11)
wy € V. (3.12)

Next, we define the four mappings J : WxVxV - R, G: VW xW —
R, f:[0,7] — V and ¢ : [0,T] — W, respectively, by

J(Q‘% u, ’U) = /F hV(‘:D - @O)pl/(ul/ - g)vl/ da (313)
+ /F he(2 = 00) pr (uy — )| | da

G(u’ P, 7/}) = /1_‘ pe(uu - g) he((,D - 900)711) dav (3'14)

(F(),0)v = /Q folt)-vde+ [ £0)-vda, (3.15)

mmwwzéwmwM—Aqum, (3.16)

for all u, v € V, ¢, € W and ¢ € [0,7]. We note that the definitions of
f and q are based on the Riesz representation theorem; moreover, it follows
from assumptions (3.6)—(3.11) that the integrals in (3.13)-(3.16) are well-
defined and, in addition

fec(o,1;Vv), (3.17)
q € C([0,T]; W). (3.18)
Finally, assumptions (3.6) and (3.7) combined with (3.1) yield
J(p1,u1,v2) — J(1,u1,v2) + J (92, u2,v1) — J (2, u2,v2) (3.19)
< c(llor = p2llw + [[ur — wsllv)llvr — vallv),

G(Ul,@lﬂf)) - G(u27§02)¢) (320)
< (coloLphellur — us|v + &lePeller — w2llw)l[¢llw,
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for all uy, ug, v1, v2 €V, @1, 2, ¥ € W, where ¢ > 0.

Using integration by parts, it is straightforward to see that if (u, o, p, D)
are sufficiently regular functions which satisfy (2.3)-(2.11) then

(a(t),e(v) —e(u(t))q + J(p(t), u(t),v) — J(p(t), u(t),u(t)) (3.21)
> (f(t), a(t) —v)v,

(D), V) r2(ea + (q(t), V)w = G(u(t), ¢(t)), ¥), (3.22)
forallv € V, ¢ € W and t € [0,T]. We substitute (2.1) in (3.21), (2.2)
in (3.22), note that E(p) = —V and use the initial condition (2.12). As a
result we obtain the following variational formulation of problem P.

Problem Py. Find a displacement field w : [0,T] — V and an electric
potential ¢ : [0,T] — W such that

(Ae(a(t)), e(v) —e(n(t)))q + (Be(u(t)), e(v) — e(u(t)))q (3.23)
+(EV(t),e(v) —e(u(t))q + J(p(t), u(t), v) — J(p(t), u(t), u(t))
= (f(t),v—u(t))v,
forallv eV andt € (0,7,
(BVo(t), V) 12(qya — (Ee(u(t)), Vi) 2 (q)a (3.24)
+G(u(t), p(1), %) = (a(t), ¥)w,

for allyy € W and t € [0,T], and

u(0) = uyg. (3.25)

To study problem Py we make the smallness assumption
Elep. < mpg, (3.26)

where ¢, l¢, P, and mg are given in (3.1) (3.7), (3.6) and (3.5), respectively.
We note that only the trace constant, the Lipshitz contant of h., the bound
of pe and the coercivity constant of 3 and are involved in (3.26); therefore,
this smallness assumption involves only the geometry and the electrical part,
and does not depend on the mechanical data of the problem. Moreover, it is
satisfied when the obstacle is insulated, since then p. = 0 and so p, = 0.

Our main existence and uniqueness result that we state now and prove
in the next section is the following.
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Theorem 1. Assume that (3.2)~(3.12) and (3.26) hold. Then Problem Py
has a unique solution which satisfies

ue CL0,T);V), ¢eC(0,T];W). (3.27)

A quadruple of functions (u, o, ¢, D) which satisfies (2.1), (2.2), (3.23)—
(3.25) is called a weak solution of the piezoelectric contact problem P. It
follows from Theorem 1 that, under the assumptions (3.2)-(3.12), (3.26),
there exists a unique weak solution of Problem P. To precise the regularity
of the weak solution we note that the constitutive relations (2.1) and (2.2),
assumptions (3.2)-(3.5) and regularity (3.27) imply that

oecC(0,T:Q), DecC(0,T);L*(Q)). (3.28)

Moreover, using again (2.1), (2.2) combined with (3.23), (3.24) and the no-
tation (3.13)—(3.16), after standard arguments we obtain that Dive(t) +
fo(t) = 0 and div D(t) = qo(t), for all t € [0,7]. It follows now from the
regularity (3.8) and (3.9) that

Dive € C([0,T]; L>()%),  divD e C([0,T]; L*(Q)). (3.29)

We conclude that the weak solution (u, o, ¢, D) of the piezoelectric contact
problem P has the regularity (3.27)-(3.29).

