TOEPLITZ OPERATORS WITH BOUNDED HARMONIC SYMBOLS*

Swarupa Roy[†] Namita Das[‡]

DOI https://doi.org/10.56082/annalsarscimath.2022.1-2.166

Abstract

In this paper we have shown that if $\phi \in h^{\infty}(\mathbb{D})$ and $T_{\phi}^{(\alpha)}$ is the Toeplitz operator with symbol ϕ defined on the weighted Bergman space $L_a^2(dA_{\alpha})$ and if the set $\left\{\left(T_{\phi}^{(\alpha)}\right)^*T_{\phi}^{(\alpha)}f,\left(T_{\phi}^{(\alpha)}\right)^*f,T_{\phi}^{(\alpha)}f,f\right\}$ is linearly dependent for all $f \in L_a^2(dA_{\alpha})$ then either ϕ is a constant function or there exists $\lambda_{\alpha},\mu_{\alpha}\in\mathbb{C}$ such that $\frac{\phi-\mu_{\alpha}}{\lambda_{\alpha}}$ is a real-valued function in $h^{\infty}(\mathbb{D})$. Here $h^{\infty}(\mathbb{D})$ is the set of all bounded harmonic functions on the open unit disk \mathbb{D} .

MSC: 47B38, 47B32

keywords: Weighted Bergman spaces, reproducing kernel, Toeplitz operators, self-adjoint operators, harmonic functions.

1 Introduction

Let $dA(z) = \frac{1}{\pi} dx dy$ be the area measure on the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ in the complex plane \mathbb{C} . It is normalized so that the area of \mathbb{D} is 1. For $\alpha > -1$, let $L^2(\mathbb{D}, dA_{\alpha})$ be the space consisting of all absolutely square-integrable, Lebesgue measurable functions on \mathbb{D} with respect to the measure $dA_{\alpha}(z) = (\alpha + 1)(1 - |z|^2)^{\alpha} dA(z)$, $z \in \mathbb{D}$. The measure dA_{α} is a probability measure on \mathbb{D} . Let $L^2_a(dA_{\alpha})$ be the subspace of all analytic functions of $L^2(\mathbb{D}, dA_{\alpha})$. The space $L^2_a(dA_{\alpha})$ is called the weighted

^{*}Accepted for publication on March 10-th, 2022

[†]swarupa.roy@gmail.com P. G. Dept. of Mathematics, Utkal University, Vani Vihar, Bhubaneswar-751004, Odisha, India

[†]namitadas440@yahoo.co.in P. G. Dept. of Mathematics, P. G. Dept. of Mathematics, Utkal University, Vani Vihar, Bhubaneswar- 751004, Odisha, India

Bergman space of the disk \mathbb{D} . The space $L_a^2(dA_\alpha)$ is a closed subspace of the Hilbert space $L^2(\mathbb{D},dA_\alpha)$ with respect to the inner product defined by $\langle f,g \rangle = \int_{\mathbb{D}} f(z)\overline{g(z)}dA_\alpha(z), \ f,g \in L^2(\mathbb{D},dA_\alpha).$ We shall denote $L_a^2(dA_0) = L_a^2(dA)$, the unweighted Bergman space. The reproducing kernel of $L_a^2(\mathbb{D})$ is given by $K(z,w) = \frac{1}{(1-z\overline{w})^2}$. Let $K_z(w) = \overline{K(z,w)}$. The reproducing kernel of $L_a^2(dA_\alpha)$ is given by $K^{(\alpha)}(z,w) = \frac{1}{(1-z\overline{w})^{\alpha+2}}$ for $z,w \in \mathbb{D}$. Thus $K^{(\alpha)}(z,w) = [K(z,w)]^{1+\frac{\alpha}{2}}$. Let $K_z^{(\alpha)}(w) = [K_z(w)]^{1+\frac{\alpha}{2}} = \overline{K^{(\alpha)}(z,w)}$. The orthogonal projection P_α from space $L^2(\mathbb{D},dA_\alpha)$ onto the space $L_a^2(dA_\alpha)$ is given by $P_\alpha f(z) = \int_{\mathbb{D}} K^{(\alpha)}(z,w)f(w)dA_\alpha(w)$. Let $k_z(w) = \frac{(1-|z|^2)}{(1-w\overline{z})^2}, \ z,w \in \mathbb{D}$. The functions $k_z^{1+\frac{\alpha}{2}}(w) = \left[\frac{(1-|z|^2)}{(1-w\overline{z})^2}\right]^{1+\frac{\alpha}{2}} = \frac{(1-|z|^2)^{1+\frac{\alpha}{2}}}{(1-w\overline{z})^{2+\alpha}}, \ z,w \in \mathbb{D}$ are the normalized reproducing kernels of the space $L_a^2(dA_\alpha)$. Let $L^\infty(\mathbb{D},dA)$ denote the Banach space of Lebesgue measurable functions f on \mathbb{D} with $\|f\|_\infty = ess\ sup\{|f(z)|: z \in \mathbb{D}\} < \infty$ and $H^\infty(\mathbb{D})$ be the space of bounded analytic functions on \mathbb{D} . Let $h^\infty(\mathbb{D})$ be the space of all bounded harmonic functions on \mathbb{D} .

For any $z \in \mathbb{D}$, let ϕ_z be the analytic mapping on \mathbb{D} defined by $\phi_z(w) = \frac{z-w}{1-\overline{z}w}, w \in \mathbb{D}$. An easy calculation shows [5] that the derivative of ϕ_z at w is equal to $-k_z(w)$. It follows that the real Jacobian determinant of ϕ_z at w is $J_{\phi_z}(w) = |k_z(w)|^2 = \frac{(1-|z|^2)^2}{|1-\overline{z}w|^4}$. Given a function $\phi \in L^\infty(\mathbb{D})$, we define the Toeplitz operator $T_\phi^{(\alpha)}$ on the space $L_a^2(dA_\alpha)$ by $T_\phi^{(\alpha)}f = P_\alpha(\phi f), f \in L_a^2(dA_\alpha)$. The operator $T_\phi^{(\alpha)}$ is called the Toeplitz operator with symbol ϕ . Since $\|P_\alpha\| \leq 1$, hence $\|T_\phi^{(\alpha)}\| \leq \|\phi\|_\infty$. The Toeplitz operator $T_\phi^{(\alpha)}$ can also be written as,

$$T_{\phi}^{(\alpha)}f(z) = \int_{\mathbb{D}} \phi(w)K^{(\alpha)}(z,w)f(w)dA_{\alpha}(w) = \int_{\mathbb{D}} \frac{\phi(w)f(w)}{(1-z\overline{w})^{\alpha+2}}dA_{\alpha}(w).$$

