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Säıd Abbas† Mouffak Benchohra‡

Abstract

In this article we investigate some existence results for functional
and neutral conformable fractional differential equations in b-metric
spaces. Our results are based on the fixed point theory and the α−φ-
Geraghty type contraction. Two illustrate examples are given in the
last section.
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1 Introduction

Fractional differential equations have recently been applied in various areas
of engineering, mathematics, physics, and other applied sciences. Consid-
erable attention has been given to the existence of solutions of initial and
boundary value problems for fractional differential equations; see the mono-
graphs [2, 3, 4, 23, 25, 26, 29].

∗Accepted for publication on February 6-th, 2022
†abbasmsaid@yahoo.fr, said.abbas@univ-saida.dz, Department of Electronics,
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Conformable fractional differential equations 59

The conformable fractional differential operator has been introduced first
in [22]. Next, the conformable fractional differential equations has been
rapidly developed; see [6, 7, 10, 11, 17, 18, 20, 21, 27, 28], and the reference
therein.

The notion of b-metric was proposed by Czerwik [14, 15]. Following these
initial papers, the existence fixed point for the various classes of operators
in the setting of b-metric spaces have been investigated extensively; see
[12, 13, 16, 24], and related references therein.

Neutral fractional differential equations has been studied by many math-
ematicians; see [1, 5, 30, 31], and the reference therein.

In this paper, first we discuss the existence of solutions for the following
class of initial value problems of conformable fractional differential equations{

(T ra+u)(t) = f(t, u(t)); t ∈ I := [a, b],

u(a+) = ua ∈ R,
(1)

where b > a > 0, f : I × R → R is a given continuous function, T ra+ is the
conformable fractional derivative of order r ∈ (0, 1].

Next, we consider the following neutral conformable fractional differen-
tial equation {

u(t) = ϕ(t); t ∈ [−h, a],

T ra+ [u(t)− z(t, ut)] = f(t, ut); t ∈ I,
(2)

where h > 0, ϕ ∈ C, f, z : I × C → R is a given continuous function, and
C := C([−h, a],R) is the space of continuous functions on [−h, a].

For any t ∈ I, we define ut by

ut(s) = u(t+ s); for s ∈ [−h, a].

Next, we investigate the following class of infinite delay neutral con-
formable fractional differential equation{

u(t) = ϕ(t); t ∈ (−∞, a],

T ra+ [u(t)− z(t, ut)] = f(t, ut); t ∈ I,
(3)

where ϕ : [−∞, a]→ R, f, z : I×B → R are given continuous functions, and
B is called a phase space that will be specified later.
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For any t ∈ I, we define ut ∈ B by

ut(s) = u(t+ s); for s ∈ (−∞, a].

This paper initiates the study of conformable fractional differential equa-
tions on b-metric spaces.

2 Preliminaries

Let C(I) be the Banach space of all real continuous functions on I with the
norm

‖u‖∞ = sup
t∈I
|u(t)|.

By L1(I) we denote the Banach space of measurable functions u : I → R
with are Lebesgue integrable, equipped with the norm

‖u‖L1 =

∫ T

0
|u(t)|dt.

Definition 1. (Conformable fractional derivatives) [6, 18, 22] The con-
formable fractional derivative (CFD) of order 0 < r ≤ 1 starting from a of
the function u : I → R is defined by:

T ra+u(t) = lim
h→0

u(t+ h(t− a)1−r)− u(t)

h
.

Particularly, if u is differentiable, then

T ra+u(t) = (t− a)1−r
d

dt
u(t).

Definition 2. (Conformable fractional integral) [6, 18, 22] The conformable
fractional integrals of order r > 0 of a function u : I → R is defined by:

Ira+u(t) =

∫ t

a
(s− a)r−1u(s)ds, t ∈ I.

Example 1. [6] For 0 < r ≤ 1, and λ ∈ R, we have

T r0λ = 0, T r0 t
λ = λtλ−r, T r0 e

λt = λt1−reλt; t ∈ I.

Lemma 1. [6, 18, 22] Let 1 ≤ r > 0, and u ∈ C(I),then

T ra+I
r
a+u(t) = u(t).

