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Abstract
The aim of this paper is to study the existence and maximal reg-
ularity for distributional solutions of degenerate anisotropic nonlin-
ear elliptic systems with variable exponents where the right-hand side

fis in L90) ¢(-) : © — (1,400). The functional setting involves
anisotropic Sobolev spaces with variable exponents as well as weak
Lebesgue (Marcinkiewicz) spaces with variable exponents.
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1 Introduction

Let © be a bounded open set in RY (N > 2) with Lipschitz boundary 99,
and let’s consider the anisotropic nonlinear elliptic system

N

_ZDi (ai(z,u)oi(z, Diu)) + g(z,u) = f, inQ,
i (1)

u=0, on J,
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108 N. Mokhtar

Our aim is to prove the existence and maximal regularity at least one dis-
tributional solution u = (u1,...,%y,)" (m > 1) to (1), where the right-hand
side f is in the anisotropic Lebesgue space L2®) (Q; R™), () : Q — (1, +00),
a; : AxR™ =R, 4=1,..., N are Carathéodory functions such that for a.e.
x € Q, for every t € R™, we have

«

Wéai(wvt)éﬁ, i=1,...,N, 2)

where a, 3 are strictly positive real numbers and v € C(Q), y(x) > 0 for
all z € Q, and the vector fields o; : Q@ x R™ — R™, 4 = 1,..., N, are
Carathéodory functions and satisfying, a.e. € Q and V¢, & € R™ (€ # ¢'),
a € R™, the following :

oi(x,8) - € > c1|EP®) — ¢, (3)
N 1‘%
joi(, &) < ez | DI + |n| , heLi(9Q) (4)
7=1
(O—i(xag) - O—i(x7§,>) ’ (§ - gl) > @Z (':U:fvf/) ) (5)
oi(2,6) - [([—a®a)e] >0, i=1,...,N, [a| <1. (6)
Where pu(e)
eal =P, i pi(z) > 2
(lgl+ern> Pt '
where ¢;, [ = 1,...,5 are positive constants, (I —a ® a) is the rank m — 1

orthogonal projector onto the space orthogonal to the unit vector a € R™,
where @ : R x R™ — M™*™ defined by

aiby  agbr ... ambi
aiby  asgby ... ame
(al,...,am)@)(bl,...,bm) =
aitby,, agby ... ambm
Remark 1. Ifoj;, j = 1,...,m, denotes the components of the vector o;,

then the angle condition can be stated more explicitly as

m

Z oji(w,€)& (05, — ajar) > 0.

j,l=1

Clearly, condition (6) is void in the scalar case.
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The variable exponents p; : Q — (1,00) i = 1,..., N are continuous func-
tions. We assume that the nonlinearity g : 2 x R™ — R™ is a Caratéodory
function and satisfies for a.e. x € {2 the following conditions:

glz,r) - (r—r")>0, Vro' eR™ |r| <, (7)
sup |g(z,r)| € L'(;R™) Vr € R™ and V7 €R, (8)
r|<T

g(z,r) - r > |r[1@s@+ -y e R (9)

ga,r) - r > PO v e R f e (WEPO@R™), (10)

where s(-) > 0 is continuous function on Q.
As prototype example, we consider the following model:

N
. ’D2u|pl(x)72Dlu s(x)—-1, _ :
_;a( (@ ) TTe= s e,

(11)
u=0, on J,

where f € LIO)(Q;R™), s(-) and p;(-) are restricted as in Theorem 1 or
Theorem 2.

In this paper we study the existence of solutions in the sense of distri-
butions for the anisotropic nonlinear elliptic system with variable exponents
and degenerate coercivity where the right-hand side f of the system is in
LIOQ;R™), q(-) : Q — (1,400), with p; is assumed to be merely a con-
tinuous function, and we treat the regularity of distributional solution u
depending simultaneously on s(-) and ¢(-).

We note that, the existence and regularity results for weak solutions in the
framework of anisotropic Sobolev spaces for a nonlinear anisotropic elliptic
equations and systems with variable exponents are proved in [1, 2, 3, 6, 7, 8],
the scalar case (p;(+) = p; constant) processed in [4], and the isotropic case
(pi(+) = p constant) studie in [17].

We mention also that the existence results for distributional solutions of
nonlinear elliptic systems with variable exponents and measure data have
been obtained in [5], and anisotropic scalar case (p;(-) = p; constant) has
been studied in [4, 13].

Here we will prove the existence of a solution to (1), under the conditions
1<q(x) < %, p(x) < N in Q.

So, in the case when s(z) > %
q(z)—1

(11?3(_901) > s(x) > max (m(l%g)_l; (1 +~(x))(pi(x) — 1)) (see Theorem 2).

(see Theorem 1), then the case when
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The proof requires a priori estimates for a sequence of suitable approximate
solutions (uy,), which in turn is proving its existence, and then to pass to
the limit .

We prove the a.e. convergence of the partial derivatives D;u,,, which can be
turned into strong L' convergence. Equipped with this convergence we pass
to the limit in the strong L' sense in the nonlinear vector fields oi(x, Diuy,)
then a;(x, T, (uy))oi(x, Djuy), and the nonlinearity function g(z,u,), and
finally conclude that the approximate solutions u, converge to a solution of

(1).

2 Mathematical preliminaries

In this section we first recall some facts on variable exponent spaces LP()(Q).
We refer to [11, 12, 14] and references therein for further properties of vari-
able exponent Lebesgue-Sobolev spaces.

Let p : @ — [1,00) be a continuous function. We denote by LP()(Q) the
space of measurable function f(z) on 2 such that

po) = [ 17@Pdo <+
The space L) (Q) equipped with the norm

£ 1lp0) = If ooy = inf {X > 0] pyy (f/A) <1}

becomes a Banach space. Moreover, if p~ = minp(z) > 1, then Lp(')(Q)
e

is reflexive and the dual of LP()() can be identified with L' ()(Q), where
ﬁ + le) = 1. For any u € LPO)(Q) and v € LP'1)(Q) the Holder type
inequality:

/ uv dx
Q

holds true.
We define also the Banach space VVO1 P (')(Q) by

1 1
< <p— + pf—> el 0y < 20l 1ol

W@ = {f € 170(@) : |Df| € 170(9) and f =0 on 92}

endowed with the norm Hwal,p(.)(Q) = |[Dfllp.y- The space Wol’p(')(Q) is
0

separable and reflexive provided that with 1 < p~ < p™ = maxp(z) < oo.
e



Anisotropic Nonlinear Elliptic Systems 111

The smooth functions are in general not dense in I/VO1 P (')(Q), but if the
exponent variable p(z) > 1 is logarithmic Hélder continuous (12), that is

M

M > 0: |p(x) —p(y)| < _m

1
Vx # y such that |z—y| < 3 (12)

then the smooth functions are dense in I/VO1 P (')(Q).
For u € WO1 P (')(Q) with p € C(,[1,+0)), the Poincaré inequality holds
(see [12])

[ullpey < CllDullpy, (13)

for some constant C' which depends on €2 and the function p(x).
The following Lemma will be used later.

