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FINE STRUCTURE OF 0-TRANSITIONS WITHIN THE

COUPLED CHANNELS FORMALISM
D.S. DELION?, A. DUMITRESCU?

Abstract. We systematize the available experimental material concerning a-transitions to low-
lying excited states in even-even and odd-mass emitters. We show that a-intensities for transitions
to excited states depend linearly upon the excitation energy for all known even-even and odd-
mass a-emitters. The well known Viola-Seaborg law for o-transitions between ground states can
be generalized for transitions to excited states. This rule can be used to predict any a-decay half
life to a low-lying excited state. We then describe a-decay transitions to low-lying states in even-
even nuclei with Z > 50; N > 82 by using the coupled channels method. The energy levels and
electromagnetic transition rates between the states of the ground band can satisfactorily be
reproduced by using two parameters, namely the deformation parameter and the strength of the
harmonic Coherent State Model (CSM) Hamiltonian. The B(E2) values can be described in terms
of an effective charge which depends linearly on the deformation parameter. The a-emission
process is treated by using an a-daughter interaction containing a monopole component,
calculated through a double folding procedure with a M3Y interaction plus a repulsive core
simulating the Pauli priciple, and a quadrupole-quadrupole (QQ) interaction. The decaying
states are identied with the lowest narrow outgoing resonances obtained through the coupled
channels method. The a-branching ratios to 2* states are reproduced by using the QQ strength.
This interaction strength can be fitted with a linear dependence on the deformation parameter, as
predicted by CSM. The theoretical intensities to 4* and 6* states are in reasonable agreement
with available experimental data. Predictions are made for spherical, transitional and well
deformed even-even a-emitters. Finally we describe electromagnetic and favored o-transitions to
rotational bands in odd-mass nuclei built upon a single particle statewith angular momentum
projection €2 # % in the region 88 < Z < 98. We use the particle coupled to an even-even core
approach described within CSM and the coupled channels method to estimate partial a-decay
widths. We reproduce the energy levels of the rotational band where favored o-transitions occur
for 26 nuclei and predict B(E2) values for electromagnetic transitions to the bandhead using a
deformation parameter and a Hamiltonian strength parameter for each nucleus, together with an
effective collective charge depending linearly on the deformation parameter. Where experimental
data is available, the contribution of the single particle effective charge to the total B (E2) value
is calculated. The intensity of the transition to the first excited state is reproduced by the QQ
coupling strength. It depends linearly both on the nuclear deformation and the square of the
reduced width for the decay to the bandhead, respectively. All predicted intensities for transitions
to higher excited states are in a reasonable agreement with experimental data.
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1 Introduction

The phenomenological description of a-decay half-lives uses a simple picture of
a preformed o-cluster penetrating through the Coulomb barrier, presented in
the works of Gamow [1], Condon and Gurney [2], with a preformation factor
proportional to the fragmentation potential, as shown in Ref. [3]. Simple empir-
ical formulas for the half-lives corresponding to ground-to-ground a-transitions
have been given in Ref. [4]. The microscopic description needs a more sophis-
ticated R-matrix theory in terms of the formation amplitude, see for instance
Refs. [5, 6, 7, 8, 9].

This a-decay spectroscopy was used to investigate the 07 and 2% excited
states in the Pb region [10, 11, 12], and in the U region [13]. o-transitions to
excited states, known to constitute the fine structure of the c-decay spectrum,
can be analyzed in terms of the hindrance factor (HF), defined by the ratio
between formation probabilities to ground and excited states (as defined by
Rasmussen [14]). The first estimate of HFs in vibrational nuclei, through the
Quasiparticle Random-Phase Approximation (QRPA), was performed in Refs.
[15, 16, 17]. Later on, in Ref. [18] was given an explanation for the connection
between the HF of the first excited 0% state and the neutron number for Pb
isotopes in terms of pairing vibrations. More recently, the experimental results
concerning the fine structure of 2% states were analyzed by using the QRPA
formalism [19, 20, 21]. A systematic analysis of a-transitions to 0+ and 2+ states
in Pb and Po isotopes was performed within the deformed density dependent
cluster model, by using a Boltzmann distribution of the preformation factor [22].
In Ref. [23] branching ratios of the a-decay to members of the ground state
rotational band and excited 0% states in even-even nuclei in the mass regions
180 < A = 202 and A > 224 were calculated in the framework of the generalized
liquid drop model. Branching ratios and hindrance factors of even-even nuclei
in the range 78< Z < 102 were computed in Ref. [24] by using the Coulomb
plus proximity potential model for deformed nuclei. The partial half-lives in the
Pt-Os region were calculated in Ref. [25] in a semiempirical model, by using the
gquantum mechanical tunneling mechanism through a Coulomb plus centrifugal
plus overlapping potential barrier. The emission of a-particles has become an
important tool in the detection of superheavy nuclei, as shown in Ref. [26].

