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Abstract

The authors study the existence of positive solutions of singular
Sturm-Liouville boundary value problem

(p(t)y∆(t))∆ + λq(t)f(t, yσ(t)) = 0, ρ(a) < t < σ(b),

with boundary conditions

αy(ρ(a))− βp(ρ(a))y∆(ρ(a)) = 0,

γy(σ(b)) + δp(σ(b))y∆(σ(b)) = 0,

on a measure chain, where λ > 0 and q is allowed to be singular at both
end points t = ρ(a) and t = σ(b). We shall use a fixed point theorem on
a cone in a Banach space to obtain the existence of positive solutions
for λ in a suitable interval of a measure chain.
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1 Introduction

Consider the singular Sturm-Liouville boundary value problem consisting of
the dynamic equation

(p(t)y∆(t))∆ + λq(t)f(t, yσ(t)) = 0, t ∈ (ρ(a), σ(b))T, (1.1)

with homogeneous boundary conditions

αy(ρ(a))− βp(ρ(a))y∆(ρ(a)) = 0,

γy(σ(b)) + δp(σ(b))y∆(σ(b)) = 0,
(1.2)

where t ∈ (ρ(a), σ(b))T = (ρ(a), σ(b)) ∩ T = {t ∈ T : ρ(a) < t < σ(b)},
σ : T→ T, yσ : T→ [0, ∞), y : [ρ(a), σ(b)]T → [0, ∞) and

(H1) p ∈ Crd([ρ(a), σ(b)]T, (0, +∞)) and 0 <
∫ σ(b)
ρ(a)

∆t
p(t) < +∞;

(H2) λ > 0, α, β, δ, and γ are non-negative, and βγ + αγ + αδ > 0;
(H3) f(t, yσ(t)) ∈ Crd([ρ(a), σ(b)]T×[0, +∞),R+) and q ∈ Crd((ρ(a), σ(b))T,
[0, +∞));

(H4) 0 <
∫ σ(b)
ρ(a) G(σ(t), t)q(t)∆t < +∞;

where

G(σ(s), s) =
1

η

(
β + α

∫ σ(s)

ρ(a)

∆s

p(s)

)(
δ + γ

∫ σ(b)

σ(s)

∆s

p(s)

)
, ρ(a) ≤ σ(s) ≤ σ(b),

and

η = αδ + αγ

∫ σ(b)

ρ(a)

∆s

p(s)
+ βγ.

For any t ∈ [ρ(a), σ(b)]T, let us define the limits

f0(t) = lim
yσ→0+

f(t, yσ)

yσ
,

and

f∞(t) = lim
yσ→+∞

f(t, yσ)

yσ
.

Moreover both the limits exist uniformly in the extended reals. We consider
the following cases:

(L1) f0(t) = +∞, t ∈ [ρ(a), σ(b)]T;

(L2) f∞(t) = +∞, t ∈ [ρ(a), σ(b)]T;

(L3) f0(t) = 0, t ∈ [ρ(a), σ(b)]T;

(L4) f∞(t) = 0, t ∈ [ρ(a), σ(b)]T;
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(L5) f0(t) = l1 > 0, t ∈ [ρ(a), σ(b)]T;

(L6) f∞(t) = l2 > 0, t ∈ [ρ(a), σ(b)]T.

The case f0 = 0 and f∞ = ∞ is called the super linear case and the case
f0 =∞ and f∞ = 0 is called the sub linear case.

For the special case T = R and q(t) = 1, the existence of positive solution
for the boundary value problem (1.1) and (1.2) has been investigated in
[1]. In this paper, we would like to obtain some existence results of positive
solution to the boundary value problem (1.1) and (1.2) for λ in a suitable
interval of a measure chain. Our results improve and generalise some results
in [2, 17, 19].

Remark 1.1 In our theorems and corollaries of main results we are con-
sidering simultaneously two cases for establishing the existence of positive
solution of the boundary value problem. We have total six number of cases.
Out of six, we are selecting two cases simultaneously. So the total number
of possible pairs are 6C2 = 15. These pairs are L1L2, L1L3, L1L4, L1L5,
L1L6, L2L3, L2L4, L2L5, L2L6, L3L4, L3L5, L3L6, L4L5, L4L6 and L5L6.
We are considering only L1L2, L1L4, L1L6, L2L3, L2L5,L3L4, L3L6 and
L4L5 in our theorems and corollaries. Rest of these L1L3, L1L5, L2L4,
L2L6, L3L5, and L4L6 are invalid pairs. For example, let us consider

(L1) f0(t) = lim
yσ→0+

f(t, yσ)

yσ
= +∞,

and

(L3) f0(t) = lim
yσ→0+

f(t, yσ)

yσ
= 0.

In both the cases yσ approches to zero but their limiting value approches to
two different limits. So the limit does not exist. Thus, we cannot take these
pairs simultaneously.

By a positive solution of the boundary value problem (1.1) and (1.2), we
mean a function y ∈ Crd[ρ(a), σ(b)]T∩C1

rd[ρ(a), σ(b)]T, p(t)y∆ ∈ C1
rd[ρ(a), σ(b)]T

such that y(t) satisfies equation (1.1) and boundary conditions (1.2), with
y(t) > 0 on [ρ(a), σ(b)]T. Let a and b be such that 0 ≤ ρ(a) ≤ a < b ≤
σ(b) <∞ and (ρ(a), σ(b))T has at least two points.
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We are concerned with the calculus on a measure chain which is the uni-
fication of continuous and discrete calculus. An excellent introduction to
this subject is given by S. Hilger [13] and monograph by B. Kayamakcalan
[14]. For the basic knowledge of time-scale calculus readers are advised to
refer the monographs of Bohner and Peterson [3, 4]. In order to under-
stand and familiarize the notations of the time scale calculus, we need some
preliminary definitions.