Lemma 1 ([11, 12]). If (u,), u € LPC)(Q), then the following relations hold

(i) |Jullpy < 1 (respectively = 1, > 1) <= ppy(u) < 1 (respectively =
1, >1),

1
(id) min (py() (W), pyp( ()7
. - + - +
(iii) min (|l ) ) < oy () < max (Jull? lull?) )

() Nullpy < ppey(u) + 1,
(v) |un — ullpey = 0 <= pp)(un —u) = 0.

Remark 2. Note that the following inequality

/ P do < © / DyPe
Q Q

in general does not hold (see [14]). But by Lemma 1 and (13) we have

/Iflp(m dr < CmaX{IIDfIILp<> DI ) (14)

Let p; : Q — [1,00) be a continuous functions.
We introduce the anisotropic variable exponent Sobolev space

wiO©) = {ue170(@): Due 0@},

WOy = {u e Wl (Q): D e LM')(Q)} :
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which are Banach spaces under the norm
||U||z = ||U||Lpz() =+ HD u”yn()(g) 1= 1,---7N-

we present the anisotropic Sobolev space with variable exponent which is
used for the study of problems (1). First of all, let p;(+) : Q — [1,400), i =
1,...,N be a continuous functions, we set ?(l = (pi(),...,pn () and
p+(w) = max pi(z), p-(x) = min pi(z), Vo € Q.

Definition 1. The anisotropic variable exponent Sobolev space Wl’ﬁ(')(Q)
1s defined as follow

WLTO(Q) = {u e L»+O(Q), Dju € LPO(Q), i =1, .. .,N} ,

which is Banach space with respect to the norm
el = ltllp, ¢ + Z |Deull

Definition 2. We define the spaces W L7 )(Q) as the closure of C§°(Q)
in WH70) )(Q), and W P )(Q) as the intersection ofWL?(')(Q) and WOI’I(Q),

and we write
___ wLTFO o
wh7O ) — g @ Wi TO@Q) = whFO@Q) N whLQ).

Remark 3 ([10]). If Q is a bounded open set with Lipschitz boundary OS2,
then
VQVL?(') (Q) = {u S Wl’?() (Q), U|QQ = 0} s

where, g denotes the trace on 9Q of u in WhH(Q).

Remark 4 ([10]) It is well known that in the constant exponent case,
that is, when P(-) = P € [1,+00)N W&’?(Q) = Wlﬁ(Q) However

in the variable exponent case, in geneml W ’ ()(Q) C T/T/l’?(')(Q) and the
smooth functions are in general not dense in WLP) (Q), but if for each
t=1,..., N,

Di 18 log Hélder continuous, then C§°(S2) is dense in VT/L?(')(Q), thus

Wy TO(Q) = W7 O(@).
Remark 5. We use standard notation for the vector and matriz-valued

versions of fhe space/ norm intmducgd above. For example, the R™-valued
version of Wl’?(')(Q) is denoted by Wl’ﬁ(')(Q;Rm).
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We set
C(Q) ={peC), p(x) > 1, for any x in Q}. (15)

For any p € C(Q), we denote

pt =maxp(z), and p~ = minp(z).
zel) xef)
And we set for all z € Q
pr) = (2) (@), pt (2)
) = T) = max = max T

p N . y D+ 1< <Npl y Pg o Db+ )

2 (@)

=1
p-(z) = Jpin, pi(x i(z), p_= ineigp—(w),

and we define

ﬁ*(iﬂ) — ]\i‘vféiz)a fOI' ﬁ(ﬂf) < Na
+o00, for p(z) > N.

We have the following embedding results.

Lemma 2 ([14]). Let Q ¢ RN be a bounded domain and P (-) € (C4(Q))N
If 0 € CL(Q) and Vz € Q, o(z) < max(p4(x), p*(z)). Then the embedding

Vi/l,?(-)(g) < L2O/(Q),
18 compact.

Lemma 3 ([14]). Let Q ¢ RN be a bounded domain and P (-) € (C4(Q))V.
Suppose that

Vz € Q, py(x) < p*(x). (16)

Then the following Poincaré-type inequality holds

lll s 0 <02HDu||Lp, ) Yue WHPO(Q), (17)
=1

where C is a positive constant independent of u. Thus Zf\il HDiuHLPi<‘>(Q)

is an equivalent norm on Vi/l’?(')(Q).
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Proposition 1. If u : @ — R is a measurable function such that Ti(u) €
WL?(')(Q) for all t > 0, then there exists a unique measurable function
v:Q — RY such that

VTi(u) = vl <y a-e. inQ, Ti(r) = max{—t, min{t,r}}. (18)

Moreover, if u € Wol’l(ﬂ) then v coincides with the standard distributional
gradient of u.

A function w such that Ti(u) € WL?(')(Q) for any t > 0, does not nec-
essarily belong to WO1 1(Q) However, according to the above proposition, it
is possible to define its weak gradient, still denoted by Vu, as the unique
function v which satisfies (18).

The following embedding results for the anisotropic constant exponent
Sobolev space are well-known [15].

Lemma 4. Let o; > 1, i =1,...,N, we pose & = (a1,...,an). Suppose
_>
uEW()l’a(Q), and set

_1%1 [T == ifa < N,
a;’ | any number from [1,+oc0) ifa > N.

i=1 "

Then there exists a constant C' depending on N,p1,...,py if @ < N and
also on r and |Q| if @ > N, such that

N 1
lullzrey < C T 1Dl Fes - (19)
=1

In this paper we will use the weak Lebesgue (Marcinkiewicz) spaces
with variable exponents M")(Q) where h(-) a measurable function such
that h~ > 0 (see [9]). They contain the measurable functions u :  — R for
which there exists a positive constant M such that

/ t"@) de < M, for all t > 0.
{lul>t}

Moreover, it is clear that u € M")(Q) if |u|*) € L1(Q) . Indeed,

/ (=) da:g/ ulP®) da
{Jul>t} Q
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In particular, L") (Q) ¢ M"0) | for all h(-) > 1.