The first calculations of the a-decay widths in rotational nuclei within the
coupled channels approach were performed in Ref. [27]. In Ref. [28], HFs were
estimated in rotational nuclei by using the Froman approach [20] for the barrier
penetration and a simple phenomenological ansatz for the preformation factor.

The analysis of the a-daughter interaction is a central issue of this field.
Omne of the most popular approaches consists in the double folding procedure,
like in Refs. [32, 30, 31]. The double folding potential describing the elastic
scattering of a-particles was extended to the medium mass A ~ 50-120 nuclei
at energies from ~ 13 to 50 MeV in Ref. [33]. In Ref. [34], a systematic fitting
procedure was applied to the experimental scattering data of nuclei with 4 ~
00-150 at energies around the Coulomb barrier. This was used to obtain local
potential parameter sets which have a real folding potential and an imaginary
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potential of a Woods-Saxon surface type. In Ref. [35], the potential barrier for
a-decay and a-capture was calculated by using partial o-decay half-lives of 344
ground-state-to-ground-state transitions within a liquid drop model including
a proximity energy term. Simple expressions were provided for the potential
barrier radius and height. A set of parameters for an e-nucleus Woods-Saxon
potential was derived in Ref. [36] by using the data for both the n-decay half-
lives and the fusion cross sections around the barrier for the reactions a+%Ca,
a+"Co, and a+>""Ph. The a-decay half-lives were obtained in a cluster model.

The double fine structure of both emitted fragments in the cold fission of
252Cf predicted in Ref. [37] was analyzed in several papers [38, 30, 40]. It turns
out that the yields to excited states in both fragments are very sensitive to
nuclear structure details such as mean field deformation and density diffusivity.
Unfortunately, there is currently very little experimental data in this field, with
more data heing available regarding the a-decay fine structure in even-even
nuclei, see Refs. [41] and [42]. These decays were analyzed within the coupled
channels formalism [43, 44], by using the double folding potential plus a repulsive
core simulating the Pauli principle, as for cold fission. Several papers were
devoted to the coupled channels analysis of the a-decay fine structure [45, 47, 46]
using the double folding potential together with the Wildermuth rule to simulate
the Pauli principle [48].

In Ref. [49] were analyzed the experimental a-decay half-lives to ground
and excited states of nuclel with 222< 4 <252 and 88< 7 < 102 in a unified
penetration model for o-decay and o-capture, by using a Woods-Saxon plus
centrifugal plus Coulomb harrier. The evaluated branching ratios for 0% —
0+, 2+ 4+ o-transitions in even-even nuclel are in reasonable agreement with
the experimental data. A systematic analysis of the a-decay fine structure in
odd-odd nuclei in the region 83< Z < 101 was performed in Ref. [50], by using
the Coulomb plus proximity potential model for deformed nuclei. More recently,
electromagnetic and o-transitions were analyzed within the CSM in Ref. [51]
tor 40 even-even nuclei with Z = 82, N = 126.

Several calculations for the fine structure of the emission spectrum have
already been made in the case of odd-mass a-emitters. For example, in Hef.
[47] a multichannel cluster model together with the coupled channels equation
is used to calculate branching ratios to excited states for favored transitions
in heavy emitters, in the region 93 < Z < 102. In Ref. [52], a microscopic
method is employed with a Skyrme SLyd effective interaction. Starting from the
Hartree-Fock-Bogoliubov vacuum and quasiparticle excitations, the a-particle
formation amplitude is calculated for the a-decay to various channels mostly
in the 84 « 7 « 88 region. Several unfavored transitions are treated in this
paper and predictions are made for the properties of the g.s.—g.s. a-trasition
in odd-mass superheavy nuclei. The unfavored g.s.—g.s. a-decay in odd-mass
nuclei in the region 64 < Z < 112 is also treated in Ref. [53], with the purpose
of investigating the effect of the difference in the spin and parity of the ground
states on the a-particle and daughter nucleus preformation probability. The
calculations are done in the framework of the extended cluster model, with the
Wentzel-Kramers-Brillouin penetrability and assault frequency, together with
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Table 1: Systematics of a-transitions. Number of studied a-transitions between
ground states (g.s.) and from ground to excited states (ex.s.). All experimental
data regarding these transitions is taken from http:/ /www.nnde. bnl.gov /ensdf/.

g5, — g.8. | transitions
even-even 149
even-odd T2
odd-even 67
odd-odd 50
total 338

£.5. — ex.s. | transitions
even-even 238
favored 130
unfavored 333
total 701

an interaction potential computed on the basis of the Skyrme SLy4 interaction.