Definition 1.1 Let T be a time scale, that is, T is an arbitrary non-empty
closed subset of the real numbers R. For each interval I = I∩T. We assume
throught that T has the topology that it inherits from standard topology on
the real numbers R. For t < supT, define the forward jump operator by

σ(t) := inf{s > t : s ∈ T} ∈ T

and for t > inf(t) define the backward jump operator by

ρ(t) := sup{s < t : s ∈ T} ∈ T

for all t ∈ T. If σ(t) > t, we say t is right scattered, while if ρ(t) < t we say
t is left scattered. If σ(t) = t, we say t right dense, while ρ(t) = t, we say t
is left dense.

Definition 1.2 Define the interval in T; [a, b] = {t ∈ T such that a ≤ t ≤
b}. Other types of intervals are defined similarly.

Definition 1.3 Assume x : T → R and fix t ∈ T ( if t = supT assume t
is not left scattered), then define x∆(t) to be the number (provided it exists)
with the property that given ane ε > 0, there is a neighbourhood U of t such
that

|[x(σ(t)− x(s)]− x∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|

for all s ∈ U. We call x∆ the delta derivative of x(t).

It can be shown that if x : T → R is continuous at t ∈ T and t is right
scattered, then

x∆(t) =
x(σ(t))− x(t)

σ(t)− t
.

If it is right dense, then

x∆(t) = lim
s→t

x(σ(t))− x(s)

σ(t)− s
.
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We say that x : T → R is right dense continuous on T provided it is con-
tinuous at all right dense points and at points that are left dense and right
scattered we just assume that left hand limit exists (and finite). We denote
this by x ∈ Crd(T). If T = Z, the set of integers, then

x∆(t) = ∆x(t) = x(t+ 1)− x(t).

Furthermore, the equation (1.1) reduce to the self-adjoint difference equation

∆(p(t)∆y(t)) + λq(t)f(t, y(t+ 1)) = 0, a− 1 ≤ t ≤ b+ 1.

If T = R, the set of reals, then the equation (1.1) reduce to the self-adjoint
differential equation

(p(t)y′(t))′ + λq(t)f(t, y(t)) = 0, a ≤ t ≤ b.

Definition 1.4 If

F∆(t) = f(t),

then we define an integral by∫ t

a
f(s)∆s = F (t)− F (a).

In this paper, we will use elementary properties of this integral which are
available in [3].

Definition 1.5 If T has a left-scattered maximum m, then Tk = T−{m}.
Otherwise, Tk = T. In summary,

Tk =

{
T\(ρ(supT), supT)) if supT <∞
T if supT =∞.

Definition 1.6 We say that x : T× Tk2 → R is a Cauchy function for

Lx(t) = (px∆)∆(t) + q(t)xσ(t) = 0 (1.3)

provided for each fixed s ∈ Tk2
, x(., s) is the solution of the initial value

problem

Lx(., s) = 0, x(σ(s), s) = 0, x∆(σ(s), s) = − 1

p(σ(s))
.
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It can be easily varified that if q = 0, then Cauchy function for (px∆)∆ = 0
is given by

x(t, s) =

∫ t

σ(s)

1

p(τ)
∆τ.

We will use the following results which has been proved in [3] with slightly
modification of operator.

Theorem 1.1 (Green’s function for general two point boundary value prob-
lem). Assume that the boundary value problem:

Lx(t) = (p(t)x∆(t))∆ + q(t)xσ(t) = 0, (1.4)

αx(a)− βx∆(a) = 0,

γx(σ(b)) + δx∆(σ(b)) = 0,
(1.5)

has only the trivial solution. For each fixed s ∈ [a, b], let u(t, s) be the
unique solution of the boundary value problem:

Lu(t, s) = 0,

αu(a, s)− βu∆(a, s) = 0,

γu(σ(b), s) + δu∆(σ(b), s) = −γx(σ(b), s)− δx∆(σ(b), s),

where x(t, s) is the Cauchy function for (1.3). Then we define Green’s
function G : [a, σ(b)]T × [a, b]T → R for the boundary value problem (1.4)
and (1.5) by

G(t, s) =

{
u(t, s), t ≤ s,
v(t, s), t ≥ σ(s),

where v(t, s) := u(t, s) + x(t, s) for t ∈ [a, σ(b)], s ∈ [a, b]. Then for each
fixed s ∈ [a, b], v(., s) is a solution of (1.4) and satisfies the second boundary
condition in (1.5). If h ∈ Crd, then

u(t) =

∫ σ(b)

a
G(t, s)h(s)∆s,

is the solution of the non-homogeneous boundary value problem:

Lu = h(t),

αu(a)− βu∆(a) = A,

γu(σ(b)) + δu∆(σ(b)) = B,

with A = B = 0 (where A and B are constants).
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Lemma 1.1 [8] The boundary value problem:

−(p(t)y∆(t))∆ = 0,

αy(σ(a))− βy∆(σ(a)) = 0,

γy(σ(b)) + δy∆(σ(b)) = 0,

has only the trivial solution if and only if γβ
p(a) + αβ

p(σ(b)) +αγ
∫ σ(b)
a

1
p(s)∆s 6= 0.