4 Proof of Theorem 1

We turn now to the proof of Theorem 1 which will be carried out in several
steps. We assume in what follows that (3.2)-(3.12) and (3.26) hold and,
everywhere below, we denote by ¢ various positive constants which are inde-
pendent on time and whose value may change from line to line. We consider
the product space X =V x W together with the inner product

($,y)X = (uvv)V + (@7¢)W Vo = (UaSO)a Y= (’U,l/)) eX

and the associated norm || - ||x. Let n = (n;,12) € C([0,T], X) be given. In
the first step, we consider the following intermediate problem.

Problem sz‘sp_ Find a displacement field w, : [0,T] — V such that
(Ae(ty (1)), €(v) — e(uy(t)))q + (Be(ni (), e(v) — e(iy(t))e  (4.1)
H(E V() e(v) — ey (1)) + J(12(t), m (1), v)
_J("?2(t)7771(t)’u?7(t)) > (f(t)vv - Tln(t))v Vv e V7 te [O’T]v
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uy(0) = ug. (4.2)

disp

In the study of the variational problem P, ™" we have the following result.

Lemma 1. There ezists a unique solution u, € C1([0,T],V) to the problem
(4.1)—(4.2). Moreover, if uy and uy are two solutions of problem (4.1)—(4.2)
corresponding to the data n* = (ni,n), n? = (n?,n3) € C([0,T),X) then
there exists ¢ > 0 such that

[ () — w2 (t)[lv < cllni(t) —ma(t)[x Vi e[0,T]. (4.3)

Proof. We use classical results on elliptic variational inequalities (see [9,
p. 60]) to deduce that, for each ¢t € [0,7], there exists a unique element
vy (t) € V such that

(Ae(wy(t), e(v) — e(vy(t))q + (Be(n:(t)), e(v) — e(vy(t)))q (4.4)
H(EV(t),e(v) —e(vy(t)))q + J(n2(t), 1 (1), v)
—J(12(t), 1 (), vy (1)) = (F (), v —vy(t))y VveV.

Let t1, ty € [0,T]; using (4.4) for t = t; and t = t9, we easily derive the
inequality

(Ae(vy(t1)) — Ae(vy(ta)), e(vy(t1)) — e(vy(t2)))q
< (Be(ny(t1)) — Be(my(t2)), €(vy(t2)) — e(vy(t1)))q +
+(E*Vna(t1) — EVipa(ta), e(vy(t2)) — e(vy(t1)))q
+J(2(t1), M1 (t1), vy (t2)) — J(ma2(t1), 1 (t1), vy (t1))
+J(n2(t2), m1(t2), vy (t1)) — J(n2(t2), M1 (t2), vy (t2))
+(f(t1) = f(t2), vy(t1) — vy(t2))v.

Then, we use assumptions (3.2), (3.3), (3.4) and (3.19) to obtain

vy (t1) — vp(t2)llv < c(llny(t1) — ni(t2)llv (4.5)
Flm2(tr) —na(ta)lw + | f (t1) — £ (t2)[lv).

From (4.5), (3.17) and the regularity of 7 it follows that v, € C([0,77;V).
Let w, : [0,7] — V be the function defined by

u,(t) = /0 vy (s) ds + ug, vt € [0,T]. (4.6)
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It follows from (4.6) and (4.4) that u, is a solution of Problem 77767%8” and,
moreover, u, € C'([0,T];V). This proves the existence part of Lemma 1.
The uniqueness part follows from the unique solvability of the variational
inequality (4.4) at each t € [0,T].

Let now denote by u; and wus the solutions of problem (4.1)—(4.2) cor-
responding to the data n'* = (ni,nd), n? = (n?,n3) € C([0,T], X) and let
U] = v1, Uz = vy. Arguments similar to those used in the proof of (4.5) lead
to

() = ax@®)llv < e(Imi(t) = mi@®llv + Iz (t) = 3 @)llv) Yt € [0,7],
which shows that (4.3) holds. 0

In the next step we use the solution u,, € C1([0,T], V') obtained in Lemma
1 to construct the following variational problem.

Problem PgOt. Find an electric potential field o, : [0,T] — W such that

(BVoy(t), Vib) r2qpa — (Ee(uy(t)), Vi) 120 (4.7)
+G(uy(t),m2(t),¥) = (¢(t), )w VY e W, t €0, T]

The well-posedness of the problem 77777’“ is given by the following result.