Let $\mathcal{L}\left(L_a^2(dA_\alpha)\right)$ be the space of all bounded linear operators from the weighted Bergman space $L_a^2(dA_\alpha)$ into itself. An operator $T \in \mathcal{L}\left(L_a^2(dA_\alpha)\right)$, the numerical range W(T) of T is defined by

$$W(T) = \left\{ \langle Tf, f \rangle : f \in L_a^2(dA_\alpha), ||f|| = 1 \right\}.$$

The numerical radius of $T \in \mathcal{L}\left(L_a^2(dA_\alpha)\right)$, denoted by w(T), is defined by $w(T) = \sup\{|\lambda| : \lambda \in W(T)\}$. It is well-known that $w(\cdot)$ defines a norm on $L_a^2(dA_\alpha)$, and is equivalent to the usual operator norm given by, ||T|| =

168 S. Roy, N. Das

 $\sup\{\|Tf\|: f\in L^2_a(dA_\alpha), \|f\|=1\}. \text{ In fact, for every } T\in \mathcal{L}\left(L^2_a(dA_\alpha)\right),$

$$\frac{1}{2}||T|| \le w(T) \le ||T||. \tag{1.1}$$

For details see [3]. Define $B_{\alpha}: \mathcal{L}(L_a^2(dA_{\alpha})) \longrightarrow L^{\infty}(\mathbb{D})$ by $B_{\alpha}(T)(z) = \left\langle Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \right\rangle, \ z \in \mathbb{D}$. Since

$$|B_{\alpha}(T)(z)| = \left|\left\langle Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}}\right\rangle\right| \le ||T|| \left||k_z^{1+\frac{\alpha}{2}}\right||^2 = ||T||,$$

hence $||B_{\alpha}(T)|| \leq ||T||$. The map B_{α} is linear and one-one. For more details refer [4].

It is not so difficult to see that if $\phi \in H^{\infty}(\mathbb{D})$, $z \in \mathbb{D}$ then $\left(T_{\phi}^{(\alpha)}\right)^{*}k_{z}^{1+\frac{\alpha}{2}}$ and $k_{z}^{1+\frac{\alpha}{2}}$ are linearly dependent. In this work, we have established that if $\phi \in h^{\infty}(\mathbb{D})$ and if the set $\left\{\left(T_{\phi}^{(\alpha)}\right)^{*}T_{\phi}^{(\alpha)}f,\left(T_{\phi}^{(\alpha)}\right)^{*}f,T_{\phi}^{(\alpha)}f,f\right\}$ is linearly dependent for all $f \in L_{a}^{2}(dA_{\alpha})$ then either ϕ is a constant function or there exists $\lambda_{\alpha}, \mu_{\alpha} \in \mathbb{C}$ such that $\frac{\phi - \mu_{\alpha}}{\lambda_{\alpha}}$ is a real-valued harmonic function in $h^{\infty}(\mathbb{D})$.

The plan layout of this paper is as follows. In section 2, we proved some preliminary lemmas. We showed that if $z \in \mathbb{D}$ and Θ_z is the projection onto $span\left\{k_z^{1+\frac{\alpha}{2}}\right\}$ then the operator $T \in \mathcal{L}\left(L_a^2(dA_\alpha)\right)$ is normal if and only if $\|(I-\Theta_z)T\Theta_z\| = \|(I-\Theta_z)T^*\Theta_z\|$ for all $z \in \mathbb{D}$. Further, we have shown that if $T \in \mathcal{L}\left(L_a^2(dA_\alpha)\right)$ is a normal operator, $\Theta_{z,T}$ is the projection onto $span\left\{k_z^{1+\frac{\alpha}{2}}, Tk_z^{1+\frac{\alpha}{2}}\right\}$ and $\|(I-\Theta_{z,T})T\Theta_{z,T}\| = \|(I-\Theta_{z,T})T^*\Theta_{z,T}\|$ for all $z \in \mathbb{D}$, then the set $\{T^*Tk_z^{1+\frac{\alpha}{2}}, T^*k_z^{1+\frac{\alpha}{2}}, Tk_z^{1+\frac{\alpha}{2}}\}$ is linearly dependent for all $z \in \mathbb{D}$. In section 3, we established the main results of the paper. We have shown that if $T \in \mathcal{L}\left(L_a^2(dA_\alpha)\right)$ is normal and if the set of vectors $\{T^*Tf, T^*f, Tf, f\}$ is linearly dependent for all $f \in L_a^2(dA_\alpha)$, then $B_\alpha(T)(z) = \lambda_\alpha\psi_\alpha(z) + \mu_\alpha$ where $\lambda_\alpha, \mu_\alpha \in \mathbb{C}$ and either $\psi_\alpha = B_\alpha(R)$, $R \in \mathcal{L}\left(L_a^2(dA_\alpha)\right)$ is a self-adjoint operator or $\psi_\alpha = B_\alpha(e^{iK})$ where $K \in \mathcal{L}\left(L_a^2(dA_\alpha)\right)$ is a self-adjoint operator. As a consequence of this result we showed that if $\phi \in h^\infty(\mathbb{D})$, $T_\phi^{(\alpha)}$ is the Toeplitz operator with symbol ϕ defined on $L_a^2(dA_\alpha)$ and if the set $\left\{\left(T_\phi^{(\alpha)}\right)^*T_\phi^{(\alpha)}f, \left(T_\phi^{(\alpha)}\right)^*f, T_\phi^{(\alpha)}f, f\right\}$ is linearly dependent for all $f \in L_a^2(dA_\alpha)$ then either ϕ is a constant function or there exists $\lambda_\alpha, \mu_\alpha \in \mathbb{C}$ such that $\frac{\phi-\mu_\alpha}{\lambda_\alpha}$ is a real-valued harmonic function in $h^\infty(\mathbb{D})$.

2 Preliminaries

In this section, we proved some preliminary lemmas that are needed to prove the main result of the paper. In the following lemma, we shall show that if $\phi \in H^{\infty}(\mathbb{D})$, then $T_{\overline{\phi}}^{(\alpha)} k_z^{1+\frac{\alpha}{2}}$ and $k_z^{1+\frac{\alpha}{2}}$ are linearly dependent.

Lemma 2.1. For any
$$\phi \in H^{\infty}(\mathbb{D})$$
 and $z \in \mathbb{D}$, $T_{\overline{\phi}}^{(\alpha)} k_z^{1+\frac{\alpha}{2}} = \overline{\phi(z)} k_z^{1+\frac{\alpha}{2}}$.