2 Green’s Function

Let us consider the homogeneous boundary value problem:

−(p(t)y∆(t))∆ = 0, t ∈ (ρ(a), σ(b))T, (2.1)

αy(ρ(a))− βp(ρ(a))y∆(ρ(a)) = 0,

γy(σ(b)) + δp(σ(b))y∆(σ(b)) = 0.
(2.2)

The linearly independent solutions of (2.1) are

y1(t) = 1

and

y2(t) =

∫ t

ρ(a)

1

p(τ)
∆τ.

Let y(t, s) be as in the statement of Theorem 1.1. Since for each fixed
s ∈ [a, b]T, y(t, s) is a solution of

−(p(t)y∆(t))∆ = 0, ρ(a) < t < σ(b),

then, the general solution of (2.1) is given by

y(t, s) = c1(s) + c2(s)

∫ t

ρ(a)

1

p(τ)
∆τ.

Note that the Cauchy function for (2.1) is given by

x(t, s) = −
∫ t

σ(s)

1

p(τ)
∆τ.

Since
αy(ρ(a))− βp(ρ(a))y∆(ρ(a)) = 0,
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then

αc1(s)− βp(ρ(a))
c2(s)

p(ρ(a))
= 0,

that is,

c1(s) =
βc2(s)

α
.

From the boundary condition

γy(σ(b)) + δp(σ(b))y∆(σ(b)) = −γx(σ(b))− δp(σ(b))x∆(σ(b)),

we obtain

γy(σ(b)) + δp(σ(b))y∆(σ(b)) = γ

∫ σ(b)

σ(s)

1

p(τ)
∆τ + δp(σ(b))

1

p(σ(b))
,

implies that

γ

(
c1(s) + c2(s)

∫ σ(b)

ρ(a)

1

p(τ)
∆τ

)
+ δp(σ(b))

c2(s)

p(σ(b))
= γ

∫ σ(b)

σ(s)

1

p(τ)
∆τ + δ

that is,

γc1(s) +

(
γ

∫ σ(b)

ρ(a)

1

p(τ)
∆τ + δ

)
c2(s) = γ

∫ σ(b)

σ(s)

1

p(τ)
∆τ + δ.

Using c1(s) = βc2(s)
α , we obtain

c2(s) =
α

η

(
γ

∫ σ(b)

σ(s)

1

p(τ)
∆τ + δ

)
.

The value of c1(s) is given by

c1(s) =
βc2(s)

α

=
β

η

(
γ

∫ σ(b)

σ(s)

1

p(τ)
∆τ + δ

)
,

where

η = αδ + βγ + αγ

∫ σ(b)

ρ(a)

1

p(τ)
∆τ.
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Hence,

y(t, s) = c1(s) + c2(s)

∫ t

ρ(a)

1

p(τ)
∆τ

=
β

η

(
γ

∫ σ(b)

σ(s)

1

p(τ)
∆τ + δ

)
+
α

η

(
γ

∫ σ(b)

σ(s)

1

p(τ)
∆τ + δ

)(∫ t

ρ(a)

1

p(τ)
∆τ

)
=

1

η

(
α

∫ t

ρ(a)

1

p(τ)
∆τ + β

)(
γ

∫ σ(b)

σ(s)

1

p(τ)
∆τ + δ

)
.

Now,

v(t, s) = y(t, s) + x(t, s)

=
1

η

(
γ

∫ σ(b)

σ(s)

1

p(τ)
∆τ + δ

)(
α

∫ t

ρ(a)

1

p(τ)
∆τ + β

)
−
∫ t

σ(s)

1

p(τ)
∆τ

=
1

η

(
α

∫ σ(s)

ρ(a)

1

p(τ)
∆τ + β

)(
γ

∫ σ(b)

t

1

p(τ)
∆τ + δ

)
.

Where,

H =

∫ σ(b)

σ(s)

1

p(τ)
∆τ

∫ t

ρ(a)

1

p(τ)
∆τ −

∫ t

σ(s)

1

p(τ)
∆τ

∫ σ(b)

ρ(a)

1

p(τ)
∆τ

=

∫ σ(b)

t

∆τ

p(τ)

∫ σ(s)

ρ(a)

∆τ

p(τ)
.

Hence, the Green’s function G(t, s) is given by

G(t, s) =

{
y(t, s), t ≤ s,
v(t, s), t ≥ σ(s).

That is,

G(t, s) =
1

η


(
α
∫ t
ρ(a)

1
p(τ)∆τ + β

)(
γ
∫ σ(b)
σ(s)

1
p(τ)∆τ + δ

)
, t ≤ s,(

α
∫ σ(s)
ρ(a)

1
p(τ)∆τ + β

)(
γ
∫ σ(b)
t

1
p(τ)∆τ + δ

)
, t ≥ σ(s),

(2.3)
and

G(σ(s), s) =
1

η

(
α

∫ σ(s)

ρ(a)

1

p(τ)
∆τ+β

)(
γ

∫ σ(b)

σ(s)

1

p(τ)
∆τ+δ

)
, ρ(a) ≤ t, σ(s) ≤ σ(b).
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Clearly,
G(t, s) ≤ G(σ(s), s), ρ(a) ≤ t, σ(s) ≤ σ(b). (2.4)

By (H4), there exits t0 ∈ (ρ(a), σ(b))T such that q(t0) ≥ 0. We may choose

θ ∈
(
ρ(a), ρ(a)+σ(b)

2

)
T

such that t0 ∈ (θ, σ(b) − θ)T. Define a cone Kθ as

follows:

Kθ = {y ∈ C([ρ(a), σ(b)]T) : y(t) ≥ 0, min
θ≤t≤σ(b)−θ

y(t) ≥Mθ‖y‖}, (2.5)

where

Mθ = min

{δ + γ
∫ σ(b)
σ(b)−θ

∆τ
p(τ)

δ + γ
∫ σ(b)
ρ(a)

∆τ
p(τ)

,
β + α

∫ θ
ρ(a)

∆τ
p(τ)

β + α
∫ σ(b)
ρ(a)

∆τ
p(τ)

}
,

and
‖y‖ = sup

t∈[ρ(a), σ(b)]
|y(t)|.