Similarly to the anisotropic Sobolev spaces with variable exponents, we
use standard notation for the vector/matrix-valued versions of the weak
Lebesgue spaces with variable exponents.

Remark 6. We remark that for h(-) = h constant this definition coincides
with the classical definition of the Marcinkiewicz space M"(Q), they contain
the measurable functions f : Q — R for which the distribution function

Ap(t) = |{z e Q : |f()] > t}], t>0,

satisfies an estimate of the form

Ar(t) < Ct™" for some finite constant C.

For any t > 0, the standard scalar truncation function 7} on [0, 00) (at

height t) is defined as
r, iftr<t
Ty(r) =<’ -
t(r) {t, if > t.

Now we need the following Lemma, thanks to Proposition 2.5 in [9], we have

Lemma 5. Let p(-),r(-) in C(Q) such that r— > 0,(p—r)~ > 0.
If u € MPO(Q), then |u|"®) € LY(Q). In particular, MPO)(Q) ¢ L™O(Q)
for all p(+),r(-) > 1 such that (p—r)~ > 0.

For any ¢t > 0, define the spherial (radially symmetric) truncation func-
tion 73 : R™ — R™ by

T, if |r| <t,
T; = 20
t(r) {;jlt, if |r| > t. (20)

This function will be used repeatedly to derive a priori estimates for our
approximate solutions. We also need its derivative (see [1])

DTy (r) I, if |r] < ¢, (21)
t\r) = rer .
m(I=185), it | >t
Andifm=1 "
1, |rl<t,
DTir) = { 0, |r|>t. (22)

In particular, (6) implies for all £, € R™ the crucial property

0'[(517,5)DTt(T)§ZU[(x,€)€X‘T|<t, [=1,...,N. (23)

We refer to [16] for a discussion of 7; and other test functions for elliptic
systems, which indeed is a delicate issue.
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Definition 3. A distributional solution of (1) is a vector-valued function
u: Q — R™ satisfying u € Wol’l(Q;]Rm), g(.,u) and o;(., Dyu) € LY (;R™),
i=1,...,N, and for all ¢ € C°(Q;R™),

N
/QZai(x,u)Ui(x,Diu) - Dipdr + /Qg(x,u) cpdr = /Qf(:c)@ dx.
i=1

3 Main results

Our main results are the following.

Theorem 1. Let q¢(-) : @ — (1,+00), pi : & — (1,4+0), and s : Q —
(0, +00) be continuous functions such that (16) holds and for all x € Q

Np(z

1< 00) < iy B <N Vae ¥, @
and
s(z) > w Vs € L%(Q), Voy € L, (25)

Let f € LYO(Q;R™) and let a; are satisfying (2), o satisfying (3)-(6) and
g satisfy (7)- (9). Then, the problem (1) has at least one distributional
solution v € WHPO) (Q; R™) 0 L50)a0) (Q; R™).

Theorem 2. Let f € LIO(Q) with q as in (24), p; : @ — (1,+00), and
5:Q — (0,+00) be continuous functions. Assume (16), and for all x € Q,

1+ ~(x) L+y(z) 4

@ =1 > s(x) > max (W» (1 +~(2))(pi(x) — 1)>, (26)
and Vs € L>®(Q), p(z) < N.
Let a; are satisfying (2), o satisfying (3)-(6) and g satisfy (7)- (9). Then, the
problem (1) has at least one distributional solution u such that |u|d®)5@) ¢
LY(Q) and u € WEO(Q;R™) where ri(-) are continuous functions on Q
satisfying

() p@a@s@) o
1<T2()<s(:v)—|—1—|—’y(x)’ VY € €, 1,...,N. (27)

Remark 7. Observe that the conditions (24), (25), and (16) guarantee that

s(z) > (1 +~v(x)(pi(x) —1), VreQ, i=1,...,N.
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Remark 8. In Theorem 2, the conditions (24) and (16) imply that the
assumption (26) is not empty since we have

1 _
———— >pi(x)—1, Ve i=1,...,N. 28

3.1 Approximate solutions

e We must first prove the following Lemma

Lemma 6. Let [ in (Wl’?(‘)(Q;Rm))*. Assume that p;(-),i = 1,..., N,
s(+) > pi(+) are continuous functions on 2 such that (2), (3)-(6), (7),(8),
(10) and (16) holds. Then the system

_ iDi <ai(m,Tn(un))Ui(a£,Diun)) +9(z,uy) =f inQ,

=1

(29)
U, =0 on 09,

has at least one solution in the sense that
N
Z/ ai(az,Tn(un))m(%Diun)-Dwdm+/g(fﬂ,un)-sodfﬁz (fie), (30)
i=1 7% Q

for every o € WHPO (Q; R™) N L0 (Q; R™).
Proof. Let f in (VOVL?(')(Q;Rm))*, and consider the approximate system :

N

— ZDi (ai(:z:,Tn(unk))ai(x,Diunk,)) + gi(z,upn,) = f, inQ,

i=1 (31)

Up, =0, on 09,

k

where, gp(x,&) = %, Vk € N*,

Note that ‘gk(x¢§)‘ S| g($a£) ’7 and |gk($,f)‘ <k.
Let’s prove that the system (31) has at least one solution uy, in
WL70)(Q;R™) in the following sense, Y € WP (Q; R™)

N
i=1
For uy,, ,v € Wl’ﬁ(')(Q;Rm), we denote by Ay the operator

N
Ay Up,, =2 (U = / Zai(myTn(unk))Ui(aniunk)'Div+/ gk(xﬂunk)'v>‘
Q= Q
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We consider

N
Z ai(x, Ty (un,))oi (x, Diunk) - D;v,
Q=1

/ gr(x, up,,) - vdx,
Q

and we seek u,, € Wl’ﬁ(')(Q;Rm) such that
bk (tn 0) + (tin, . v) = (f,0), Yo € WETO(Q;R™). (33)

bi(Un,,,v) =
ek ( v) =

Uy,

The generalized problem (33) corresponding to (31) is equivalent to
Au(un,)(v) = (f,0), Yo € WHTO(@QR™),
where, Ako := By + Cy, with )
By, Ck : WL?(')(Q;R’”) — (WL?(')(Q']RT”))* characterized by
<Bk(unk) > = bk(unmv) <Ck(unk) ’U> = Ck(unk? U)
Here é ) denotes the duality pairing between W EL )(Q;R™) and
()(Q;R™))*. We put in the following