Proof. Notice that for any $g\in L^2_a(dA_\alpha)$ and $z\in \mathbb{D}$, we have $g(z)=\int_{\mathbb{D}}K^{(\alpha)}(z,w)g(w)dA_\alpha(w)$. Further the Toeplitz operator $T^{(\alpha)}_{\overline{\phi}}$ is an integral operator and is given by

$$\left(T_{\overline{\phi}}^{(\alpha)}f\right)(z) = \int_{\mathbb{D}} K^{(\alpha)}(z,w)\overline{\phi(w)}f(w)dA_{\alpha}(w)$$

for $f \in L_a^2(dA_\alpha)$. Now since $\phi \in H^\infty(\mathbb{D})$, we obtain

$$\begin{split} \left(T_{\overline{\phi}}^{(\alpha)}K^{(\alpha)}(\cdot,z)\right)(w) &= \int_{\mathbb{D}} K^{(\alpha)}(w,v)K^{(\alpha)}(v,z)\overline{\phi}(v)dA_{\alpha}(v) \\ &= \overline{\int_{\mathbb{D}} \overline{K^{(\alpha)}(w,v)K^{(\alpha)}(v,z)}\phi(v)dA_{\alpha}(v)} \\ &= \overline{\int_{\mathbb{D}} K^{(\alpha)}(v,w)K^{(\alpha)}(z,v)\phi(v)dA_{\alpha}(v)} \\ &= \overline{K^{(\alpha)}(z,w)\phi(z)} \\ &= \overline{\phi(z)}K^{(\alpha)}(w,z), \end{split}$$

and so $T_{\overline{\phi}}^{(\alpha)}K^{(\alpha)}(\cdot,z)=\overline{\phi(z)}K^{(\alpha)}(\cdot,z)$

Dividing both sides by $\sqrt{K^{(\alpha)}(z,z)}$, we obtain $T_{\overline{\phi}}^{(\alpha)}k_z^{1+\frac{\alpha}{2}} = \overline{\phi(z)}k_z^{1+\frac{\alpha}{2}}$. The result follows.

Lemma 2.2. Fix $\alpha > -1$. Let $z \in \mathbb{D}$ and Θ_z be the projection onto the $span\left\{k_z^{1+\frac{\alpha}{2}}\right\}$. If $T \in \mathcal{L}\left(L_a^2(dA_\alpha)\right)$ then

(i)
$$\|(I - \Theta_z)T\Theta_z\|^2 = \|Tk_z^{1+\frac{\alpha}{2}}\|^2 - \left|\left\langle Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}}\right\rangle\right|^2 = \|Tk_z^{1+\frac{\alpha}{2}}\|^2 - |B_\alpha(T)(z)|^2$$
.

170 S. Roy, N. Das

(ii) If $w(T) \leq \frac{1}{2}$, then

$$||(I - \Theta_z)T\Theta_z|| \le \left(\sqrt{1 - \left|\left\langle Tk_z^{1 + \frac{\alpha}{2}}, k_z^{1 + \frac{\alpha}{2}}\right\rangle\right|^2} + 1\right)^2$$

$$= \left(1 + \sqrt{1 - |B_\alpha(T)(z)|^2}\right)^2.$$

Proof. (i) Notice that

$$||(I - \Theta_z)T\Theta_z|| = \sup_{\|f\|=1} ||(I - \Theta_z)T\Theta_z f||.$$

Let $f=\delta k_z^{1+\frac{\alpha}{2}}+h,\ \delta\in\mathbb{C}$ and where $\left\langle h,k_z^{1+\frac{\alpha}{2}}\right\rangle=0.$ Then

$$||f||^2 = \langle f, f \rangle = \left\langle \delta k_z^{1 + \frac{\alpha}{2}} + h, \delta k_z^{1 + \frac{\alpha}{2}} + h \right\rangle = |\delta|^2 + ||h||^2$$

as $\left\|k_z^{1+\frac{\alpha}{2}}\right\| = 1$. Thus

$$\|(I - \Theta_z)T\Theta_z f\| = |\delta| \|(I - \Theta_z)Tk_z^{1 + \frac{\alpha}{2}}\|.$$

For any vector $f_1 \in L^2_a(dA_\alpha)$, $\Theta_z f_1 = \langle f_1, k_z^{1+\frac{\alpha}{2}} \rangle k_z^{1+\frac{\alpha}{2}}$ and hence

$$\|(I - \Theta_z)T\Theta_z f\|^2 = |\delta|^2 \|Tk_z^{1+\frac{\alpha}{2}} - \langle Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \rangle k_z^{1+\frac{\alpha}{2}} \|^2.$$

Let $Tk_z^{1+\frac{\alpha}{2}}=\beta k_z^{1+\frac{\alpha}{2}}+b$ where $\left\langle b,k_z^{1+\frac{\alpha}{2}}\right\rangle =0.$ Then

$$\left\|Tk_z^{1+\frac{\alpha}{2}}\right\|^2 = |\beta|^2 + \|b\|^2 \text{ or } \|b\|^2 = \left\|Tk_z^{1+\frac{\alpha}{2}}\right\|^2 - |\beta|^2$$

But $|\beta|^2 = \left|\left\langle Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}}\right\rangle\right|^2$ and $b = Tk_z^{1+\frac{\alpha}{2}} - \left\langle Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}}\right\rangle k_z^{1+\frac{\alpha}{2}}$. So

$$||(I - \Theta_z)T\Theta_z||^2 = \sup_{|\delta| \le 1} \left(||Tk_z^{1+\frac{\alpha}{2}}||^2 - |\langle Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \rangle|^2 \right)$$

$$= ||Tk_z^{1+\frac{\alpha}{2}}||^2 - |\langle Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \rangle|^2$$

$$= ||Tk_z^{1+\frac{\alpha}{2}}||^2 - |B_\alpha(T)(z)|^2.$$

(ii) Multiplying T by a unimodular scalar, we may assume that

$$\left\langle Tk_{z}^{1+\frac{\alpha}{2}},k_{z}^{1+\frac{\alpha}{2}}\right\rangle \geq0.$$

Let $C = \frac{T+T^*}{2}$ and $D = \frac{T-T^*}{2i}$. Then by using triangle inequality, we obtain

$$\begin{split} \left\| Tk_{z}^{1+\frac{\alpha}{2}} - \left\langle Tk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle k_{z}^{1+\frac{\alpha}{2}} \right\| &\leq \left\| Ck_{z}^{1+\frac{\alpha}{2}} - \left\langle Ck_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle k_{z}^{1+\frac{\alpha}{2}} \right\| \\ &+ \left\| Dk_{z}^{1+\frac{\alpha}{2}} - \left\langle Dk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle k_{z}^{1+\frac{\alpha}{2}} \right\|. \end{split}$$