Let us denote

φ(t) = δ + γ

∫ σ(b)

t

∆τ

p(τ)
, ρ(a) ≤ t ≤ σ(b),

ψ(t) = β + α

∫ t

ρ(a)

∆τ

p(τ)
, ρ(a) ≤ t ≤ σ(b).

Then

G(t, s) =
1

η

{
ψ(t)φ(σ(s)), ρ(a) ≤ t ≤ s ≤ σ(b),

ψ(σ(s))φ(t), ρ(a) ≤ σ(s) ≤ t ≤ σ(b).

For θ ≤ t ≤ σ(b)− θ, we have

G(t, s)

G(σ(s), s)
=


ψ(t)

ψ(σ(s)) ≥
β+α

∫ θ
ρ(a)

∆τ
p(τ)

β+α
∫ σ(b)
ρ(a)

∆τ
p(τ)

, t ≤ s,

φ(t)
φ(σ(s)) ≥

δ+γ
∫ σ(b)
σ(b)−θ

∆τ
p(τ)

δ+γ
∫ σ(b)
ρ(a)

∆τ
p(τ)

, t ≥ σ(s).

Hence,
G(t, s) ≥MθG(σ(s), s), θ ≤ t ≤ σ(b)− θ. (2.6)

Now define an operator Tλ : Kθ → Kθ as follows:

Tλy(t) = λ

∫ σ(b)

ρ(a)
G(t, s)q(s)f(s, yσ(s))∆s, λ ≥ 0, y ∈ Kθ. (2.7)

Note that if y(t) is a solution of the boundary value problem (1.1) and (1.2),
then y(t) satisfies the integral equation (2.7).
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Lemma 2.1 Tλ(Kθ) ⊂ Kθ.

Proof. By (2.4), we have for any t ∈ [ρ(a), σ(b)]T and y ∈ Kθ,

Tλy(t) = λ

∫ σ(b)

ρ(a)
G(t, s)q(s)f(s, yσ(s))∆s

≤ λ
∫ σ(b)

ρ(a)
G(σ(s), s)q(s)f(s, yσ(s))∆s.

Hence,

‖Tλ‖ ≤ λ
∫ σ(b)

ρ(a)
G(σ(s), s)q(s)f(s, yσ(s))∆s. (2.8)

By (2.6), we have

min
θ≤t≤σ(b)−θ

Tλy(t) = min
θ≤t≤σ(b)−θ

λ

∫ σ(b)

ρ(a)
G(t, s)q(s)f(s, yσ(s))∆s

≥Mθλ

∫ σ(b)

ρ(a)
G(σ(s), s)q(s)f(s, yσ(s))∆s. (2.9)

From (2.8) and (2.9), we have

min
θ≤t≤σ(b)−θ

Tλy(t) ≥Mθ‖Ty‖, y ∈ Kθ.

Hence, Tλ(Kθ) ⊂ Kθ. The proof of the Lemma is complete.

Lemma 2.2 Tλ : Kθ → Kθ is a completely continuous operator.

The proof is similar to that of Lemma 2 in [17].

Lemma 2.3 ([15]) Let K be a cone in a Banach space E and Ω1,Ω2

be two bounded open sets in E such that 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let T :
K ∩ (Ω2\Ω1)→ K be a completely continuous operator. If
‖Ty‖ ≤ ‖y‖, for all y ∈ K ∩ ∂Ω1, and ‖Ty‖ ≥ ‖y‖, for all y ∈ K ∩ ∂Ω2,
or
‖Ty‖ ≥ ‖y‖, for all y ∈ K ∩ ∂Ω1, and ‖Ty‖ ≤ ‖y‖, for all y ∈ K ∩ ∂Ω2;

then T has at least one fixed point in K ∩ (Ω2\Ω1).
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Let

A = max
ρ(a)≤t≤σ(b)

∫ σ(b)

ρ(a)
G(t, s)q(s)∆s ,

and

Bθ = min
θ≤t≤σ(b)−θ

∫ σ(b)−θ

θ
G(t, s)q(s)∆s.

Lemma 2.4 Assume that (H1) − (H4) hold and there exist two different
positive numbers c and d such that

max
ρ(a)≤t≤σ(b), 0≤yσ≤c

f(t, yσ) ≤ c

λA
(2.10)

min
ρ(a)≤t≤σ(b)−θ,Mθd≤yσ≤d

f(t, yσ) ≥ d

λBθ
(2.11)

Then the boundary value problem (1.1) and (1.2) has at least one positive
solution y ∈ Kθ and min{c, d} ≤ ‖y‖ ≤ max{c, d}.

Proof. Without loss of generality, we may assume that c ≤ d. Let

Ωc = {y ∈ C([ρ(a), σ(b)]T) : ‖y‖ ≤ c},

and
Ωd = {y ∈ C([ρ(a), σ(b)]T) : ‖y‖ ≤ d}.