Lemma 2. There exists a unique solution @, € C([0,T); W) which satisfies
(4.7). Moreover, if uy, us and p1, @2 are two solutions of of (4.1)-(4.2) and
(4.7), respectively, corresponding to ny, ny € C([0,T]; X), then there exists
c > 0 such that

[p1(t) — p2(B)lw < cllui(t) —ua(t)|lv (4.8)

GlePe 1 1 2 v T
+=—n () —n"@)llx Vvtel0,T].
mg

Proof. It follows from (3.5) that the bilinear form
a((ﬂ, ¢) = (16ng7 v¢)L2(Q)d (49)

is continuous, symmetric and coercive on W. Moreover, using (3.18), (3.20),
assumption (3.4) on the piezoelectric tensor £ and the regularity w, €
C1([0,7]; V), it follows that the function g, : [0,7] — W, given by

(gn(2), V)w = (q(t), )w + (Ee(uy(t)), V) £2(q)a (4.10)
—G(uy(t),m(t),) Vo eW, tel0,T],
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is continuous. The existence and uniqueness part in Lemma 4.3 is now a
straight consequence of the well-known Lax-Milgram theorem applied to the
time-dependent variational equation

alp(t), V) = (qn(t),¥) Ve W, te[0,T],

combined with the equalities (4.9), (4.10). Moreover, the estimate (4.8)
follows from (4.7), (3.4), (3.5) and (3.20). O

We now consider the operator A : C'([0,7]; X) — C([0,T]; X) defined by
An(t) = (uy(t), ¢4(t))  Vn e C([0,T]; X)), t €[0,T]. (4.11)
The next step consists in the following result.
Lemma 3. There exists a unique n* € C([0,T]; X) such that An* = n*.

Proof. Let n' = (nl,nd), n* = (03, n3) € C([0,T); X) and, for simplicity,
we use the notation w; and ¢; for the functions u,, and ¢, obtained in
Lemmas 1 and 2, for i« = 1,2. Let t € [0,7]. Using (4.11) and (4.8) we
obtain

él.p,
A" () = An?(t)llq < ellui(t) — w2 (t)llv + (;n;j " () = ()] x- (4.12)
On the other hand, since

t
u;(t) = uo +/ w;(s)ds
0
we have .
Jus () = wa®)lly < [ i (s) = ()l s
0
and, combining this inequality with (4.3), we find
t
[wi(t) —ue(t)|v < c /0 " (¢) — n* ()| x ds. (4.13)

We use now (4.12) and (4.13) to obtain

A5 (®) ~ APl < [ I'(s) = n (o)l ds -+ LB 1 (1) — (1) x.
0 mpg
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The last inequality combined with the smallness assumption (3.26) allows
the use of Corollary 2.1 in [18]; as a result it follows that the operator A has
a unique fixed point, which concludes the proof. O

We have now all the ingredients to prove the Theorem 1.

Existence. Let m* = (n7,n5) € C([0,T]; X) be the fixed point of the
operator A, and let u,«, ¢, be the solutions of problems 73767%8” and Pf;m,
respectively, for § = n*. It follows from (4.11) that u,~ = nJ, ¢,» =15 and
therefore (4.1), (4.2) and (4.7) imply that (w,»~, ¢,~) is a solution of problem
Py. The regularity (3.27) follows from Lemmas 4.2 and 4.3.

Uniqueness. The uniqueness of the solution follows from the uniqueness
of the fixed point of the operator A, given by Lemma 3. a

5 Numerical approach

Discretized problem. Everywhere below we assume that (3.2)-(3.12) and
(3.26) hold. We now introduce a fully discrete scheme to approximate the
solution of Problem Py, provided by Theorem 1. First, we consider two
finite dimensional spaces V" € V and W" C W approximating the spaces
V and W, respectively, in which h > 0 denotes the spatial discretization
parameter. In the numerical simulations presented below, V" and W consist
of continuous and piecewise affine functions, that is,

V= {w" e [C@)]": w e [P(Tr)'VTreT" w"=00nT1}, (5.1)
Wh={"eC@) : ¢ eP(Tr)vTreT", ¢"=0o0nT,}, (5.2)

where  is assumed to be a polygonal domain, 7" denotes a finite element
triangulation of Q, and Py(Tr) represents the space of polynomials of global
degree less or equal to one in T'r. In addition, we consider a uniform partition
of [0,T],0 =ty <t < ... <ty =T, that we use to discretize the time
derivatives and, everywhere in this section, we use the notation k for the
time step size, i.e. k = T/N. Finally, for a continuous function f(t) we
denote f,, = f(t,) and for a sequence {w,}\_, we use dw, = (wp, —w,_1)/k
for the divided differences.