I ||7 = IHlinzo@zmy Mo = Hwow
* From (2), (4), and Holder inequality we have

‘(Bk(unk Z/ |ai(@, Ty (un,,))||0i (@, D; “nk)HD v}dz

N N =@
<CZ/ (Z | Djtn,, ’pj(x) + h(x)) \Dw\ d
i=1 7%

j=1
N N -5t
=5 (ZDMWM(:E)) l1Devlll,,q.
SV e
1—-L
N N P
§2cz 1+/Q (ZDz‘unk‘D](I) + [h(z)| da?) ZH‘DU‘H])()
=1 =1
j L
N N P_
<2y 1+/Q (NZDjunka(x)Jrh(ﬂ?)) dx) o]l
i=1 Jj=1

P i
<2eN ( Nljun, [, +C [l
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Which implies the boundedness of By.
Qn the other hand, thanks to the Holder inequality, we have for all u,,,v €
WL70(Q; R™)

(Cuctan). )] =| [ o) vl

1 1

S(E + (p;),)H\gk(z,unk)\||Lp/+(.)(m|yyvyHLM)(m
1 1 / T / —

<G+ ) 0 LI el
1 ]' / o\ —

S(E + (pl_s_)’)(l +k(p+)+‘9‘)1/(17+) HUH?()

Which implies the boundedness of Cy,.
« Through (2) and (3), observe that

<Ak(unk)7 Unk> Zz]il fQ ai(xa Tn(unk))ai(‘T? Diunk) ’ Diunk dx

>
[l 5 [EN R
> C(Zij\il Jo ‘Diunk‘pi(x)) —
- H“M“?(.)
- +
e( 32isy min{ || Diwn, [ . [ Dt 1) — ¢
B H“nuﬁ(.)
e(ZiLy | Din [l y = N) = ¢
- H“%H?(.)
- e(x Tty HDiunkai(.))pf — (N +¢)
a H“nkuﬁ(.)
_ LHU Hp:fl B Ne+ ¢
o 1l H“MH?(.)

This implies that Ay is coercive.
* Let us prove the pseudo-monotonicity of the operator Ay,
Let (un, )r be a sequence in Wl’?(')(Q;Rm) such that

lim sup(An (un, ), Un, — Un) < 0. (34)

k—o0

{unk — Uy, in Vi/l’?(')(ﬂ;]l%m),
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We have to prove that,
lim inf (A (n, )t =) > (Ak(un) =0}, Vv € WLPOQR™). (35)
— 00

We remark that

N
(Ak(un, ), Un, —v) = /s)Zai(:x,Tn(unk))Ji (x,Diunk) - (Djup, — D) dx
i=1

(36)
We will separately study the two terms of the right-hand side.
First, let’s prove that
N
i /Q ; Ji(z) dz = 0, (37)

where,
Ji(x) = ai(x, T, (up,)) (Ji (;1:, Diunk) — 0; (w, Dzun)) - (Djun, — Diuy,).

Note that,
N
(Aue(tiny), thy, — 1) = /Q S 03(, Tt )0 (2, Ditiny) - (Ditin, — Dy
=1

[ o) (i, = )

We observe that fQ gi(x, up, ).(up, —up) —> 0, since u,, — u, in
L) (Q; R™) where o(-) defined in Lemma 2, and the sequence (gx(z,un, ))
is bounded in L¥i)(Q;R™) due to the hypotheses on gj. By (34) and that
D;uy,, — Du, in LPi() this implies that

N
limsup/ Z Ji(x)dz < 0.
i1

k—+o0

Through this and using hypothesis (2) and (5), we get the desired result

(37).

Right Now, let’s prove the following, for all i =1,..., N,

lim / | Diti,,, — Dju, |P'®) = 0. (38)
Q

k—+o00
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For that we put
Q ={z e Qpi(z)>2},and QF = {z € Q1< pi(x) <2},
then, by hypothesis (2) and (5) we have
/ Ji(x)dx > C4/ | Ditiy,,, — Diun]p"(x). (39)
Q ol
On the other hand, we have

/ | Diti,, — Dyt [P da
0

Diup, — Dy, |Pi®) 2i(@)(2=p;())
= /2 . : M (| Ditin, | + [Diunl) ? dx
9 (|Diun,,| + | Diun|) 2

< 2 |Dlunk — Dlun|pz(1’)
- i(2)(2—p;(x))
(IDitty | + D)7 || 2

pi(2)(2—p;(2))

(IDiun | + | Diun]) 2

X

2
L2=Pi() (Q2)

Ditin, — Ditin|? L
< Qmax{(/ | Ditn, Zunif @ dm) ’ )
sz (‘Dzunk‘ + ‘Dzun‘) bi

Din_Din2 2
([, e P i) )
02 (|Dittny | + | Diuy|)> 771

2—p3—

X max{(/ (\Dzunk‘ + ’Diun‘)l’i(x) dx) o
Q
27;01-

(/Q (|Dlunk| + ‘Diun|)pi(x) dZE)T}

(40)

By hypothesis (5), boundedness of (up, )x in Wl’?(')(Q;Rm),

Up € Wl’?(')(Q;Rm) , and (37), after letting k — 400 in (39) and in (40),
we find (38),

which implies, for all i =1,..., N,

Djuy, — Dju,, strongly in L") (Q; R™) and a.e.in €. (41)
By (41) and (34), we have
a; ('737 Tn(unk))ai (l’, Diunk) - ai($7 Tn(un))ai (CC, Dzun) in LPQ(’)(Q; Rm)7
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then we have, for every v € le(')(Q;Rm), i1=1,...,N

/ ai(x, Ty (un,))oi (az, Diunk) -Djv — / ai(x,Tn(un))oi(:E,Diun) - D;v
Q Q

(42)
On the other hand,
as a;(z, Ty (un, ))oi (x, Diun, ) — ai(z, Ty (un))oi(z, Diuy,)
and Djuy,, — D;u, a.e. in 2, Fatou’s Lemma implies that
N
lgglig/gzgai(:c,’fn(unk))ai (az,Diunk) - Djup,
' (43)

N
> / Zai(w,Tn(un))ai(x,Diun) - D;uy,.
@ =1

From (42) and (43), we deduce that

N
lim inf/ Zai(m,Tn(unk))ai (z, Diug,) - (Ditn, — Djv)
=1

k—+o0

N
> /QZZ;M(CE,Tn(un))Ui (z, Dyuy) - (Diun — Djv).