But

$$\begin{split} & \left\| Tk_{z}^{1+\frac{\alpha}{2}} - \left\langle Tk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle k_{z}^{1+\frac{\alpha}{2}} \right\|^{2} \\ & = \left\langle Tk_{z}^{1+\frac{\alpha}{2}} - \left\langle Tk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle k_{z}^{1+\frac{\alpha}{2}}, Tk_{z}^{1+\frac{\alpha}{2}} - \left\langle Tk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle k_{z}^{1+\frac{\alpha}{2}} \right\rangle \\ & = \left\| Tk_{z}^{1+\frac{\alpha}{2}} \right\|^{2} - \overline{\left\langle Tk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle} \left\langle Tk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle \\ & - \left\langle Tk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle \left\langle k_{z}^{1+\frac{\alpha}{2}}, Tk_{z}^{1+\frac{\alpha}{2}} \right\rangle + \left| \left\langle Tk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle \right|^{2} \left\| k_{z}^{1+\frac{\alpha}{2}} \right\|^{2} \\ & = \left\| Tk_{z}^{1+\frac{\alpha}{2}} \right\|^{2} - \left| \left\langle Tk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle \right|^{2} - \left| \left\langle Tk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle \right|^{2} \\ & = \left\| Tk_{z}^{1+\frac{\alpha}{2}} \right\|^{2} - \left| \left\langle Tk_{z}^{1+\frac{\alpha}{2}}, k_{z}^{1+\frac{\alpha}{2}} \right\rangle \right|^{2} \end{split}$$

and this also holds for the operators C and D. Further, the operators $C=ReT,\ D=ImT$ are self-adjoint operators and have numerical radius at most $\frac{1}{2}$. This implies by (1.1), $\|T\|\leq 1$. Thus $\|C\|\leq 1$ and $\|D\|\leq 1$. Again $\left\langle Tk_z^{1+\frac{\alpha}{2}},k_z^{1+\frac{\alpha}{2}}\right\rangle\geq 0$ implies that $\left\langle Ck_z^{1+\frac{\alpha}{2}},k_z^{1+\frac{\alpha}{2}}\right\rangle=\left\langle Tk_z^{1+\frac{\alpha}{2}},k_z^{1+\frac{\alpha}{2}}\right\rangle$ and $\left\langle Dk_z^{1+\frac{\alpha}{2}},k_z^{1+\frac{\alpha}{2}}\right\rangle=0$. Hence

$$\left\| Ck_z^{1+\frac{\alpha}{2}} - \left\langle Ck_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \right\rangle k_z^{1+\frac{\alpha}{2}} \right\|^2 = \left\| Ck_z^{1+\frac{\alpha}{2}} \right\|^2 - \left| \left\langle Ck_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \right\rangle \right|^2$$

$$\leq 1 - \left| \left\langle Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \right\rangle \right|^2$$

and

$$\left\| Dk_z^{1+\frac{\alpha}{2}} - \left\langle Dk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \right\rangle k_z^{1+\frac{\alpha}{2}} \right\|^2 = \left\| Dk_z^{1+\frac{\alpha}{2}} \right\|^2 - \left| \left\langle Dk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \right\rangle \right|^2 \le 1.$$

Combining these inequalities, we obtain

$$\begin{split} &\sqrt{\left\|Tk_{z}^{1+\frac{\alpha}{2}}\right\|^{2}-\left|\left\langle Tk_{z}^{1+\frac{\alpha}{2}},k_{z}^{1+\frac{\alpha}{2}}\right\rangle\right|^{2}}=\sqrt{\left\|Tk_{z}^{1+\frac{\alpha}{2}}-\left\langle Tk_{z}^{1+\frac{\alpha}{2}},k_{z}^{1+\frac{\alpha}{2}}\right\rangle k_{z}^{1+\frac{\alpha}{2}}\right\|^{2}}\\ &=\left\|Tk_{z}^{1+\frac{\alpha}{2}}-\left\langle Tk_{z}^{1+\frac{\alpha}{2}},k_{z}^{1+\frac{\alpha}{2}}\right\rangle k_{z}^{1+\frac{\alpha}{2}}\right\|\\ &\leq\left\|Ck_{z}^{1+\frac{\alpha}{2}}-\left\langle Ck_{z}^{1+\frac{\alpha}{2}},k_{z}^{1+\frac{\alpha}{2}}\right\rangle k_{z}^{1+\frac{\alpha}{2}}\right\|+\left\|Dk_{z}^{1+\frac{\alpha}{2}}-\left\langle Dk_{z}^{1+\frac{\alpha}{2}},k_{z}^{1+\frac{\alpha}{2}}\right\rangle k_{z}^{1+\frac{\alpha}{2}}\right\|}\\ &\leq\sqrt{1-\left|\left\langle Tk_{z}^{1+\frac{\alpha}{2}},k_{z}^{1+\frac{\alpha}{2}}\right\rangle\right|^{2}}+1\\ &=1+\sqrt{1-\left|B_{\alpha}(T)(z)\right|^{2}}. \end{split}$$

Lemma 2.3. Let for $z \in \mathbb{D}$, Θ_z be the projection onto span $\left\{k_z^{1+\frac{\alpha}{2}}\right\}$. The operator $T \in \mathcal{L}\left(L_a^2(dA_\alpha)\right)$ is normal if and only if

$$||(I - \Theta_z)T\Theta_z|| = ||(I - \Theta_z)T^*\Theta_z||$$

for all $z \in \mathbb{D}$.

Proof. By Lemma 2.2,

$$\|(I - \Theta_z)T\Theta_z\| = \|(I - \Theta_z)T^*\Theta_z\|$$
 for all $z \in \mathbb{D}$ (2.1)

if and only if

$$\left\| Tk_z^{1+\frac{\alpha}{2}} \right\|^2 - \left| \left\langle Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \right\rangle \right|^2 = \left\| T^*k_z^{1+\frac{\alpha}{2}} \right\|^2 - \left| \left\langle T^*k_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}} \right\rangle \right|^2$$

for all $z \in \mathbb{D}$. That is, if and only if $\left\|Tk_z^{1+\frac{\alpha}{2}}\right\|^2 = \left\|T^*k_z^{1+\frac{\alpha}{2}}\right\|^2$ for all $z \in \mathbb{D}$. But $k_z^{1+\frac{\alpha}{2}} = \frac{K_z^{(\alpha)}}{\|K_z^{(\alpha)}\|}$. Thus (2.1) holds if and only if $\left\|TK_z^{(\alpha)}\right\| = \left\|T^*K_z^{(\alpha)}\right\|$ for all $z \in \mathbb{D}$. That is, if and only if

$$\left\langle T^*TK_z^{(\alpha)}, K_z^{(\alpha)} \right\rangle = \left\langle TT^*K_z^{(\alpha)}, K_z^{(\alpha)} \right\rangle \quad \text{for all } z \in \mathbb{D}.$$
 (2.2)