Further, if u is differentiable on I, then

Ira+T
r
a+u(t) = u(t)− u(a).
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From the above Lemma, we have the following one:

Lemma 2. Let g ∈ L1(I). Then the Cauchy problem{
T rau(t) = g(t); t ∈ I := [a, b]
u(a) = ua,

has a unique solution given by

u(t) = ua + Ira+g(t).

Definition 3. [8, 9] Let c ≥ 1 and M be a set. A distance function d :
M × M → R∗+ is called b-metric if for all µ, ν, ξ ∈ M, the following are
fulfilled:

• (bM1) d(µ, ν) = 0 if and only if µ = ν;

• (bM2) d(µ, ν) = d(ν, µ);

• (bM3) d(µ, ξ) ≤ c[d(µ, ν) + d(ν, ξ)].

The tripled (M,d, c) is called a b-metric space.

Example 2. [8, 9] Let d : C(I)× C(I)→ R∗+ be defined by

d(u, v) = ‖(u− v)2‖∞ := sup
t∈I
‖u(t)− v(t)‖2; for all u, v ∈ C(I).

It is clear that d is a b-metric with c = 2.

Example 3. [8, 9] Let X = [0, 1] and d : X ×X → R∗+ be defined by

d(x, y) = |x− y|2; for all x, y ∈ X.

It is clear that d is not a metric, but it is easy to see that d is a b-metric
space with r ≥ 2.

Let Φ be the set of all increasing and continuous function φ : R∗+ → R∗+
satisfying the property: φ(cµ) ≤ cφ(µ) ≤ cµ, for c > 1 and φ(0) = 0. We
denote by F the family of all nondecreasing functions λ : R∗+ → [0, 1

c2
) for

some c ≥ 1.



62 S. Abbas, M. Benchohra

Definition 4. [8, 9] For a b-metric space (M,d, c), an operator T : M →M
is called a generalized α − φ−Geraghty contraction type mapping whenever
there exists α : M ×M → R∗+, and some L ≥ 0 such that for

D(x, y) = max

{
d(x, y), d(x, T (x)), d(y, T (y)),

d(x, T (y)) + d(y, T (x))

2s

}
,

and
N(x, y) = min{d(x, y), d(x, T (x)), d(y, T (y))},

we have

α(µ, ν)φ(c3d(T (µ), T (ν)) ≤ λ(φ(D(µ, ν))φ(D(µ, ν)) + Lψ(N(µ, ν); (4)

for all µ, ν ∈M, where λ ∈ F , φ ψ ∈ Φ.

Remark 1. In the case when L = 0 in Definition 4, and the fact that

d(x, y) ≤ D(x, y); for all x, y ∈M,

the inequality (4) becomes

α(µ, ν)φ(c3d(T (µ), T (ν)) ≤ λ(φ(d(µ, ν))φ(d(µ, ν)). (5)

Definition 5. [8, 9] Let M be a non empty set, T : M → M, and α :
M ×M → R∗+ be a given mappings. We say that T is α−admissible if for
all µ, ν ∈M, we have

α(µ, ν) ≥ 1→ α(T (µ), T (ν)) ≥ 1.

Definition 6. [8, 9] Let (M,d) be a b-metric space and let α : M×M → R∗+
be a function. M is said to be α−regular if for every sequence {xn}n∈N in
M such that α(xn, xn+1) ≥ 1 for all n and xn → x as n → ∞, there exists
a subsequence {xn(k)}k∈N of {xn}n with α(xn(k), x) ≥ 1 for all k.

The following fixed point theorem plays a key role in the proof of our
main results.

Theorem 1. [8, 9] Let (M,d) be a complete b-metric space and T : M →M
be a generalized α− φ−Geraghty contraction type mapping such that

• (i) T is α−admissible;

• (ii) there exists µ0 ∈M such that α(µ0, T (µ0)) ≥ 1;

• (iii) either T is continuous or M is α−regular.

Then T has a fixed point. Moreover, if

• (iv) for all fixed points µ, ν of T, either α(µ, ν) ≥ 1 or α(ν, µ) ≥ 1,

then T has a unique fixed point.
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3 Functional Conformable Fractional Differential
Equations

In this section, we are concerned with the existence results of the problem
(1).