Since uy,, — uy, in L2)(Q;R™) where o(-) defined in Lemma (2), then
9k (2, un, ) = gz, up) weakly in LPi0)(Q; R™), and this implies that

liminf/ng(x,unk) (g — 0) > /ng(x,un) (i — ).

k—4o00

We thus have obtained (35).

Therefore Ay is pseudo-monotone.

x Moreover, the operator Ay is bounded, pseudomonotone , and coercive
then, the main Theorem on pseudo-monotone operators applies and ensures
existence of least one weak solution u,, € Vifl’ﬁ(')(Q;Rm) to (31) in the
sense that, Vo € VOVL?(')(Q;Rm)

N
i=1
(44)
Passage to the limit: Put X = le(')(Q;Rm).
Choosing ¢ = uy, in (44), by (2), (3), and (9) , we have

N
a(l+n)" (a / > | Diug, [P dw—c’) < [/l
Q

i=1

unkHX’
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where, ¢ = N}Q}CQ.
Using Young’s inequality, (7i7) of Lemma 1, and the fact that,
foralli=1,...,N

| Diunk ‘pi(x) +1 Z| Diunk |p:’
we get, for all € > 0

;f,lHunkH? <(@+ny" <C(E>Hf}|§§§) +5HunkH§g> + (V]2 + &)
After taking e = M it follows that the sequence (uy, )i is bounded

2NP,
in WLPO(Q;R™).
So, there exists a function u, € VT/L?(')(Q;Rm) and a subsequence (still
denoted by (up, )r), such that

Up, — Uy weakly in Wl’ﬁ(')(Q;Rm)and a.e in €. (45)

Now, choosing ¢ = u,, — u, in (44) as a test function, we get

N
/QZ (ai(m,Tnunk)ai(az, Diuy,) — ai(x, Ty (uy))oi(x, Dzun))
=1

’ (Diunk_Diun)dm
N
+ / > ai(x, Tn(un))oi(x, Di(up)) - (Ditty,, — Dyup)da
Q=1

+ /ng’(x’u”k) + (Uny—u, )dx

= <f7 Uny, — un)'

We observe that fQ 9i(x, up,, ). (U, — up) — 0, since uy,, — uyp, in
LeO)(Q; R™) where o(-) defined in Lemma 2, and the hypotheses on gy,
give us that (gx(z,un,))x is bounded in LPi()(Q;R™), and that Dju,, —
Dju,, in LPi() | this implies that

N
kEI-EOO\/Q;IZ(x) dx — 0.

where,
Ii(z) = (ai(x,Tn(unk))ai(ac,Diunk) — ai(x, Ty (un))o; (:U,Diun)) - (Diup, —
Djuy) In the same way as proving (41) we can get, for all i = 1,..., N,

Djuy,, — Djuy, strongly in LPO)(Q; R™) and a.e. in Q. (46)
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Now, by (4), (2), and (45), we have

N
/Qai(van(unk))Oi(fﬂ,Diunk)!pé(')dx SC/Q > 1D, |79 + |h| | da
j=1

N

gc/ N [ Dju, [P 4 |h| | da
0 -
7j=1

gCNHunkH’;i) +C' <"
And therefore
a;(, T (tny ))0s(x, Dy, ) is bounded in LPiO)(Q; R™). (47)
From (46) and (47), we have
ai(m,Tn(unk))ai(x,Diunk) — ai(z, Tp(up))o; (:L",Diun) ian;(')(Q;Rm).
From this, we obtain, for every ¢ € le(’)(Q;Rm), i1=1,....N
ai(x, T (un,))oi (:B, Diunk) - Dip — a;i(x, Ty, (up))o; (:L‘,Diun) -Djp. (48)
Now, we have to prove that
ge(7,un, ) — g(x,u,)  strongly in L' (Q;R™). (49)
From (45), we have
gi(z, up, ) — g(z,upy) a.e. in . (50)

Let E C Q2 be any measurable set, we write for all £ > 0

/ 192, )| dx = / 1912, iy )| i+ / 1082, iy )| iz,
E Eq Es

where, B} = EN{|up, | <t}, B2 = EN{luy, | >t
Let 0 < M < t, and observe that

| T ()| < [Tt [ L g <ary + [T (Un) [, 501y < M A+ L, 5003

Using this decomposition in (44) after taking ¢ = T}(up, ), and by (8),
we conclude the equi-integrability of gi(x, uy, ) in
LY($;R™), and since (50), Vitalis theorem implies (49).



Anisotropic Nonlinear Elliptic Systems 125

Therefore, we can obtain (30) by passing to the limit in (44). Thus the proof
of Lemma 6 was concluded.

e Let (f,) be a sequence in (W1’7(')(Q; R™))" N LI (Q; R™) of bounded
functions which converges to f in L()(Q;R™), and which verifies the in-
equality

[fallgey < 1fllgey,  Vn = 1.

Thanks to Lemma 6, there exists at least one solution in the sense of distri-
butions for the approximate problem

N
- ZD’L (az(xyTn(un))o-Z(anZun)) —i—g(m‘,un) = fTM in Qv
=1
up =0 in 09,

satisfies the weak formulation

N
/ Zai(x,Tn(un))ai(x,Dun) - D dx —l—/ g(z,up) - pdx = / fn-pdz,
Qi Q Q
] (51)
for every ¢ € W20 (Q; R™) N L*O)(Q; R™). O
3.2 A priori estimates

In this section, we state and prove an uniform estimates for the approximate
solutions u,, of the problem (30). Throughout the paper, we will denote by
C, (or C') the positive constants depending only on the data of the problem,
but not on n.