But (2.2) holds if and only if

$$\left\langle T^*T\left(\sum_{j=1}^n c_j K_{z_j}^{(\alpha)}\right), \sum_{j=1}^n c_j K_{z_j}^{(\alpha)} \right\rangle = \left\langle TT^*\left(\sum_{j=1}^n c_j K_{z_j}^{(\alpha)}\right), \sum_{j=1}^n c_j K_{z_j}^{(\alpha)} \right\rangle$$

for all $z_1, z_2, ..., z_n \in \mathbb{D}$ and $c_1, c_2, ..., c_n \in \mathbb{C}$. Since the set of vectors $\left\{\sum_{j=1}^n c_j K_{z_j}^{(\alpha)} : c_1, c_2, ..., c_n \in \mathbb{C}, z_1, z_2, ..., z_n \in \mathbb{D}\right\}$ is dense in $L_a^2(dA_\alpha)$, hence (2.2) holds if and only if

$$\langle T^*Tf, f \rangle = \langle TT^*f, f \rangle$$
 for all $f \in L_a^2(dA_\alpha)$. (2.3)

But (2.3) holds if and only if T is normal.

Lemma 2.4. Let $f_1, f_2 \in L^2_a(dA_\alpha)$ be such that $||f_1|| = ||f_2|| = 1$ and $\langle f_1, f_2 \rangle = 0$. Let $T \in \mathcal{L}\left(L^2_a(dA_\alpha)\right)$. Let Θ_{f_1, f_2} be the projection onto $span\{f_1, f_2\}$. Let $(I - \Theta_{f_1, f_2})Tf_1 = p$ and $(I - \Theta_{f_1, f_2})Tf_2 = q$. Let $A = ||p||^2$, $B = ||q||^2$ and $C = |\langle p, q \rangle|$. Then

$$\|(I - \Theta_{f_1, f_2})T\Theta_{f_1, f_2}\|^2 = \frac{1}{2}[(A + B) + \sqrt{4C^2 + (A - B)^2}].$$

Proof. We shall calculate the norm $||(I - \Theta_{f_1, f_2})T\Theta_{f_1, f_2}||$. This is obviously attained by vectors in $span\{f_1, f_2\}$. Let $g = \alpha_1 f_1 + \beta_1 f_2 \in span\{f_1, f_2\} = Range \Theta_{f_1, f_2}$. Assume ||g|| = 1. That is, $|\alpha_1|^2 + |\beta_1|^2 = 1$. Then $\Theta_{f_1, f_2}g = g$ and

$$(I - \Theta_{f_1, f_2})T\Theta_{f_1, f_2}g = (I - \Theta_{f_1, f_2})Tg = Tg - \langle Tg, f_1 \rangle f_1 - \langle Tg, f_2 \rangle f_2$$

= $\alpha_1[Tf_1 - \langle Tf_1, f_1 \rangle f_1 - \langle Tf_1, f_2 \rangle f_2] + \beta_1[Tf_2 - \langle Tf_2, f_1 \rangle f_1 - \langle Tf_2, f_2 \rangle f_2]$
= $\alpha_1 p + \beta_1 q$.

Hence

$$\begin{split} &\|(I-\Theta_{f_1,f_2})T\Theta_{f_1,f_2}\|^2 = \sup_{|\alpha_1|^2 + |\beta_1|^2 = 1} \|\alpha p + \beta q\|^2 \\ &= \sup_{|\alpha_1|^2 + |\beta_1|^2 = 1} \left[|\alpha_1|^2 \|p\|^2 + |\beta_1|^2 \|q\|^2 + \alpha_1 \overline{\beta_1} \langle p, q \rangle + \overline{\alpha_1} \beta_1 \langle q, p \rangle \right] \\ &= \sup_{|\alpha_1|^2 + |\beta_1|^2 = 1} \left[|\alpha_1|^2 \|p\|^2 + |\beta_1|^2 \|q\|^2 + 2Re(\alpha_1 \overline{\beta_1} \langle p, q \rangle) \right]. \end{split}$$

Now the supremum will be attained for those values of α_1 and β_1 for which $\alpha_1 \overline{\beta_1} \langle p, q \rangle$ is real and positive. Thus

$$\|(I - \Theta_{f_1, f_2})T\Theta_{f_1, f_2}\|^2$$

$$= \sup_{|\alpha_1|^2 + |\beta_1|^2 = 1} \left[|\alpha_1|^2 \|p\|^2 + |\beta_1|^2 \|q\|^2 + 2|\alpha_1| |\beta_1| |\langle p, q \rangle| \right]$$

$$= \sup_{|\alpha_1|^2 + |\beta_1|^2 = 1} \left[A|\alpha_1|^2 + B|\beta_1|^2 + 2C|\alpha_1| |\beta_1| \right]$$

where $A = ||p||^2$, $B = ||q||^2$ and $C = |\langle p, q \rangle|$. Assume $A \ge B$. For if $A \not\ge B$, then interchange the role of f_1 and f_2 to make it so. Let $t = |\alpha_1|^2$. Then $|\beta_1|^2 = 1 - t$. We then have

$$||(I - \Theta_{f_1, f_2})T\Theta_{f_1, f_2}||^2 = \sup_{0 \le t \le 1} tA + (1 - t)B + 2C\sqrt{t(1 - t)}$$
$$= B + \sup_{0 \le t \le 1} (A - B)t + 2C\sqrt{t(1 - t)}.$$

If $\langle p, q \rangle = 0$, then C = 0 and we have

$$||(I - \Theta_{f_1, f_2})T\Theta_{f_1, f_2}||^2 = \sup_{0 \le t \le 1} B + (A - B)t = A,$$

since we have assumed $A \geq B$. If $C \neq 0$, then

$$||(I - \Theta_{f_1, f_2})T\Theta_{f_1, f_2}||^2 = B + C \sup_{0 \le t \le 1} \frac{A - B}{C}t + 2\sqrt{t(1 - t)}$$
$$= B + C \sup_{0 \le t \le 1} rt + 2\sqrt{t(1 - t)}$$

where $r = \frac{A-B}{C} \ge 0$. The maximum value of the continuous function $\gamma(t) = rt + 2\sqrt{t(1-t)}$, $0 \le t \le 1$ is attained at $m_1 = \frac{1}{2}\left(1 + \frac{r}{\sqrt{4+r^2}}\right)$ and $\gamma(m_1) = \frac{1}{2}\left(r + \sqrt{4+r^2}\right)$. Thus

$$\begin{aligned} \|(I - \Theta_{f_1, f_2})T\Theta_{f_1, f_2}\|^2 &= B + C\gamma(m_1) \\ &= B + \frac{C}{2}\left(r + \sqrt{4 + r^2}\right) \\ &= B + \frac{C}{2}\left[\frac{A - B}{C} + \sqrt{4 + \left(\frac{A - B}{C}\right)^2}\right] \\ &= \frac{1}{2}\left[(B + A) + \sqrt{4C^2 + (A - B)^2}\right]. \end{aligned}$$