By (2.10), for any t ∈ [ρ(a), σ(b)]T and y ∈ Kθ ∩ ∂Ωc, we have

f(t, yσ) ≤ c

λA
.

Hence,

Tλy(t) = λ

∫ σ(b)

ρ(a)
G(t, s)q(s)f(s, yσ(s))∆s

≤ λ
∫ σ(b)

ρ(a)
G(σ(s), s)q(s)f(s, yσ(s))∆s

≤ c.

Hence,
‖Ty‖ ≤ ‖y‖, y ∈ Kθ ∩ ∂Ωc.

By (2.11), for any t ∈ [θ, σ(b)− θ]T and y ∈ Kθ ∩ ∂Ωd, we have

f(t, yσ) ≥ d

λBθ
.
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Hence,

Tλy(t0) = λ

∫ σ(b)

ρ(a)
G(t0, s)q(s)f(s, yσ(s))∆s

≥ λ
∫ σ(b)−θ

θ
G(t0, s)q(s)f(s, yσ(s))∆s

≥ d.

Hence,

‖Ty‖ ≥ ‖y‖, y ∈ Kθ ∩ ∂Ωd.

It follows from Lemmaa 2.3 that there exists a y ∈ Kθ ∩ (Ωd\Ωc) such that
Tλy(t) = y(t) and y(t) lies in between c and d. This means that y(t) is a
solution of boundary value problem (1.1) and (1.2) and min{c, d} ≤ ‖y‖ ≤
max{c, d}. This completes the proof of the lemma.

3 Main Results

Let us denote

λ1 =
1

A
sup
r>0

r

max
ρ(a)≤t≤σ(b), 0≤yσ≤r

f(t, yσ)
,

λ2 =
1

Bθ
inf
r>0

r

min
ρ(a)≤t≤σ(b),Mθr≤yσ≤r

f(t, yσ)
.

By our hypothesis it is clear that 0 ≤ λ1 ≤ +∞ and 0 ≤ λ2 < +∞.

Theorem 3.1 Assume that (H1)− (H4), (L1) and (L2) hold. Then there
exists λ1 > 0 such that the boundary value problem (1.1) and (1.2) has at
least two positive solutions for 0 < λ < λ1.

Proof. Define

s(r) =
r

A max
ρ(a)≤t≤σ(b), 0≤yσ≤r

f(t, yσ)

By (H3), we know that s : (0, +∞) → (0, +∞) is continuous. In view of
(L1) and (L2) we have

lim
r→0+

s(r) = lim
r→+∞

s(r) = 0.
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Hence, there exists r0 ∈ (0, +∞) such that s(r0) = max
r>0

s(r) = λ1. For

0 < λ < λ1, there exist two positive numbers c1 and c2 such that 0 < c1 <
r0 < c2 < +∞ and

s(c1) = s(c2) = λ.

Hence,

max
ρ(a)≤t≤σ(b), 0≤yσ≤c1

f(t, yσ) =
c1

Aλ
,

and
max

ρ(a)≤t≤σ(b), 0≤yσ≤c2
f(t, yσ) =

c2

Aλ
.

On the other hand by (L1) and (L2), there exist d1 and d2 such that 0 <
d1 < c1 < r0 < c2 < d2 < +∞ and

f(t, yσ)

yσ
≥ 1

λMθBθ
, t ∈ [ρ(a), σ(b)]T, yσ ∈ [0, d1) ∪ [Mθd2, +∞),

that is,

f(t, yσ) ≥ yσ

λMθBθ
≥ d1

λBθ
, t× yσ ∈ [ρ(a), σ(b)]T × [Mθd1, d1].

Hence,

f(t, yσ) ≥ yσ

λMθBθ
≥ d2

λBθ
, t× yσ ∈ [ρ(a), σ(b)]T × [Mθd2, d2].

Thus,

min
θ≤t≤σ(b)−θ,Mθd1≤yσ≤d1

f(t, yσ) ≥ min
ρ(a)≤t≤σ(b),Mθd1≤yσ≤d1

f(t, yσ) ≥ d1

λBθ
,

and

min
θ≤t≤σ(b)−θ,Mθd2≤yσ≤d2

f(t, yσ) ≥ min
ρ(a)≤t≤σ(b),Mθd2≤yσ≤d2

f(t, yσ) ≥ d2

λBθ
.

By Lemma 2.4, the boundary value problem (1.1) and (1.2) has at least two
positive solutions. The proof of the theorem is complete.

Theorem 3.2 Assume that (H1) − (H4) and one of (L1) and (L2) hold.
Then the boundary value problem (1.1) and (1.2) has at least one positive
solutions for 0 < λ < λ1.

The statement of the Theorem 3.2 is follows from the proof of the Theorem
3.1.
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Theorem 3.3 Assume that (H1)− (H4), (L3) and (L4) hold. Then there
exists λ2 ≥ 0 such that the boundary value problem (1.1) and (1.2) has at
least two positive solutions for λ2 < λ < +∞.

Proof. Define

w(r) =
r

Bθ min
ρ(a)≤t≤σ(b),Mθr≤yσ≤r

f(t, yσ)
.

Clearly, w(r) is continuous in (0, +∞). From (L3) and (L4), we have

lim
r→0+

w(r) = lim
r→+∞

w(r) = +∞.

Hence, there exists r0 ∈ (0, +∞) such that

w(r0) = min
r>0

w(r) = λ2 ≥ 0.