Lemma 7. There exists a constant C' > 0 such that
Hun”ﬁzl,?w(Q;Rm) <C. (52)

Proof. Put X = VT/L?(‘)(Q;R’”).
Choosing ¢ = uy,, in (51), by (2), (3), and (9) , we have

N
a(l+n)"" <C1/ Z | Dyun [P) da — Cl) < |[fallx-
Q

tn|| -
i=1
where, ¢ = N}Q}CQ.
Using Young’s inequality, (#i7) of Lemma 1, and the fact that,
foralli=1,...,N
‘ Djuy, ‘pl(x) +1 2| Djuy, |p:’
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we get, for all € > 0

(0765}
NP,

lunllic < (14 n)7" (c )| £a| % ’+5Hunuf§g)+a<N\Q\C1+a>.

o
After taking ¢ = aci(l4n)77
2Np7

in Wl’?(’)(ﬁ; R™). O

it follows that the sequence (uy,), is bounded

Lemma 8. Let q,s,p; and v be restricted as in Theorem 2. Then, there
exists a constant C > 0 such that

N

/ D; un\pi @) de < (1 +1) (53)
(Junl<ty (1 + [un )Y@ —(al@)=Ds() = = :
Q
/ ’un’é‘(x)Q(m) de < C. (55)
Q

N
/ Ha@)=Ds(@)=1=1@)| Dy, 0 gy < 0, WE>1. (56)
{lunl<t}

Proof. Taking ¥(z, us) = ((1 + |uy|) @@ =Ds@) Ty(u,) in (51)
as a test function, by the fact that for a.e. z € Q and foralli=1,..., N

Ty (un) In(1 + |u,))
(1 + |up|)A-9@)s()
Tt(un)Di’un’
@) = Vsl@) 7, S
(1 + | ]) T-a@Ds(@)

Ditp(w,un) = Di ((q(z) — 1)s(x))

we have,

N
/ ZUi (z, Diuy) - Ditp(x, uy) d
Q=1
s [ gt vl de (57)

/fn- (@, un)
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And this is equivalent to what follows after compensation

ai(z, Tp(up) az(x D; un) DTi(un)Diuy,
I z da
(1 + |uy|)(1=a(@)s()

9(@, un) - Ti(un)
+/Q 1 + iy ) =ateNs@

al i\Ls L Un )0 (T, Liln t\Un un

— (1+ ]un|)(1w( ))s(@)+1
- /Q (1 + [un]) T—a@)s(@) dr

N
ai(qun(un)Ul (.%‘ D; un) Tt(un) hl(l + |Un|)
- / >~ Dila(w) = 1)) R (e

(58)
Using (23), (2) and (3), we obtain
/ Za, x, Ty (up O’Z(J} D; un) DT, (upn)D;un,
(14 |uy|)(1-a(@)s(2)
/ Z a;(x, T, (up)oi(x, Diuy) - Diuy, Xlun | <t
(1 4 |uy|)(1-a(@)s()
> ¢ / (1+ |un) @D (1 Dy [PE) — ) da.
Z IUn|<t} ( )
(59)

By the observation that (g(z) — 1)s(z) — 1 — y(z) < 0, we get

Z / (1 + | ) @@ =Ds@=1@) gy
\un|<t}

< Z/ (14 [un|) (1 + |y, |) 4@~ Ds@)=1=7() g,

\un|<t}
N

<(1+1) / da
; {unl<t)

< N|QJ(1 +1).
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We find that, (59) give us

/ a;(x, Ty, (un)o; (:U D; un) DT, (un)D;un,
g dx
(1 + |uy|)(1—a@)s@)

( (60)
/ |Diun|pi ” o
= ;/{um} (0 + @@ &~
And after using (7), we have
g(z,un) - Ti(un) / (a(z)—=1)s(z) Un

dr >t 1+ |u, )\~ — (2, uy,) dx.

/Q (1 4 |uy,|)(1-4(@)s(z) {‘Un|>t}( [un]) [tn ( )
(61)

Using the fact that

(14 fun )@@ =D Z g ) > (g, un)], fun] >0, (62)

it is produced through the following;:
By (7) with the observation that (g(x) — 1)s(x) — 1 — ~(x) < 0 since (26),
we get

we get
g(xaun)Tt(un) 1+ +/
de >t(1+t)™7 n)| dzx. 63
/Q(1+|un|)(1q(as>>s(x) z 2 t(1+¢) - |g9(z,up)|dz. (63)

On the other hand by (2) we have it as well

N
ai(x, Ty (up)oi(z, Diuy) - Te(uyn)D; \un]
/ > () ~ 152 (mu(n)(lq()) o

oi(z, Diuy) - Ty(un) Diluy| J
/Z (1 + [un)) (1 a@)s(@)+1+@)
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Through all this we find that (58) give us

¢ dx
Z /un|<t} 1+ |uy|)7@+A—g(@)s(@)

+t(1+ )" / lg(z, un)| dz
{|un|>t}

< fn : Tt(un)
= Jao (1 + Juy,|)A-a@)s)

0Z xDun Tt( n) Diluy,| d
/Z (1 + [un])(I—a@)s@+11 (@)

129

_ ] _ ai(w, Ty (un)o’l(z D, un) - Ty(up) In(1 + |Un|)
/Q ZD@«q( ) — 1)s(z))

pa (1 + [up|)A-4@)s@)

+"(1+1).

So, from (65) with using (2), we get
N
’ |D U |p1
¢ ; /{Iun|<t} (1 4 |uy|)7@)+(1=a(@)s(2) du

+ (1) / g(z, un)| dz
{Jun|>t}

< t/ £l (1 un )@@ =15() gy

i (@, Diug)||Dslun||
e ”/Z (T ) T aDs@ ) 2

+ c”t/ 2(1 + un ) 4@ D5 g, (2, Dyn) | In(L + |un]) dee
@ i=1

+"(1+1).
Now, from Hoélder inequality, (4), (52), and the fact that

| Dilunl| < [Diunl, Jun| >0

(65)

(66)

(Which is a direct result of equality D;|u,| = # for the Euclidean norm
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on R™ for example), we have
Z |oi (2, D; un)HD [un| J
(1 + |uy|)(A=a@)s(@)+1+7(2)

< Z/Q |ai(x,Diun)HDiun‘ dx
i=1

1—
N N

= 32/9 (Z | Din P77 + h) | Diwy | da
i= j=1

N 17%%@‘)
(Z | Diun |P7®) + h) || Diu| Hpi(-)
j=1

p; ()

|G
i-

N

1—-L
N p_
<Y 1+/ (ZDium“’Mh dw) ZlHDUn\
- Q

Jj=1

1— L
N N p_
<ed 1+ /Q (zvzpjunwuh) dw) lenll
j=1

1—-L

T p_
Ne (m\un\\;(_) n c) ol < €

pi(+)

IN

(67)

By Young enequality, we have Ve > 0

/ ((1+|un|)<q<x>fl>s(x>) ] da < 1/ |f[a@) dHE/(H,uan(z)s(x) d.
9) € Jo Q

Using that 1 + |u,[9®5®) > min{1; 2179757 }(1 + |u,|)2@s@) | (8), and (9),
we have

(@ a0 I e < (54l [ lglaua)lde)

[un|>t

In order to choose € = 1/(2¢), we get

[(a+ @) flar < 3 [ gl desc. (69
Q 2 |un|>t
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Now, by Young’s inequality, and remark that
(q(z) — 1)s(z) — 'y(sc) —1 <0, we have