Let (C(I), d, 2) be the b-metric space with c = 2, such that
d : C(I)× C(I)→ R∗+ is given by:

d(u, v) = ‖(u− v)2‖∞ := sup
t∈I
|u(t)− v(t)|2.

Definition 7. By a solution of the problem (1) we mean a function u ∈ C(I)
that satisfies

u(t) = ua +

∫ t

a
(s− a)r−1f(s, u(s))ds.

The following hypotheses will be used in the sequel.

(H1) There exist φ ∈ Φ, p : C(I) × C(I) → (0,∞) such that for each
u, v ∈ C(I), and t ∈ I

|f(t, u)− f(t, v)| ≤ p(u, v)|u(t)− v(t)|,

with ∥∥∥∥∫ t

a
(s− a)r−1p(u, v)ds

∥∥∥∥2
∞
≤ φ(‖(u− v)2‖∞).

(H2) There exist µ0 ∈ C(I) and a function θ : C(I)× C(I)→ R, such that

θ

(
µ0(t), ua +

∫ t

a
(s− a)r−1f(s, µ0(s))ds

)
≥ 0.

(H3) For each t ∈ I, and u, v ∈ C(I), we have:

θ(u(t), v(t)) ≥ 0

implies

θ

(
ua +

∫ t

a
(s− a)r−1f(s, u(s))ds, ua +

∫ t

a
(s− a)r−1f(s, v(s))ds

)
≥ 0.

(H4) If {un}n∈N ⊂ C(I) with un → u and θ(un, un+1) ≥ 1, then θ(un, u) ≥
1.
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Theorem 2. Assume that hypotheses (H1)− (H4) hold. Then the problem
(1) has a least one solution defined on I.

Proof. Consider the operator N : C(I)→ C(I) defined by

(Nu)(t) = ua +

∫ t

a
(s− a)r−1f(s, u(s))ds.

By using Lemma 2, it is clear that the fixed points of the operator N are
solutions of (1).

Let α : C(I)× C(I)→ (0,∞) be the function defined by:{
α(u, v) = 1; if θ(u(t), v(t)) ≥ 0, t ∈ I,
α(u, v) = 0; elese.

(6)

First, we prove that N is a generalized α-φ-Geraghty operator:
For any u, v ∈ C(I) and each t ∈ I, we have

|(Nu)(t)− (Nv)(t)| ≤
∫ t
a(s− a)r−1|f(s, u(s))− f(s, v(s))|ds

≤
∫ t
a(s− a)r−1p(u, v)|u(s)− v(s)|ds

≤ |u(t)− v(t)|2)
1
2

∫ t
a(s− a)r−1p(u, v)ds

≤ ‖(u− v)2‖
1
2∞
∫ t
a(s− a)r−1p(u, v)ds.

Thus

α(u, v)|(Nu)(t)− (Nv)(t)|2

≤ ‖(u− v)2‖∞α(u, v)

∥∥∥∥∫ t

a
(s− a)r−1p(u, v)ds

∥∥∥∥2
∞

≤ ‖(u− v)2‖∞φ(‖(u− v)2‖∞).

Hence
α(u, v)φ(23d(N(u), N(v)) ≤ λ(φ(d(u, v))φ(d(u, v)),

where λ ∈ z, φ ∈ Φ, with λ(t) = 1
8 t, and φ(t) = t.

So, N is generalized α-φ-Geraghty operator.
Let u, v ∈ C(I) such that

α(u, v) ≥ 1.

Thus, for each t ∈ I, we have

θ(u(t), v(t)) ≥ 0.
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This implies from (H3) that

θ(Nu(t), Nv(t)) ≥ 0,

which gives
α(N(u), N(v)) ≥ 1.

Hence, N is a α-admissible.
Now, from (H2), there exists µ0 ∈ C(I) such that

α(µ0, N(µ0)) ≥ 1.

Finally, from (H4), If µnn∈N ⊂M with µn → µ and α(µn, µn+1) ≥ 1, then

α(µn, µ) ≥ 1.

From an application of Theorem 1, we deduce that N has a fixed point u
which is a solution of problem (1).