Let ugk be an appropriate approximation of the initial condition .
Then using the backward Euler scheme, the fully discrete approximation of
Problem Py is the following.
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Problem P‘}}k. Find a discrete displacement field u™* = {uhk N —o C K"
and a discrete electric potential "* = {ph*}N_ Wh such that

(Ae(up®), e(w") — e(up?))q + (Be(uph),e(w") — e(uih))q
HEVERF e(w) —e(un)q + J(@nF unt w") = J(o)F upt, dur)
> (f,,w" —u®)y Ywh eV foralln=1,... N,

(ﬂv@zk,vlbh)m( (65‘( ) VZ/) ) Q)d +G( Uy, 790n ) h)
= (gn, V" )w V" e Wh, for all n = 0,...,N.

The existence of a unique solution to Problem P"}k can be obtained by
arguments similar to those presented in Section 4. The solution algorithm
in solving Problem P"}k combines the finite differences method (the back-
ward Euler difference method) with the linear iterations method (the Newton
method). Details on these methods can be find in the monograph [19] and,
therefore, we omit them. Nevertheless, we note that the numerical treatment
of the frictional contact term is based on the use of a penalization method for
the contact part and an augmented Lagrangean method for the non-smooth
friction part, see [19] and [2], respectively.

Numerical simulations. We now present numerical simulations in the
study of a real-world example of Problem P, the microelectromechanical
switches, see [15] for details. Microelectromechanical systems (MEMS) are
being recognized as enabling components to switch or tune radio frequency
(rf) components, modules or systems in manufacturing and operation. In
short, they are referred to as rf-MEMS. Most rf-MEMS involve the ma-
nipulation of air as the dielectric materials. Various designs of capacitive
rf-MEMS switches made out of nickel, aluminium, gold or zinc oxide have so
far been reported in literature, see for instance |1, 8]. The mechanical simu-
lation of switch consists in the following design concept: the switch design is
based on a suspended metal bridge (zinc oxyde in our example) which con-
nects two grounds of a coplanar wave-guide and crosses over a signal line on
which a dielectric foundation is deposited. When an external force is acting,
this action pulls the metal bridge down and contacts the dielectric, which
results in a low impedance between signal line and ground line for shunting
high-frequency signal transmission.

To describe this example, we consider an electro-viscoelastic body ex-
tended indefinitely in the direction X; of a cartesian coordinate system
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(O,X1,X5,X3). The material used is assumed to be a linearly isotropic
piezoceramic with hexagonal symmetry like zinc oxyde material (class 6mm
in the international classification [10]) which presents a viscous behavior. In
the crystallographic frame, the Xs-direction is a six-fold revolution symme-
try axis and the (X;0X3) and (X20X3) planes are mirrors. The electrical
and mechanical loads applied to the body are supposed to be constant along
the X7 direction. As a consequence, the fields E, D, € and o turn out to be
constant along X;. In addition, we suppose that €11 =0, €19 =0, €13 =0
and Dy = 0, i.e. we consider a plane problem. Under these assumptions, the
unknown of our electro-viscoelastic contact problem is the pair (u, ) where
the displacement field u = (ug, ug) belongs to the plane (O, Xa, X3).

Assume that the viscosity and elasticity operators are linear and denote
by a;jr and b;jp; their components, i.e. A = (ajjn) and B = (bjjr;). Then,
in the system (O, X3, X3), the constitutive equations (2.1) and (2.2) can be
written by using the following compressed matrix notation,

092 baa b2z 0O 0 €32 €92
033 baz b3z 0O 0 €33 €33
0923 == 0 0 b44 €24 0 2623 (5.3)
Dy 0 0 ey —f 0 —Ey
D3 ez2 e33O0 0 —f33 — L3
azge a3 0 0 0 €22
azs asz3 0 0 0 £33
+ 0 0 ag44 0 0 2é23
0 0 0O 0 O —Fy
0 0 0O 0 0 —F3
1 /0w 0Ou;
Here ¢;; = = Yi 9% ) and note that equation (5.3) is obtained by the
2 8m]~ &T,
identification
bao baz 0 azy asz 0
bijki = bpg = | bag b33 0O y Qijkl = Gpg = | a2z azz 0 ;
0 0 b44 0 0 a4q4,

with the rule
ijorkl=22 — porgq=2,
ijorkl=33 — porq=3,
ijorkl=230r32 — porqg=4.
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This rule, which allows to describe the link between the fourth-order tensors
of components b;;r; and a5, and the corresponding second-order tensors of
components by, and a,g, respectively, is obtained by using the symmetries of
the various tensors involved in the constitutive law. In the same way, for the
third order piezoelectric tensor we have

00 . jk=22 — ¢=2,
eijkzeiq:< 24> with jk=33 — ¢=3,
ez e 0 jk=230r32 — q=4.