/ (14 ) 4@~ (2, D) In(L + [ )z
Q

(a(2) = 1)s(2)+(ps (@) =) (v(2)+1)
Q

(Q(Z)*l)sl(w)*w(l)*l
X |oi(x, Diun)|(1 + |up)) P; (@) dx

/ (1 + |un]) @D+ @@ -DO@+D) (1n(1 4 [ ]))7®) da
Q

+ C(S)/ loi(z, Diun)|l’§(z)(1 + Jup ) 1@~ Ds@) (@) =1 gy
Q
< E/ (1 4 |up|) @@= Ds@)+@:@)=DO@+D) (10 (1 + |uy,]))Pi® da:
Q
+ee) / 03z, Ditiy)PA®) da (69)
Q

z) > (pi(z) — 1)(y(z) + 1), so
D(y(x) +1) = s(z) <0,
)HD =) In (1 + |t])P«(*) is bounded by C' > 0

Thanks to Remark 7 we have s

(()

and therefore (1+ |¢) Pz D (v(z
for all z € Q and t € R.
So, through this, (4), (8), (9), (52), and after choosing ¢ =

zcc” o we have

/(1 + [ )@ =D5@ 0 (22 Dy ) | In(1 + |y ) de
Q
1

— /!
2c [un|>t

Now, by using (67), (68), (70) in (66) we get

lg(x,un)|dz +C". (70)

N

/ |Du |pz(x
d
’ zz;/{lunkt} (1 4 || )@ +0=q(x))s(z) v

(140 _1)/ \9(z, un)|da

|wn | >t
< e(1+1). (71)

After dropping the nonnegative term in (71) we get (53), and from this we
get, for any choice of t > 0 in (71), we have

/ gy un)) dz < C. (72)
{lun|>t}
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Then, by (8) and (72), we derive (54). Finally we combine (9) and (54) to
obtain (55).
Now let’s prove (56), by (53), (26), and the observation that
() = Ds(a) =1 = 4(z) <O ,

we have for all ¢t > 1
/ Ha@)=Ds(@)~13(2) | .y @) iy
{lun|<t}

< / (L @@ -0s@) 1) Dy, ) gy
"~ Hual<ty 2

<c(1+t)7! / (1 + |, ) I@) D@ =@ Dy, Pe(®) gy
{lunl<t}

<C.
O

Lemma 9. Let g, s, and p; be restricted as in Theorem 2. Then, (Djuy) is
bounded in L™ (Q;R™) for all (r1(-),...,rn(-)) € (C(Q))N such that

pi(x)q(z)s(z)

, YeeQ,i=1,...,N.
s(z) +1+~(x) v !

1 <ri(x) <

Proof. For all i =1,..., N setting a;(-) = s(qiif%? then we have
x For 0 < t < 1, we have trivially that

/ @) gy < |0,
{|Diun|*i(®) >t}

« For t > 1, using (55), and (26), we have

/ 4a(@)s(2) gy
{IDiun| i) >1}

/{DiUn|ai<z) >t}0{[un|<t}
pi(x)

o (x a;(x)
/ qa(@)sta) [ [Ditin] a4 / 1y [160)5()
{lun|<t} t Q

/ Ha(@)=Ds(2)=1=1@)| Dy, P iy 1 c.
{lunl<t}

IN

(a(@)s(@) gy 1 / a@)s(@) g,
{lun|>1)

IN

IA
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With (56), we have

/ 1(@)s(@) g < O
{1 Dstn | ) >t}

This shows that, for all ¢ =1,..., N, ]Diun\ai(') is bounded in /\/lq(')s(')(Q),
and hence we conclude from Lemma 5 that |Dsu,| is bounded in L™()(Q)

for all r;(+) in C(2) satisfying

() < Pi@a@)s(@)
1 < )<s(:v)+1—|—’y(x) Q.

This completes the proof of Lemma 9. O

Lemma 10. Let m, s, p;, and ~y be restricted as in Theorem 1. Then,
there exists a constant C' > 0 such that

/ |, [5®9@) gz < €. (73)
Q

/ l9(z,up)| dz < C. (74)
Q

Proof. After choosing ¢ = u,, in (30), by (2), (3), and (9) , we have

U"HX +c.

N
01/ Z | Diuy, !pi(x) d$+/ ‘“n‘s(x)Q(x)H dr < Hf”HX*
Q5= @

Then, by (52) we get
/ fuy F@9@+ g < (75)
Q

By the fact, 1+ |u,|[*®9@+ > |y, [5®)4®) we conclud (73).
Now, choosing ¢ = Ti(uy,), t > 0 in (30), by (2), (3), and (9) , we have

N
/ Zai(:p,Tn(un))ai (:c, Diun) - DTy (uy) Djuy, dx
=1

+ t/ . - g(x,uy) dz (76)
{lun|>t} |Un]

<t / \fal e
Q
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Using (23), (2), and (3), we obtain
N
Q=1
N
> /Qzai(ar,Tn(un))oi(w,Diun)-Diunxun|<t
i=1

N
C1 X
> = E Diun|Pi® da — ).
(14 n)“f+ ( — /{|un§t} | | )

By this equation, the fact %.g(m,un) > |g(x,un)|, lun| > 0 (Which
results from (7)), and after dropping the nonnegative term, we find that

(76) give us

t/ lg(x, un)| dx < ct(1 +/ |£190) dz) + ¢ (77)
{Jun|>t} Q
Then, for any choice to t > 0, we have
/ g9(x, up)| dz < C. (78)
{lun|>t}
Then, by (8) and (78), we derive (74). O

3.3 Proofs for Theorem 1 and Theorem 2:

The Proof of Theorem 1: by (52), the sequence (uy) is bounded in
WLPO) (Q;R™). This implies that we can extract a subsequence (denote
again by (uy,)), such that

up — u  weakly in Wl’ﬁ(')(Q;Rm%
un - strongly in L (R™), po = min minpi(z), (7g)
Up, — u  a.e. in Q.
This implies that
9(@,up) — g(x,u) ae. inQ (80)