4 Neutral Conformable Fractional Differential Equa-
tions

Now, we are concerned with the existence results of the problems (2) and
(3). Consider the Banach space

C = {u : (−h, b]→ R, u|(−h,a] ∈ C, u|I ∈ C(I)},

with the norm
‖u‖C = max{‖ϕ‖[−h,a], ‖u‖∞}.

Let (C, d, 2) be the b-metric space with c = 2, such that
d : C × C → R∗+ is given by:

d(u, v) = ‖(u− v)2‖C := max{‖ϕ‖[−h,a], ‖(u− v)2‖∞}.

Definition 8. By a solution of the problem (2) we mean a function u ∈ C
that satisfies

u(t) =

{
ϕ(t); t ∈ [−h, a],

ϕ(a)− z(a, ua) + z(t, u(t)) +
∫ t
a(s− a)r−1f(s, us)ds; t ∈ I.

Consider the following hypotheses:
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(H01) There exist ψ ∈ Φ, and p, q : C×C → (0,∞) such that for each u, v ∈ C,
and t ∈ I

|f(t, u)− f(t, v)| ≤ p(u, v)‖u− v‖[−h,a],

and
|z(t, u)− z(t, v)| ≤ q(u, v)‖u− v‖[−h,a],

with ∥∥∥∥q(u, v) +

∫ t

a
(s− a)r−1p(u, v)ds

∥∥∥∥2
C

≤ ψ(‖(u− v)2‖C).

(H02) There exist ν0 ∈ C(I) and a function ι : C(I)× C(I)→ R, such that

ι

(
ν0(t), ϕ(a)− g(a, ua) + g(t, ν0t) +

∫ t

a
(s− a)r−1f(s, ν0s)ds

)
≥ 0.

(H03) For each t ∈ I, and u, v ∈ C(I), we have:

ι(u(t), v(t)) ≥ 0

implies ι
(
ϕ(a)− g(a, ua) + g(t, ut) +

∫ t
a(s− a)r−1f(s, us)ds,

ϕ(a)− g(a, va) + g(t, vt) +

∫ t

a
(s− a)r−1f(s, vs)ds

)
≥ 0.

(H04) If {un}n∈N ⊂ C(I) with un → u and ι(un, un+1) ≥ 1, then ι(un, u) ≥ 1.

Theorem 3. Assume that hypotheses (H01)−(H04) hold. Then the problem
(2) has a least one solution defined on [−h, b].

Proof. Consider the operator G : C → C defined by

(Gu)(t) =

{
ϕ(t); t ∈ [−h, a],

ϕ(a)− g(a, ua) + g(t, ut) +
∫ t
a(s− a)r−1f(s, us)ds; t ∈ I.

(7)
It is clear that the fixed points of the operator G are solutions of (2).

Let α : C(I)× C(I)→ (0,∞) be the function defined in (6).
We start by proving that G is a generalized α-ψ-Geraghty operator:

Let u, v ∈ C. For each t ∈ [−h, a], we have

|(Gu)(t)− (Gv)(t)| = 0,
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and for each t ∈ I, we have

|(Gu)(t)− (Gv)(t)| ≤ |z(t, ut)− z(t, vt)|+
∫ t
a(s− a)r−1|f(s, us)− f(s, vs)|ds

≤ q(u, v)|ut − vt|+
∫ t
a(s− a)r−1p(u, v)|us − vs|ds

≤ |ut − vt|2)
1
2 q(u, v) + |ut − vt|2)

1
2

∫ t
a(s− a)r−1p(u, v)ds

≤ ‖(u− v)2‖
1
2
C

(
q(u, v) +

∫ t
a(s− a)r−1p(u, v)ds

)
.

Thus, we get

α(u, v)|(Gu)(t)− (Gv)(t)|2

≤ ‖(u− v)2‖Cα(u, v)

∥∥∥∥q(u, v) +

∫ t

a
(s− a)r−1p(u, v)ds

∥∥∥∥2
C

≤ ‖(u− v)2‖Cψ(‖(u− v)2‖C).

Hence
α(u, v)ψ(23d(G(u), G(v)) ≤ λ(ψ(d(u, v))ψ(d(u, v)),

where λ ∈ z, ψ ∈ Φ, with λ(t) = 1
8 t, and ψ(t) = t.