Since λ2 < λ < +∞, we can find two positive numbers d1 and d2 such that
0 < d1 < r0 < d2 < +∞ and

w(d1) = w(d2) = λ.

Hence,

min
ρ(a)≤t≤σ(b),Mθd1≤yσ≤d1

f(t, yσ) =
d1

λBθ
,

and

min
ρ(a)≤t≤σ(b),Mθd2≤yσ≤d2

f(t, yσ) =
d2

λBθ
.

On the other hand, (L3) implies that there exists c1 ∈ (0, d1) such that

f(t, yσ)

yσ
≤ 1

λA
, t× yσ ∈ [ρ(a), σ(b)]T × [0, c1] ,

implies that,

f(t, yσ) ≤ c1

λA
, t× yσ ∈ [ρ(a), σ(b)]T × [0, c1].

From (L4), there exists c ∈ (d2, +∞) such that

f(t, yσ)

yσ
≤ 1

λA
, t× yσ ∈ [ρ(a), σ(b)]T × [c, +∞].



156 S. Panigrahi, S. Rout

Let

M = max
ρ(a)≤t≤σ(b), 0≤yσ≤c

f(t, yσ).

We can choose c2 > c such that c2 ≥ λMA. Hence,

f(t, yσ) ≤ c2

λA
, t ∈ [ρ(a), σ(b)]T, y

σ ∈ [0, c2]

By Lemma 2.4, the boundary value problem (1.1) and (1.2) has at least two
positive solutions for λ2 < λ < +∞. The proof of the theorem is complete.

From the proof of the Theorem 3.3, we have the following result.

Theorem 3.4 Assume that (H1) − (H4) and one of (L3) and (L4) hold.
Then the boundary value problem (1.1) and (1.2) has at least one positive
solutions for λ2 < λ < +∞.

Corollary 3.1 Assume that (H1) − (H4) hold. Moreover, one of the fol-
lowing conditions is true:
(i) (L1) and (L4) hold;
(ii) (L2) and (L3) hold.
Then the boundary value problem (1.1) and (1.2) has at least one positive
solution for λ > 0.

Proof. Let us assume (i) hold. By Theorem 3.2, we only need to prove
λ1 = +∞. If

sup
ρ(a)≤t≤σ(b), 0≤yσ≤+∞

f(t, yσ) = M < +∞,

then

λ1 ≥
1

A
sup
r>0

r

M
= +∞.

If f is unbounded, then there exist tn ∈ [ρ(a), σ(b)]T and rn → +∞ such
that

f(tn, rn) = max
ρ(a)≤t≤σ(b), 0≤yσ≤rn

f(t, yσ)

By (L4),

lim
rn→+∞

f(tn, rn)

rn
= 0,
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and

λ1 = max
r>0

s(r)

≥ max
rn>0

s(rn)

= max
rn>0

rn
A max
ρ(a)≤t≤σ(b), 0≤yσ≤rn

f(t, yσ)

= max
rn>0

rn
Af(tn, rn)

= +∞.

Hence, λ1 = +∞. Now, let us assume that (ii) holds. By Theorem 3.4, it is
sufficient to prove λ2 = 0. By (L2), for t ∈ [ρ(a), σ(b)]T, f(t, yσ)→ +∞ as
yσ → +∞. There exist tn ∈ [ρ(a), σ(b)]T and rn → +∞ such that

f(tn, Mθrn) = min
ρ(a)≤t≤σ(b),Mθrn≤yσ≤rn

f(t, yσ).

Again by (L2),

lim
rn→+∞

f(tn, Mθrn)

rn
= +∞,

and

λ2 = min
r>0

w(r)

≤ min
rn>0

w(rn)

= min
rn>0

rn
Bθ min

ρ(a)≤t≤σ(b),Mθrn≤yσ≤rn
f(t, yσ)

= min
rn>0

rn
f(tn, Mθrn)

= 0

Hence, λ2 = 0. So the boundary value problem (1.1) and (1.2) has at least
one positive solution for λ > 0. The proof of the corollary is complete.

Remark 3.1 Corollary 3.1 improves and generalizes the results in [9, 17,
19].

Corollary 3.2 Assume that (H1) − (H4) hold. Moreover, one of the fol-
lowing conditions is true:
(i) (L1) and (L6) hold;
(ii) (L2) and (L5) hold.
Then the boundary value problem (1.1) and (1.2) has at least one positive
solution for 0 < λ < 1

Al1
.
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Proof. Let us assume (i) hold. Then, By (L1) for t ∈ [ρ(a), σ(b)]T, f(t, yσ)
yσ →

+∞ as yσ → 0+. There exist tn ∈ [ρ(a), σ(b)]T and rn → 0+ such that

f(tn, Mθrn) = min
ρ(a)≤t≤σ(b),Mθrn≤yσ≤rn

f(t, yσ)

Again by (L1),

lim
rn→0+

f(tn, Mθrn)

rn
= +∞,

and

λ2 = min
r>0

w(r)

≤ min
rn>0

w(rn)

= min
rn>0

rn
Bθ min

ρ(a)≤t≤σ(b),Mθrn≤yσ≤rn
f(t, yσ)

= min
rn>0

rn
f(tn, Mθrn)

= 0.

Hence λ2 = 0.
Let us assume (ii) holds. For tn ∈ [ρ(a), σ(b)]T, and rn → 0+ such that

f(tn, rn) = max
ρ(a)≤t≤σ(b), 0≤yσ≤rn

f(t, yσ).