If C=0, then $\|(I-\Theta_{f_1,f_2})T\Theta_{f_1,f_2}\|=A$. Thus the last equality holds for any $C\geq 0$. Notice that the expression is symmetric of B and A, so we can drop the restriction $A\geq B$.

Lemma 2.5. Let $T \in \mathcal{L}\left(L_a^2(dA_{\alpha})\right)$ be a normal operator. Let $\Theta_{z,T}$ be

the projection onto span $\left\{k_z^{1+\frac{\alpha}{2}}, Tk_z^{1+\frac{\alpha}{2}}\right\}$. If $\|(I-\Theta_{z,T})T\Theta_{z,T}\| = \|(I-\Theta_{z,T})T^*\Theta_{z,T}\|$ for all $z \in \mathbb{D}$, then the set $\{T^*Tk_z^{1+\frac{\alpha}{2}}, T^*k_z^{1+\frac{\alpha}{2}}, Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}}\}$ is linearly dependent for all $z \in \mathbb{D}$.

Proof. Let $z \in \mathbb{D}$. Assume that $\|(I - \Theta_{z,T})T\Theta_{z,T}\| = \|(I - \Theta_{z,T})T^*\Theta_{z,T}\|$. We shall show that the set $\left\{T^*Tk_z^{1+\frac{\alpha}{2}}, T^*k_z^{1+\frac{\alpha}{2}}, Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}}\right\}$ is linearly dependent. If $Tk_z^{1+\frac{\alpha}{2}} = \lambda k_z^{1+\frac{\alpha}{2}}$ for some $\lambda \in \mathbb{C}$, then the set $\left\{k_z^{1+\frac{\alpha}{2}}, Tk_z^{1+\frac{\alpha}{2}}\right\}$ is linearly dependent. If $k_z^{1+\frac{\alpha}{2}}$ is not an eigenvector of T, then let $g \in L_a^2(dA_\alpha)$, $\|g\| = 1$ and $g \perp k_z^{1+\frac{\alpha}{2}}$ and suppose $g \in span\left\{k_z^{1+\frac{\alpha}{2}}, Tk_z^{1+\frac{\alpha}{2}}\right\} = \mathcal{N}$. We shall first show that the components of $T^*k_z^{1+\frac{\alpha}{2}}$ and T^*g in \mathcal{N}^\perp are linearly dependent. Let

$$\begin{split} Tk_z^{1+\frac{\alpha}{2}} &= \alpha k_z^{1+\frac{\alpha}{2}} + \beta g; \quad T^*k_z^{1+\frac{\alpha}{2}} &= \overline{\alpha} k_z^{1+\frac{\alpha}{2}} + \lambda g + l'; \\ Tg &= \overline{\lambda} k_z^{1+\frac{\alpha}{2}} + \delta g + h; \quad T^*g &= \overline{\beta} k_z^{1+\frac{\alpha}{2}} + \overline{\delta} g + h'. \end{split}$$

This is so, since $\left\langle Tk_z^{1+\frac{\alpha}{2}},g\right\rangle = \overline{\left\langle T^*g,k_z^{1+\frac{\alpha}{2}}\right\rangle}$. Since T is normal, we have $\left\|Tk_z^{1+\frac{\alpha}{2}}\right\|^2 = \left\|T^*k_z^{1+\frac{\alpha}{2}}\right\|^2$. That is, $|\alpha|^2 + |\beta|^2 = |\alpha|^2 + |\lambda|^2 + \|l'\|^2$ or $|\lambda|^2 + \|l'\|^2 = |\beta|^2$. Similarly, since $\|T^*g\| = \|Tg\|$, we obtain $|\lambda|^2 + \|h\|^2 = |\beta|^2 + \|h'\|^2$, and hence $\|l'\|^2 + \|h'\|^2 = \|h\|^2$. Let $A' = \|l'\|^2$, $B' = \|h'\|^2$, $A = \|p\|^2 = 0$ where $p = (I - \Theta_{z,T})Tk_z^{1+\frac{\alpha}{2}}$, $C = |\langle p,h\rangle| = 0$ and $B = \|h\|^2$ where $h = (I - \Theta_{z,T})Tg$, $l' = (I - \Theta_{z,T})T^*k_z^{1+\frac{\alpha}{2}}$, $h' = (I - \Theta_{z,T})T^*g$, $C' = |\langle l',h'\rangle|$. Then $A' + B' = \|l'\|^2 + \|h'\|^2 = \|h\|^2 = B$. Now the equation

$$||(I - \Theta_{z,T})T\Theta_{z,T}|| = ||(I - \Theta_{z,T})T^*\Theta_{z,T}||$$

can be written as

$$\frac{1}{2}(A'+B') + \frac{1}{2}\sqrt{4C'^2 + (A'-B')^2} = \frac{1}{2}(A+B) + \frac{1}{2}\sqrt{4C^2 + (A-B)^2} = B$$

as A=C=0. Since A'+B'=B, hence we obtain $(A'+B')^2=4{C'}^2+(A'-B')^2$. Thus $A'B'={C'}^2$. That is, $\|l'\|\|h'\|=|\langle l',h'\rangle|$. Equality in Cauchy-Schwartz inequality can occur only if the vectors l' and h' are linearly dependent. Thus $T^*k_z^{1+\frac{\alpha}{2}}$ and T^*g are linearly dependent. If l'=0, the vectors $T^*k_z^{1+\frac{\alpha}{2}}$, $Tk_z^{1+\frac{\alpha}{2}}$ and $k_z^{1+\frac{\alpha}{2}}$ are linearly dependent. If $l'\neq 0$, then $h'=\alpha_1 l'$ for some $\alpha_1\in\mathbb{C}$. From the decomposition of the vectors