So, G is generalized α-ψ-Geraghty operator.
Let u, v ∈ C(I) such that

α(u, v) ≥ 1.

Thus, for each t ∈ I, we have

ι(u(t), v(t)) ≥ 0.

This implies from (H03) that

ι((Gu)(t), (Gv)(t)) ≥ 0,

which gives
α(G(u), G(v)) ≥ 1.

Hence, N is a α-admissible.

Now, from (H02), there exists ν0 ∈ C(I) such that

α(ν0, G(ν0)) ≥ 1.

Finally, from (H04), If µnn∈N ⊂M with µn → µ and α(µn, µn+1) ≥ 1, then

α(µn, µ) ≥ 1.

From an application of Theorem 1, we deduce that G has a fixed point u
which is a solution of problem (2).
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5 Neutral Conformable Fractional Differential Equ-
ations with Infinite Delay

In this section, we establish some existence results for problem (3). Let
the space (B, ‖ · ‖B) is a seminormed linear space of functions mapping
(−∞, a] into R, and satisfying the following fundamental axioms which were
adapted from those introduced by Hale and Kato [19] for ordinary differential
functional equations:

(A1) If u : (−∞, b]→ R, and ua ∈ B, then there are constants L,M,H > 0,
such that for any t ∈ I the following conditions hold:

(i) ut is in B,
(ii) ‖ut‖B ≤ K‖u1‖B +M sups∈[a,t] |u(s)|,
(iii) ‖u(t)‖ ≤ H‖ut‖B.

(A2) For the function u(·) in (A1), ut is a B− valued continuous function
on I.

(A3) The space B is complete.

Consider the space

Ω = {u : (−∞, b]→ R, u|(−∞,a] ∈ B, u|I ∈ C(I)}.

Definition 9. By a solution of the problem (3) we mean a function u ∈ Ω
that satisfies

u(t) =

{
ϕ(t); t ∈ (−∞, a],

ϕ(a)− g(a, ua) + g(t, ut) +
∫ t
a(s− a)r−1f(s, us)ds; t ∈ I.

Consider the operator N1 : Ω→ Ω defined by:

(N1u)(t) =

{
ϕ(t); t ∈ (−∞, a],

ϕ(a)− z(a, ua) + z(t, ut) +
∫ t
a(s− a)r−1f(s, us)ds; t ∈ I.

(8)
Let x(·) : (−∞, b]→ R be a function defined by

x(t) =

{
ϕ(t); t ∈ (−∞, a],
ϕ(a)− z(a, ua) t ∈ I.
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Then x0 = ϕ. For each z ∈ C(I), with z(0) = 0, we denote by z the function
defined by

z =

{
0; t ∈ t ∈ (−∞, 0],
z(t), t ∈ I.

If u(·) satisfies the integral equation

u(t) = ϕ(a)− g(a, ua) + g(t, ut) +
∫ t
a(s− a)r−1f(s, us)ds.

We can decompose u(·) as u(t) = z(t) + x(t); for t ∈ I, which implies that
ut = zt + xt for every t ∈ I, and the function z(·) satisfies

z(t) = z(t, zs + xs) +

∫ t

a
(s− a)r−1f(s, zs + xs)ds.

Set
C0 = {z ∈ C(I); z0 = 0},

and let ‖ · ‖T be the norm in C0 defined by

‖z‖b = ‖z0‖B + sup
t∈I
|z(t)| = sup

t∈I
|z(t)|; z ∈ C0.

C0 is a Banach space with norm ‖ · ‖b. Define the operator P : C0 → C0; by

(Pz)(t) = z(t, zs + xs) +

∫ t

a
(s− a)r−1f(s, zs + xs)ds. (9)

Thus, the operator N1 has a fixed point is equivalent to P has a fixed point.
We turn to proving that P has a fixed point.

Let (C0, d, 2) be the b-metric space with c = 2, such that
d : C0 × C0 → R∗+ is given by:

d(u, v) = ‖(u− v)2‖b.