We use the material constants given in Tables 1 and 2, in which €,8.885 x
1071202 /Nm? represents the permittivity constant of the vacuum.

Elastic (GPa) Viscoelastic (GPa - s)

boo | baz | b33 | baa | @22 | @23 | as3 | aa
210 | 105 | 211 | 425 | 2.1 | 1.05 | 2.11 | 0.425

Table 1: Elastic and viscoelastic constants of the piezoelectric body.

Piezoelectric (C/m?) | Permittivity (C?/Nm?)

e32 | €33 €24 Ba2/ €0 B33/ €0
-0.61 | 1.14 | -0.59 -8.3 -8.8

Table 2: Electric constants of the piezoelectric body.

2]

19

NConductive foundation N

Figure 1: Physical setting of MEMS : an electroelastic body in contact with
a conductive obstacle.

As a two-dimensional example, we consider the physical setting depicted
in Figure 1, where Q = [0,12] x [0,2], Iy =T, = ({0} x [0,2])U ({12} x [0, 2]),
Iy =T, = ([0,12] x {2}) U ([0,2] x {0}) U ([10,12] x {0}), and the potential
contact surface is I'; = [2,10] x {0}. The body is subjected to the action
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of surface pression fo = (0, —5)N/pm which acts on the top of the bridge,
i.e. on [0,12] x {2}; the body forces and electric charges vanish, i.e. f, =
ON/um?, qo = 0C/pum? and q, = 0C/um; and the gap between the body
and the foundation is g = 0.5um. The functions h, and p, (r = v, 7) in the
frictional contact conditions (2.9) and (2.10) are given by

Q if |s| > 128,
hr(S) = Cr X ‘S| .
L+ (o — 1) x 155 if [s] <128,
0 if s <0,
pr(s)=< s if0<s<m,,

n,. if s> n,,

where ¢, a, and n, are positive constants, a,. > 1. And, finally, for the
regularized electrical condition (2.11) we take

—me if 8 < —my, 0 if s<0,
he(s) =% s if —me<s<me, Pe(s) = ke X é if 0 <s<e,
Me if 8> me 1 if s > e,

where m., k. and ¢, are positive constants.

stick

slip + slip -

Figure 2: Sequence of deformed meshes and corresponding contact forces.

Our interest in this piezoelectric contact model is to study the influence
of the electric potential of the foundation on the process. Our results are
presented in Figures 2—6, in which we use the notation ¢g = —pg and k = k..
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In Figure 2 we plot a sequence of deformed meshes with the corresponding
contact interface forces and the contact status, obtained for four different
values of the electric potential of the foundation: ¢g = —¢g, where ¢ takes
successively the values 256, 64, 16 and 0. It results from the figure that
the deformations and the magnitude of the contact forces decrease when ¢
decreases, i.e. when the magnitude of the electric potential of the foundation
decreases.

According to Figure 3 we note that, for k given, the magnitude of the
normal electric displacement increases with ¢g. A similar behavior follows
from Figure 4 which shows that, for a given ¢g, the magnitude of the normal
electric displacement increases with the electrical conductivity coefficient k.
These results are compatible with the electrical boundary condition we use on
the contact surface and show the effect of the conductivity of the foundation
on the process.

.50 ||

-100 —

Dv

*® k=1
B 501|122 0s T
-150 e k=025
[ |** k=0125
o~ k=0.0625

75

=

=0.03125 —
— k=0.015625
=0.0078125
*® k=0

gsol— 11 qob—/—r———
0 2 4 6 8 10 12 0 2 4 6 8 10 12

X, axis X, axis

-200

=

Figure 3: Dependence of the nor-
mal electric displacement D-v with
respect to ¢q, for k = 1.

Figure 4: Dependence of the nor-
mal electric displacement D-v with
respect to k, for ¢ = 128.

Finally, Figure 5 shows the electric potential in the body whereas Figure
6 represents the electric displacement fields in the deformed configuration,
for four different values of the potential of the foundation, corresponding to
Po = 256, ¢g = 64, ¢g = 16 and ¢g = 0. According to Figures 5 and 6, we
note that the magnitude of the electric potential and the magnitude of the
electric displacement increase on the contact interface, when the magnitude
¢¢ of the potential of the foundation increases.

We conclude that our simulations above underline the effects of the elec-
trical conductivity of the foundation on the frictional contact process. Per-
forming these simulations we found that the numerical solution worked well
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Figure 6: Sequence of deformed meshes and corresponding electric displace-
ment fields.

and the convergence was rapid.
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