 $Tk_z^{1+\frac{\alpha}{2}}, T^*k_z^{1+\frac{\alpha}{2}}, Tg$ and T^*g we have

$$T^*Tk_z^{1+\frac{\alpha}{2}} = \alpha T^*k_z^{1+\frac{\alpha}{2}} + \beta T^*g = \alpha T^*k_z^{1+\frac{\alpha}{2}} + |\beta|^2 k_z^{1+\frac{\alpha}{2}} + \beta \overline{\delta}g + \beta \alpha_1 l'.$$

Writing l' in terms of $k_z^{1+\frac{\alpha}{2}}, T^*k_z^{1+\frac{\alpha}{2}}$, and g and writing g in terms of $k_z^{1+\frac{\alpha}{2}}$ and $Tk_z^{1+\frac{\alpha}{2}}$, gives the linear dependence relation. Thus the set of vectors $\left\{T^*Tk_z^{1+\frac{\alpha}{2}}, T^*k_z^{1+\frac{\alpha}{2}}, Tk_z^{1+\frac{\alpha}{2}}, k_z^{1+\frac{\alpha}{2}}\right\}$ is linearly dependent.

Let $\sigma(A)$ be the spectrum of the operator $A \in \mathcal{L}(L_a^2(dA_\alpha))$ and $B(\Omega)$ be the set of all bounded, complex-valued measurable functions on $\Omega \subset \mathbb{C}$.

Lemma 2.6. Let $T \in \mathcal{L}(L_a^2(dA_\alpha))$ be a normal operator. Let $q : \mathbb{C} \to \mathbb{C}$ be a continuous function. Then $(q \circ f)(T) = q(f(T))$ for all $f \in B(\sigma(T))$.

Proof. The result is easy to verify if q is a polynomial in z and \overline{z} . Now suppose $q: \mathbb{C} \to \mathbb{C}$ is an arbitrary continuous function. Then by applying the Stone-Weierstrass theorem [2] to $C(\Delta)$, the space of continuous complex-valued functions on Δ , we obtain q is the uniform limit of polynomials q_n in z and \overline{z} on the disk $\Delta = \{\lambda \in \mathbb{C} \mid |\lambda| \leq ||f||_{\infty}\}$. Here $C(\Delta)$ is equipped with the supremum norm.

Lemma 2.7. Let $V \in \mathcal{L}(L_a^2(dA_\alpha))$ be unitary. Then there exists a Hermitian operator S in $\mathcal{L}(L_a^2(dA_\alpha))$ such that $V = e^{iS}$ and $||S|| \leq 2\pi$.

Proof. Let \mathbb{T} be the unit circle in \mathbb{C} . Then the function $h:[0,2\pi)\to\mathbb{T}$ defined by $h(t)=e^{it}$ is a continuous, bijective function with Borel measurable inverse θ . Since $\sigma(V)\subset\mathbb{T}$, we can set $S=\theta(V)$. The operator S is self-adjoint as θ is a real-valued function. Further, $\|S\|\leq \|\theta\|_{\infty}\leq 2\pi$. By Lemma 2.6, $(h\circ\theta)(V)=h(\theta(V))=h(S)=e^{iS}$. But $(h\circ\theta)(\lambda)=\lambda$ for all $\lambda\in\mathbb{T}$. Hence $(h\circ\theta)(V)=V$. Therefore, $V=e^{iS}$. The proof is complete.

3 Main results

In this section, we established the main results of the paper. We have shown that if $T \in \mathcal{L}\left(L_a^2(dA_\alpha)\right)$ is normal and if the set of vectors $\{T^*Tf, T^*f, Tf, f\}$ is linearly dependent for all $f \in L_a^2(dA_\alpha)$, then $B_\alpha(T)(z) = \lambda_\alpha \psi_\alpha(z) + \mu_\alpha$ where $\lambda_\alpha, \mu_\alpha \in \mathbb{C}$ and either $\psi_\alpha = B_\alpha(R), R \in \mathcal{L}\left(L_a^2(dA_\alpha)\right)$ is a self-adjoint operator or $\psi_\alpha = B_\alpha(e^{iK})$ where $K \in \mathcal{L}\left(L_a^2(dA_\alpha)\right)$ is a self-adjoint operator. As a consequence of this result we showed that if $\phi \in h^\infty(\mathbb{D})$,

 $T_{\phi}^{(\alpha)}$ is the Toeplitz operator with symbol ϕ defined on $L_a^2(dA_{\alpha})$ and if the set $\left\{\left(T_{\phi}^{(\alpha)}\right)^*T_{\phi}^{(\alpha)}f,\left(T_{\phi}^{(\alpha)}\right)^*f,T_{\phi}^{(\alpha)}f,f\right\}$ is linearly dependent for all $f\in L_a^2(dA_{\alpha})$ then either ϕ is a constant function or there exists $\lambda_{\alpha},\mu_{\alpha}\in\mathbb{C}$ such that $\frac{\phi-\mu_{\alpha}}{\lambda_{\alpha}}$ is a real-valued harmonic function in $h^{\infty}(\mathbb{D})$.

Theorem 3.1. If $T \in \mathcal{L}(L_a^2(dA_\alpha))$ is normal and if the set of vectors $\{T^*Tf, T^*f, Tf, f\}$ is linearly dependent for all $f \in L_a^2(dA_\alpha)$, then

$$B_{\alpha}(T)(z) = \lambda_{\alpha}\psi_{\alpha}(z) + \mu_{\alpha}$$

where $\lambda_{\alpha}, \mu_{\alpha} \in \mathbb{C}$ and either $\psi_{\alpha} = B_{\alpha}(R), R \in \mathcal{L}\left(L_a^2(dA_{\alpha})\right)$ is a self-adjoint operator or $\psi_{\alpha} = B_{\alpha}(e^{iK})$ where $K \in \mathcal{L}\left(L_a^2(dA_{\alpha})\right)$ is a self-adjoint operator.