As in the prove of Theorem 3, we give without prove the following Theorem:

Theorem 4. Assume that the following hypotheses hold:

(H001) There exist ψ ∈ Φ, and p, q : B × B → (0,∞) such that for each
u, v ∈ B, and t ∈ I

|f(t, u)− f(t, v)| ≤ p(u, v)‖u− v‖B,

and
|z(t, u)− z(t, v)| ≤ q(u, v)‖u− v‖B,
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with ∥∥∥∥q(u, v) +

∫ t

a
(s− a)r−1p(u, v)ds

∥∥∥∥2
b

≤ ψ(‖(u− v)2‖b),

(H002) There exist ν1 ∈ C(I) and a function ι : C(I)× C(I)→ R, such that

ι

(
ν1(t), z(t, ν1t) +

∫ t

a
(s− a)r−1f(s, ν1s)ds

)
≥ 0,

(H003) For each t ∈ I, and u, v ∈ C0, we have:

ι(ut, vt) ≥ 0

implies ι
(
z(t, ut) +

∫ t
a(s− a)r−1f(s, us)ds,

z(t, vt) +

∫ t

a
(s− a)r−1f(s, vs)ds

)
≥ 0,

(H004) If {wn}n∈N ⊂ C0 with wn → u and ι(wn, wn+1) ≥ 1, then ι(wn, w) ≥ 1.

Then the problem (3) has a least one solution defined on (−∞, b].

6 Examples

Example 1. Let (C([0, 1]), d, 2) be the complete b-metric space, such that
d : C([0, 1])× C([0, 1])→ R∗+ is given by:

d(u, v) = ‖(u− v)2‖C .

Consider the following conformable fractional differential problem{
(T r0+u)(t) = f(t, u(t)); t ∈ [0, 1],

u(0) = 1,
(10)

where

f(t, u(t)) =
1 + sin(|u(t)|)
4(1 + |u(t)|)

; t ∈ [0, 1].
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Let t ∈ (0, 1], and u ∈ C([0, 1]). If |u(t)| ≤ |v(t)|, then

|f(t, u(t)))− f(t, v(t))| =
∣∣∣∣1 + sin(|u(t)|)

4(1 + |u(t)|)
− 1 + sin(|v(t)|)

4(1 + |v(t)|)

∣∣∣∣
≤ 1

4
||u(t)| − |v(t)||+ 1

4
| sin(|u(t)|)− sin(|v(t)|)|

+
1

4
||u(t)| sin(|v(t)|)− |v(t)| sin(|u(t)|)|

≤ 1

4
|u(t)− v(t)|+ 1

4
| sin(|u(t)|)− sin(|v(t)|)|

+
1

4
||v(t)| sin(|v(t)|)− |v(t)| sin(|u(t)|)|

=
1

4
|u(t)− v(t)|+ 1

4
(1 + |v(t)|) |sin(|u(t)|)− sin(|v(t)|)|

≤ 1

4
|u(t)− v(t)|+ 1

2
(1 + |v(t)|)

×
∣∣∣∣sin( ||u(t)| − |v(t)||

2

)∣∣∣∣ ∣∣∣∣cos

(
|u(t)|+ |v(t)|

2

)∣∣∣∣
≤ 1

4
(2 + |v(t)|)|u(t)− v(t)|.

The case when |v(t)| ≤ |u(t)|, we get

|f(t, u(t))− f(t, v(t))| ≤ 1

4
(2 + |u(t)|)|u(t)− v(t)|.

So,

|f(t, u(t))− f(t, v(t))| ≤ 1

4
min
t∈I
{2 + |u(t)|, 2 + |v(t)|}|u(t)− v(t)|.

Thus, hypothesis (H1) is satisfied with

p(u, v) =
1

4
min
t∈I
{2 + |u(t)|, 2 + |v(t)|}.

Define the functions λ(t) = 1
8 t, φ(t) = t, α : C([0, 1]) × C([0, 1]) → R∗+

with {
α(u, v) = 1; if δ(u(t), v(t)) ≥ 0, t ∈ I,
α(u, v) = 0; else,

and δ : C([0, 1])× C([0, 1])→ R with δ(u, v) = ‖u− v‖C .
Hypothesis (H2) is satisfied with µ0(t) = u(0). Also, (H3) holds from the
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definition of the function δ. Hence by Theorem 2, problem (10) has at least
one solution defined on [0, 1].