Let E C Q be any measurable set, we write

/ 9z, )| dz = / 9, un)| dz + / 9z, un)| da.
E EN{jun|<t} En{fun|>t}
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Let 0 < M < t, and observe that

| T2 (un)| < | Te(un) |1 uni<any + [Te(un) [ unsary < M+ 1,50,

Using this decomposition in (51) after taking ¢ = T;(uy,), yields

t/ ’g(w,un)‘dng/‘fn‘d:n—l—t/ ‘fn‘dzz:. (81)
{lun|>t} Q {lun]>M}

From (81) and (8) , we conclude the equi-integrability of g(z, u,) in L(2; R™),
and since (80), Vitali’s theorem implies that

g(x, 1) — g(z,u) strongly in L'(Q;R™). (82)

Now, choosing ¢ = u, —u in (51) as a test function, we get
N
/ Zai(x, Tn(un))(ai (3:, Diun) — 0; (:U, Dlu)) - (Djuyn, — Dju) dx+
i1

N
/QZ ai(z, Ty (up))o; (m, Diu) - (Djup, — Dju) dx
i=1

+ / g(x,un) - (up —u)dx

Q
= [ fo-(up,—u)dx.
Q
We observe that [ g(z,un) - (up —u) — 0, since u, — u in LeO(Q; R™)

where g(-) is defined in lemma 2, and (g(z, uy,)) is bounded in L¥i()(Q; R™),
and that D;u,, — D;u in L”i('), this implies that

n—-+0o00

N
lim / Zai(m,Tn(un))(ai (z, Diun) — 04 (x, Diu)) - (Djun, — Diju) dv — 0,
Q=1
and this convergence gives us, foralli=1,... N
a;i(z, Tn(un))(ai (m, Diun) —0; (ac,Diu)) - (Djup, — Dju) — 0 a.e. in Q.
(83)
From (83) and (2), we have

|(O'Z' (:1:, Diun) — 05 (m, Dlu)) - (Djuy, — Dlu)} < C(z),
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for some function C'(z). Up to a Lebesgue measure zero set Z, the above
inequality holds pointwise. Let us prove that there exists a function ¢ such
that

‘Dzun(:n) | < c(x). (84)

By hypothese (5), we have

e <(|Diun] | Dyu| P~ — 1) L if pi(a) > 2
Clz) 2 |Dyn| 1Dl )2 ,
C5 (1+|b£n\+|biu|> , if 1 <pi(z) <2

and this implies (84).
We are going to prove that

Djup(x) — Dju(x) in Q\Z. (85)

Assume by contradiction that there exists g € Q\Z such that Dj;uy,(xo)
does not converge to D;u(xg). The Bolzano Weierstrass theorem implies
that D;uy,(xg) — b, for some b € RY | up to a subsequence. Passing to the
limit in

(0'7; (xo, Diun(zo)) — 0 (:co, Diu(xg))) - (Djup(zo) — Diu(xg)),

we get
(Ui (1’0, b) — 0y (JI(), Dzu(l’o))) . (b — Dzu(l’o)) = 0,

which yields b = D;u(xg) by hypothesis (5).
Through this we get, for all i =1,..., NV,

D;u,, — D;u a.e.in. (86)
From (86),(52), Vitali’s theorem gives , forall i =1,..., N
Dju,, — Diu in LY(;R™) and a.e. in Q. (87)

So we have
o; (m,Diun) — 0 (:x,Diu) a.c. in . (88)

Now, we prove that,

(O’i (az, Dzun))n is uniformly bounded in Lpi(')(Q; R™).
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Using the assumption (4), we get for alli =1,..., N,

N pi(z)—1
o3, Diun) [P/ < C | D [Diun @) + |1
Jj=1
N pi(z)—1
< <Z!Diun!pf“x)+lhl> :
=1

Then, by (52), we conclude that, for alli =1,..., N,

(ai (ac, Diun))n is uniformly bounded in Lp"(')(Q; R™),

So, by (88) and Vitali’s theorem, we derive, , for all i = 1,..., N,

o; (x, Diun) — 0; (:):, Diu) strongly in Ll(ﬂ; R™).

So, we can easily pass to the limit in (51) for all ¢ € C2°(Q;R™).

This proves Theorem (1).
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(89)

(90)

f{’he Proof of Theorem 2: By Lemma 9 the sequence (uy,) is bounded in
WLTO)(Q) where 74(-) is defined as (27). Without loss of generality, we can

therefore assume that

U, — u weakly in WHO(Q),

up, — u  strongly in L™(Q), 79 = min minr;(x),
1<i<N zeq

U, — u a.e. in .

This implies that
g(x,up) = g(x,u) a.e. in Q.

By proceeding as in Theorem 1, we have
g(z,up) = g(z,u) i L'(QR™),

and
Diu, — D;u a.e. in €.

By (94) we have
o; (w,Diun) — 05 (m,Diu) a.e. in €.

Now, we prove that,

ri()
(O’i (az, Dzun))n uniformly bounded in Lr:O-1(Q; R™),

(91)
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where 7;(-) is a continuous function on Q satisfying (27) in Q.
Then, we have, for all z € Q

ri(z) _ pi(x)q(z)s(z)
pi(z) =1~ (s(x) +1+~y(z))(pi(z) — 1)

The choice of p;’gjl > 1 is possible since we have (26).

Now, let 9 (+) : © — (0,1) be a continuous function such that, for all z € Q

ri(x) q(z)s(x)
pi() )+ 1+ y(z)

1< i=1,...,N.  (96)

<w(:c)<s($ 1, i=1,...,N. (97)

Therefore, we derive for all z € Q

pi(z)q(z)s(z)
0 < Y(x)pi(z) < ,
and @ i1 N
pi(x)(x)
Using the assumption (4), we get for alli =1,..., N,
ri (@)
() N Pi(@)9(@)
o3, Diin )71 < O D D | - 1] () (99)
i=1
then, by Lemma 9, and (98), we conclude that, for all : = 1,..., N,
ri()
(0i(2, Dyuy,)), uniformly bounded in L7iO-T(Q; R™), (100)
where r;(-) is a continuous function on  satisfying (27).
So, by (95) and Vitali’s theorem, we derive, , for all i = 1,..., N,
o; (ac,Diun) — 0 (m, Diu) strongly in Ll(Q;IR{m) (101)

From (2), (91) and (101) , we derive

ai(z, Tp(uy))o; (a:, Diun) — ai(z,u)o; (ZL', Diu) strongly in LI(Q;RW).
(102)
So, we can easily pass to the limit in (30) for all p € C°(Q;R™).
Now, from (55), and since |u,|[*®)4(*) > 0, by using Fatous Lemma, we
deduce that

0< / u[*@1@) gy < C.
Q

Then |u|*®4®) ¢ [1(Q), which completes the proof of Theorem 2.
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