Proof. The operator T is normal. Hence by the spectral theorem [2], there is a function $\phi_{\alpha} \in L^{\infty}(\mathbb{D})$ such that T is unitarily equivalent to a multiplication operator $M_{\phi_{\alpha}}$, on $L_a^2(dA_{\alpha})$. Now for all $f_{\alpha} \in L_a^2(dA_{\alpha})$, the function $|\phi_{\alpha}|^2 f_{\alpha}$, $\overline{\phi_{\alpha}} f_{\alpha}$, $\phi_{\alpha} f_{\alpha}$ and f_{α} are linearly dependent as T^*Tf_{α} , T^*f_{α} , Tf_{α} and f_{α} are linearly dependent for all $f_{\alpha} \in L_a^2(dA_{\alpha})$. Thus there exists complex numbers $\beta_{1\alpha}$, $\beta_{2\alpha}$, $\beta_{3\alpha}$, $\beta_{4\alpha}$ not all zero (depending on f_{α}) such that $\beta_{1\alpha}|\phi_{\alpha}|^2 f_{\alpha} + \beta_{2\alpha}\overline{\phi_{\alpha}} f_{\alpha} + \beta_{3\alpha}\phi_{\alpha} f_{\alpha} + \beta_{4\alpha}f_{\alpha} = 0$. This implies there exists a square integrable function $g_{\alpha} \in L_a^2(dA_{\alpha})$ such that $g_{\alpha}(z)$ is never zero for any $z \in \mathbb{D}$. For this g_{α} , we have

$$(\beta_{1\alpha}|\phi_{\alpha}|^{2} + \beta_{2\alpha}\overline{\phi_{\alpha}} + \beta_{3\alpha}\phi_{\alpha} + \beta_{4\alpha})g_{\alpha} = 0$$

or
$$(\beta_{1\alpha}|\phi_{\alpha}|^{2} + \beta_{2\alpha}\overline{\phi_{\alpha}} + \beta_{3\alpha}\phi_{\alpha} + \beta_{4\alpha}) = 0.$$

Since $g_{\alpha}(z) \neq 0$ for all $z \in \mathbb{D}$, hence $\beta_{1\alpha}T^*T + \beta_{2\alpha}T^* + \beta_{3\alpha}T + \beta_{4\alpha} = 0$. If $\beta_{1\alpha} = 0$, then $T = \lambda_{\alpha}S + \mu_{\alpha}$ where S is a self-adjoint operator. If $\beta_{1\alpha} \neq 0$, we can assume that $\beta_{1\alpha} = 1$. Then

$$\beta_{1\alpha}T^*T + \beta_{2\alpha}T^* + \beta_{3\alpha}T + \beta_{4\alpha} = 0.$$
(3.1)

Further

$$\beta_{1\alpha}T^*T + \overline{\beta_{2\alpha}}T + \overline{\beta_{3\alpha}}T^* + \overline{\beta_{4\alpha}} = 0.$$
 (3.2)

Subtracting (3.2) from (3.1) we obtain $(\beta_{2\alpha} - \overline{\beta_{3\alpha}})T^* + (\beta_{3\alpha} - \overline{\beta_{2\alpha}})T + 2i \ Im \ \beta_{4\alpha} = 0$. If $\beta_{2\alpha} \neq \overline{\beta_{3\alpha}}$; then $T = \lambda_{\alpha}S + \mu_{\alpha}$ where S is self-adjoint. If $\beta_{3\alpha} = \overline{\beta_{2\alpha}}$ and $\beta_{4\alpha}$ is real then we have $T^*T + \beta_{2\alpha}T^* + \overline{\beta_{2\alpha}}T + \beta_{4\alpha} = 0$. Let $R = T + \beta_{2\alpha}$. Then R is normal and $R^*R = |\beta_{2\alpha}|^2 - \beta_{4\alpha}$, a multiple

178 S. Roy, N. Das

of a unitary operator S and $T = \lambda_{\alpha}S + \mu_{\alpha}$ where S is unitary. Thus $B_{\alpha}T(z) = \lambda_{\alpha}\psi_{\alpha}(z) + \mu_{\alpha}$ where $\lambda_{\alpha}, \mu_{\alpha} \in \mathbb{C}$ and ψ_{α} is the Berezin transform of a self-adjoint or a unitary operator. The Theorem follows from Lemma 2.7.

Theorem 3.2. Let $\phi \in h^{\infty}(\mathbb{D})$ and $T_{\phi}^{(\alpha)}$ be the Toeplitz operator with symbol ϕ defined on $L_a^2(dA_{\alpha})$. If the set $\left\{\left(T_{\phi}^{(\alpha)}\right)^*T_{\phi}^{(\alpha)}f,\left(T_{\phi}^{(\alpha)}\right)^*f,T_{\phi}^{(\alpha)}f,f\right\}$ is linearly dependent for all $f \in L_a^2(dA_{\alpha})$ then either ϕ is a constant function or there exists $\lambda_{\alpha}, \mu_{\alpha} \in \mathbb{C}$ such that $\frac{\phi - \mu_{\alpha}}{\lambda_{\alpha}}$ is a real-valued harmonic function in $h^{\infty}(\mathbb{D})$.

Proof. Assume that the set of vectors $\left\{ \left(T_{\phi}^{(\alpha)} \right)^* T_{\phi}^{(\alpha)} f, \left(T_{\phi}^{(\alpha)} \right)^* f, T_{\phi}^{(\alpha)} f, f \right\}$ is linearly dependent for all $f \in L_a^2(dA_{\alpha})$. From Theorem 3.1 it follows that $T_{\phi}^{(\alpha)} = \lambda_{\alpha} S + \mu_{\alpha}$ where S is either a self-adjoint or a unitary operator. This implies that $T_{\frac{\phi-\mu_{\alpha}}{\lambda_{\alpha}}}^{(\alpha)} = S$ is either a self-adjoint or a unitary operator. If S is unitary, then $T_{\frac{\phi-\mu_{\alpha}}{\lambda_{\alpha}}}^{(\alpha)}$ is unitary. It follows from [1] that $\frac{\phi-\mu_{\alpha}}{\lambda_{\alpha}}$ is a constant function and $\left| \frac{\phi-\mu_{\alpha}}{\lambda_{\alpha}} \right| = 1$. This implies that $\frac{\phi-\mu_{\alpha}}{\lambda_{\alpha}} = e^{i\theta_{\alpha}}$ for some $\theta_{\alpha} \in \mathbb{R}$. Hence ϕ is a constant function. If $T_{\frac{\phi-\mu_{\alpha}}{\lambda_{\alpha}}}^{(\alpha)}$ is self-adjoint, then it follows that $\frac{\phi-\mu_{\alpha}}{\lambda_{\alpha}}$ is a real-valued harmonic function in $h^{\infty}(\mathbb{D})$.

References

- Cučković Z, Commutants of Toeplitz operators on the Bergman space,
 Pac. J. Math., Vol. 162(2), 1994.
- [2] Douglas, R.G., Banach algebra techniques in operator theory, Academic Press, New York, 1972.
- [3] Dragomir, S.S., Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, Springer, Cham, 2013.
- [4] Hedenmalm, H., Korenblum, B. and Zhu, K., Theory of Bergman spaces, Graduate texts in Mathematics 199, Springer- Verlag, New York, 2000.

[5] Zhu, K., Operator theory in function spaces, Marcel Dekker, Inc. 139, New York, 1990.