TOEPLITZ OPERATORS WITH BOUNDED HARMONIC SYMBOLS*

Swarupa Roy[†] Namita Das[‡]

DOI https://doi.org/10.56082/annalsarscimath.2022.1-2.166

Abstract

In this paper we have shown that if $\phi \in h^{\infty}(\mathbb{D})$ and $T_{\phi}^{(\alpha)}$ is the Toeplitz operator with symbol ϕ defined on the weighted Bergman space $L_a^2(dA_{\alpha})$ and if the set $\left\{ \left(T_{\phi}^{(\alpha)}\right)^* T_{\phi}^{(\alpha)}f, \left(T_{\phi}^{(\alpha)}\right)^* f, T_{\phi}^{(\alpha)}f, f \right\}$ is linearly dependent for all $f \in L_a^2(dA_{\alpha})$ then either ϕ is a constant function or there exists $\lambda_{\alpha}, \mu_{\alpha} \in \mathbb{C}$ such that $\frac{\phi - \mu_{\alpha}}{\lambda_{\alpha}}$ is a real-valued function in $h^{\infty}(\mathbb{D})$. Here $h^{\infty}(\mathbb{D})$ is the set of all bounded harmonic functions on the open unit disk \mathbb{D} .

MSC: 47B38, 47B32

keywords: Weighted Bergman spaces, reproducing kernel, Toeplitz operators, self-adjoint operators, harmonic functions.

1 Introduction

Let $dA(z) = \frac{1}{\pi} dxdy$ be the area measure on the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ in the complex plane \mathbb{C} . It is normalized so that the area of \mathbb{D} is 1. For $\alpha > -1$, let $L^2(\mathbb{D}, dA_\alpha)$ be the space consisting of all absolutely square-integrable, Lebesgue measurable functions on \mathbb{D} with respect to the measure $dA_\alpha(z) = (\alpha + 1)(1 - |z|^2)^\alpha dA(z), z \in \mathbb{D}$. The measure dA_α is a probability measure on \mathbb{D} . Let $L^2_a(dA_\alpha)$ be the subspace of all analytic functions of $L^2(\mathbb{D}, dA_\alpha)$. The space $L^2_a(dA_\alpha)$ is called the weighted

^{*}Accepted for publication on March 10-th, 2022

[†]swarupa.roy@gmail.com P. G. Dept. of Mathematics, Utkal University, Vani Vihar, Bhubaneswar- 751004, Odisha, India

[‡]namitadas440@yahoo.co.in P. G. Dept. of Mathematics, P. G. Dept. of Mathematics, Utkal University, Vani Vihar, Bhubaneswar- 751004, Odisha, India