Example 2. Consider now the following conformable neutral fractional
differential problem{

u(t) = t; t ∈ [−1, 0],

T r0+ (u(t)− 1− sin(|ut|)) = 1+sin(|ut|)
1+|ut| ; t ∈ [0, 1].

(11)

For each t ∈ [0, 1], we set

f(t, u) =
1 + sin(‖u‖[−1,0])

1 + ‖u‖[−1,0])
,

and
z(t, u) = 1 + sin(‖u‖[−1,0]).

Let t ∈ (0, 1], and u, v ∈ C([−1, 0]). Then, we get

|f(t, u)− f(t, v)| ≤ min
t∈I
{2 + ‖u‖[−1,0]), 2 + ‖v‖[−1,0])}‖u− v‖[−1,0]),

and

|z(t, u)− z(t, v)| ≤
∣∣∣∣cos

(‖u‖[−1,0]) + ‖v‖[−1,0])
2

)∣∣∣∣ ‖u− v‖[−1,0]).
Thus, hypothesis (H01) is satisfied with

p(u, v) =
1

4
min
t∈I
{2 + ‖u‖[−1,0]), 2 + ‖v‖[−1,0])},

and

q(u, v) =

∣∣∣∣cos

(‖u‖[−1,0]) + ‖v‖[−1,0])
2

)∣∣∣∣ .
Define the functions λ(t) = 1

8 t, ψ(t) = t, α : C([0, 1]) × C([0, 1]) → R∗+
with {

α(u, v) = 1; if δ(u(t), v(t)) ≥ 0, t ∈ I,
α(u, v) = 0; else,

and δ : C([0, 1])× C([0, 1])→ R with δ(u, v) = ‖u− v‖C .
Hypothesis (H02) is satisfied with ν0(t) = 2. Also, (H03) is satisfied from the
definition of the function δ. Hence by Theorem 3, problem (11) has at least
one solution defined on [−1, 1].
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Example 3. Let γ be a positive real constant and

Bγ = {u ∈ C((−∞, 1],R, ) : lim
θ→−∞

eγθθu(θ) exists in R}. (12)

The norm of Bγ is given by

‖u‖γ = sup
θ∈(−∞,1]

eγθ|u(θ)|.

Let u : (−∞, 1]→ R be such that u0 ∈ Bγ . Then

lim
θ→−∞

eγθut(θ)

= limθ→−∞ e
γθu(t+ θ − 1) = limθ→−∞ e

γ(θ−t+1)u(θ)

= eγ(−t+1) limθ→−∞ e
γ(θ)u1(θ) <∞.

Hence ut ∈ Bγ . Finally we prove that

‖ut‖γ ≤ K‖u1‖γ +M sup
s∈[0,t]

|u(s)|,

where K = M = 1 and H = 1. We have

‖ut(θ)‖ = |u(t+ θ − 1|.

If t+ θ ≤ 1, we get
‖ut(β)‖ ≤ sup

s∈(−∞,1]
|u(s)|.

For t+ θ ≥ 1, then we have

‖ut(β)‖ ≤ sup
s∈[0,t]

|u(s)|.

Thus for all t+ θ ∈ I, we get

‖ut(β)‖ ≤ sup
s∈(−∞,0]

|u(s)|+ sup
s∈[0,t]

|u(s)|.

Then
‖ut‖γ ≤ ‖u1‖γ + sup

s∈[0,t]
|u(s)|.

It is clear that (Bγ , ‖ · ‖) is a Banach space. We can conclude that Bγ a
phase space.
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Consider now the following problemu(t) = t; t ∈ (−∞, 0],

T r0+
(
u(t)− 1− sin(‖u‖Bγ )

)
=

1+sin(‖u‖Bγ )
1+‖u‖Bγ

; t ∈ [0, 1].
(13)

For each t ∈ [0, 1], we set

f(t, u) =
1 + sin(‖u‖Bγ )

1 + ‖u‖Bγ
,

and
z(t, u) = 1 + sin(‖u‖Bγ ).

Simple computations show that all conditions of Theorem 4 are satisfied.
Hence, problem (13) has at least one solution defined on (−∞, 1].
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