By (L5),

lim
rn→0

f(tn, rn)

rn
= l1 > 0,

and

λ1 = max
r>0

s(r)

≥ max
rn>0

s(rn)

= max
rn>0

rn
A max
ρ(a)≤t≤σ(b), 0≤yσ≤rn

f(t, yσ)

=
1

Al1
.

Hence, λ1 ≥ 1
Al1

. By Theorem 3.2, the boundary value problem (1.1) and

(1.2) has at least one positive solution for 0 < λ < 1
Al1

.



Sturm-Liouville boundary value problems on a measure chain 159

Corollary 3.3 Assume that (H1) − (H4) hold. Moreover, one of the fol-
lowing conditions is true:
(i) (L3) and (L6) hold;
(ii) (L4) and (L5) hold.
Then the boundary value problem (1.1) and (1.2) has at least one positive
solution for 1

MθBθl2
< λ < +∞.

Proof. We only need to prove that λ2 ≤ 1
MθBθl2

. Let us assume (i) hold.

By (L6), for t ∈ [ρ(a), σ(b)]T, f(t, yσ)
yσ → l2 > 0 as yσ → +∞. There exist

tn ∈ [ρ(a), σ(b)]T and rn → +∞ such that

f(tn, Mθrn) = min
ρ(a)≤t≤σ(b),Mθrn≤yσ≤rn

f(t, yσ).

Again by (L6),

lim
rn→+∞

f(tn, Mθrn)

rn
= Mθl2 > 0

and

λ2 = min
r>0

w(r)

≤ min
rn>0

w(rn)

= min
rn>0

rn
Bθ min

ρ(a)≤t≤σ(b),Mθrn≤yσ≤rn
f(t, yσ)

= min
rn>0

rn
f(tn, Mθrn)

=
1

MθBθl2
.

Hence, λ2 ≤ 1
MθBθl2

. Now, we assume (ii) holds. For tn ∈ [ρ(a), σ(b)]T and
rn → +∞ such that

f(tn, rn) = max
ρ(a)≤t≤σ(b), 0≤yσ≤rn

f(t, yσ)

By (L4),

lim
rn→+∞

f(tn, rn)

rn
= 0,
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and

λ1 = max
r>0

s(r)

≥ max
rn>0

s(rn)

= max
rn>0

rn
A max
ρ(a)≤t≤σ(b), 0≤yσ≤rn

f(t, yσ)

= +∞.

Hence, λ1 = +∞. So by Theorem 3.4, the boundary value problem (1.1)
and (1.2) has at least one positive solution for 1

MθBθl2
< λ < +∞.

Remark 3.2 Corollary 3.2 and Corollary 3.3 generalizes the results of Corol-
lary 3.2 and Corollary 3.3 respectively in [19].

4 Examples

In this section, several examples has been illustrated to validates the results
obtained in the earlier section.

Example 4.1 Consider the singular boundary value problem
((t2 + 1)y∆)∆ + λ 1

t
√
σ(1)−t

(yσ)2 = 0, ρ(0) < t < σ(1),

αy(ρ(0))− β((ρ(0))2 + 1)y∆(ρ(0)) = 0,

γy(σ(1)) + δ((σ(1))2 + 1)y∆(σ(1)) = 0.

(4.1)

Here, p(t) = (t2 + 1) , q(t) = 1

t
√
σ(1)−t

and f(t, yσ) = (yσ)2 and α, β, γ, δ

≥ 0.

When T = R, then the above boundary value problem becomes
((t2 + 1)y′)′ + λ 1

t
√

1−ty
2 = 0, 0 < t < 1,

αy(0)− βy∆(0) = 0,

γy(1) + 2δy∆(1) = 0.

(4.2)

Here, p(t) = (t2 + 1) , q(t) = 1

t
√

(1−t)
and f(t, y(t)) = (y(t))2, p(0) = 1,

p(1) = 2 and α, β, γ, δ ≥ 0. Clearly (H1) - (H4) are satisfied. Note that

G(s, s) =
1

η

(
γ

(
π

4
− tan−1(s)

)
+ δ

)(
α tan−1(s) + β

)
≥ 0,
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and

lim
y→+∞

f(t, y)

y
= lim

y→+∞

y2

y
= +∞,

lim
y→0

f(t, y)

y
= lim

y→0

y2

y
= 0.

Thus (L2) and (L3) hold. By Corollary 3.1, the boundary value problem
(4.2) has at least one positive solution for λ > 0.

Example 4.2 When T = R, let us consider the boundary value problem
((t2 + 1)y′)′ + λ 1

t
√

(1−t)
y2siny = 0, 0 < t < 1,

αy(0)− βy′(0) = 0,

γy(1) + 2δy′(1) = 0.

(4.3)

Here, p(t) = (t2 + 1) , q(t) = 1

t
√

(1−t)
and f(t, y) = y2, p(0) = 1, p(1) = 2

and α, β, γ, δ ≥ 0. Clearly (H1) - (H4) are satisfied. Note that

G(s, s) =
1

η

(
γ

(
π

4
− tan−1(s)

)
+ δ

)(
α tan−1(s) + β

)
≥ 0,

and

lim
y→+∞

f(t, y)

y
= lim

y→+∞

y2siny

y
= +∞,

lim
y→0+

f(t, y)

y
= lim

y→0+

y2siny

y
= 0.

Thus (L2) and (L3) hold. By Corollary 3.1, the boundary value problem
(4.3) has at least one positive solution for λ > 0.

Example 4.3 When T = Z, let us consider the boundary value problem
∆2y(t− 1) + λ 1

t
√

(2−t)
y2

siny = 0, 0 < t < 6,

αy(0) = 0,

γy(6) = 0.

(4.4)

Here, p(t) = 1 , q(t) = 1

t
√

(2−t)
and f(t, y) = y2

siny , p(0) = 1, p(6) = 1 and

α, β, γ, δ ≥ 0. Clearly (H1) - (H4) are satisfied. Note that

G(s, s) = (6− s)s ≥ 0
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and

lim
y→+∞

f(t, y)

y
= lim

y→+∞

y2

ysiny
= +∞,

lim
y→0+

f(t, y)

y
= lim

y→0+

y2

ysiny
= 1.

Thus (L2) and (L5) hold. By Corollary 3.2, the boundary value problem
(4.4) has at least one positive solution for 0 < λ < 1

Al1
.

Example 4.4 When T = hZ, let us consider the boundary value problem
∆h((t+ 1)∆hy) + λ 1

t
√

(2+h−t)
sin(y(t+ h)) = 0, ρ(1) < t < σ(2),

αy(ρ(1))− βp(ρ(1))y∆(ρ(1)) = 0,

γy(σ(2)) + δp(σ(2))y∆(σ(2)) = 0.

(4.5)
Here, p(t) = (t + 1) , q(t) = 1

t
√

(2+h−t)
and f(t, y(t + h)) = sin(y(t + h)),

and α, β, γ, δ ≥ 0. Clearly (H1) - (H4) are satisfied. Note that

G(s+ h, s) =
1

η

(
γ

( 2
h∑
s
h

h

1 + kh

)
+ δ

)(
α

( s
h∑

1
h
−1

h

1 + kh

)
+ β

)
≥ 0,

and

lim
y(t+h)→+∞

f(t, y(t+ h))

y(t+ h)
= lim

y→+∞

siny

y
= 0,

lim
y(t+h)→0+

f(t, y(t+ h))

y(t+ h)
= lim

y→0+

siny

y
= 1.

Thus (L4) and (L5) hold. By Corollary 3.3, the boundary value problem
(4.5) has at least one positive solution for 1

MθBθl2
< λ < +∞.

Example 4.5 Let us consider the boundary value problem
(y∆)∆ + λ 1

t
√

1−t
√
y siny = 0, 0 < t < 1,

αy(0)− βy∆(0) = 0,

γy(1) + δy∆(1) = 0.

(4.6)



Sturm-Liouville boundary value problems on a measure chain 163

When T = qZ, where qZ = {qk : k ∈ Z}. The above boundary value problem
becomes 

D2
qy(t) + λ 1

t
√

1−t
√
y siny = 0, 0 < t < 1

αy(0)− βDqy(0) = 0,

γy(1) + δDqy(1) = 0.

(4.7)

where

Dqy(t) =
y(qt)− y(t)

(q − 1)t
, t 6= 0.

Here, p(t) = 1 , q(t) = 1
t
√

1−t and f(t, y) =
√
y siny, p(0) = 1, p(1) = 1

and α, β, γ, δ ≥ 0. Clearly (H1) - (H4) are satisfied. Note that

G(qs, qs) =
1

η
(γ + δ − γqs)(αqs+ β) ≥ 0,

and

lim
y→+∞

f(t, y)

y
= lim

y→+∞

√
y siny

y
= 0,

lim
y→0+

f(t, y)

y
= lim

y→0+

√
y siny

y
= 0.

Thus (L3) and (L4) hold. By Theorem 3.3, the boundary value problem (4.7)
has at least two positive solution for λ2 < λ < +∞.

Example 4.6 Consider the singular boundary value problem
((t2 + 1)y∆)∆ + λ 1

t
√
σ(1)−t

f(t, yσ(t)) = 0, ρ(1) < t < σ(2),

αy(ρ(1))− βp(ρ(1))y∆(ρ(1)) = 0,

γy(σ(2)) + δ((σ(2))2 + 1)y∆(σ(2)) = 0,

(4.8)

where

f(t, yσ(t)) =

{
1, yσ < 1,

(yσ)2, yσ ≥ 1.

If T = Pa,b = ∪∞k=0[k(a+b), k(a+b)+a], σ(t) = t for t ∈ ∪∞k=0[k(a+b), k(a+
b) + a), so the above boundary value problem becomes

((t2 + 1)y∆)∆ + λ 1
t
√

1−tf(t, y(t)) = 0, 0 < t < 3,

αy(0)− βy∆(0) = 0,

γy(1) + 10δy∆(1) = 0,

(4.9)
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where

f(t, y(t)) =

{
1, y(t) < 1,

(y(t))2, y(t) ≥ 1.

Here p(t) = t2 + 1, q(t) = 1
t
√

1−t , p(ρ(1)) = 1 and p(σ(2)) = 10 and α, β, γ,

δ ≥ 0. Clearly (H1) - (H4) are satisfied. Note that

G(s, s) =
1

η

(
γ tan−1

(
3− s
3 + s

)
+ δ

)(
α tan−1(s) + β

)
≥ 0,

and

lim
y→+∞

f(t, y)

y
= lim

y→+∞

y2

y
= +∞,

lim
y→0

f(t, y)

y
= lim

y→0

1

y
= +∞.

Thus (L1) and (L2) hold. By Theorem 3.1, the boundary value problem (4.9)
has at least two positive solution for 0 < λ < λ1.
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