The aim of this letter is to review the description of a-transitions to ex-
cited states in even-even and odd-mass nuclei in terms of the coupled chan-
nel formalism in vibrational, transitional and well deformed c-emitters with
Z = 50, N = 82, by using a unified nuclear structure formalism provided by
the CSM.

2 Systematics of a-transitions to excited states

In this Section we review the main features of a-decays to excited states. A sta-
tistical overview of the a-transitions is given in Table 1. The experimental data
has been taken from the ENSDF database maintained by BNL [54]. Mass and
separation energy tahles together with related procedures can be investigated in
Refs. [55, 56]. We considered in this analysis 338 g.s. to g.s. transitions which
fulfiled two conditons:

i) all experimental data that is required in the analysis is available on the
ENSDF (total half-life, total alpha-branch, Q-Value, initial and final angular
momenta);

ii) a spectroscopic factor for the g.s. to g.s. transition could be calculated
in our approach using a fixed set of parameters for all data.

Let us consider the general a-decay transition
P(Jp) = D{J)+ (L), (2.1)

where Jp denotes the spin/parity of the parent mucleus, J the spin/parity of
the daughter nucleus and L the angular momentum of the emitted o-particle.
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We consider a wave function with a clustered a-daughter ansatz [57] with the
total spin of the initial state

Vimplé,R) = Z fci—f_l?} Jphfp{'E:R} (2.2)

e=(J.L)

Here, we introduced the core-angular harmonic
Vi &R = [Er) @ Vi(R)], (2.3)

where @ a1, (£) denotes the danghter internal wave function with £ the daughter
degrees of freedom, while ¥ 5y, [R} is the standard spherical harmonic deserib-
ing the angular motion of the a-daughter system. The radial function f.(R)
describes the a-daughter radial motion in the channel ¢ = (J.L). At large
distances it has an outgoing asymptotic expression

fo(R) = N. H {ncH Xe) (2.4)

in terms of the Coulomb-Hankel spherical wave depending on the reduced radius
ke and Coulomb parameter
_ 2ZpZ, 27pZ,
Xe = A, {—Qa L. s

where (), is the (Q-value of the decay process. By using the continuity equation
one obtains that the total decay width as a sum of partial widths [57]

I = ) Te=) ho, Jim | fo(R)[? (2.6)
= Y hueN.|?

where v, = fis./p is the center of mass velocity at infinity in the o-daunghter
channel ¢

Each partial width can be formally rewritten in a factorized form at some
radius K

(2.5)

I'e= Q'TEEH]PE{R} ' (2.7)

in terms of the so-called squared reduced width and penetrability

T
=

=
I

hz
ﬁlf.:(rilz (2.8)
kR

=
=
[

.
H{" (KR, x.)

The product does not depend upon the radius, but this representation allows us
to estimate the decay width by using the wave function on the nuclear surface.
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The simplest case is the emission between even-even muclei from the ground
state of the parent nuclens with Jp = (1. The angular momentum of the a-
particle coincides with the daughter spin J = L and the core-angular harmonic
is given by

Vp,R), e=J. (2.9)

In particular in Ref. [43] the ground band is described by a rigid rotator, while
in Ref. [58] it is generalized by using a projected coherent state depending on
the deformation parameter. For small values of this parameter one obtains a
vibrational spectrum, while for large values a rotational one is found.
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Figure 1: Spectroscopic factor versus the a-formation probability for even-even
(a), even-odd (b}, odd-even (c¢) and odd-odd emitters (d).

For transitions from odd-mass nuclei, if the state of the unpaired mucleon
remains unchanged during the decay process, then the transition is known as
tavored, otherwise it is called unfavored. In this case the wave function of the
daughter nucleus is given by a particle-core ansatz

Bins(€r) =D X5 [0an(8) @ Yin (v, » (2.10)
J

where @, (&) is the wave function of the even-even core and v, m,(T) is the
single-particle orbital. The mixing coefficients are found by diagonalizing a
quadrupole-quadrupole interaction between the even-even core and the odd
particle. A more general ansatz assumes a quasiparticle-core coupling. Such
a model describes bands built on top of single particle states. In odd-odd nuclei
the single-particle orbital is replaced by a proton-neutron wave function.

Let us mention that for some odd-mass nuclei around *"®Pb two quasipar-
ticles can be broken, being coupled to some angular momentum Jpei-=2.4,6,...
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. Thus, one can use the three quasiparticle-core model [59]. In our analysis we
considered only a-transitions in odd-mass nuclei between nuclei described by

Eq. (2.10).
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Figure 2: Spectroscopic Pactor versus the fragmentation potential for even-odd
(a), odd-even (b) and odd-odd emitters (c).

The most popular e-daughter potential is given by the double folding inte-
gration method of the nucleon-nucleon interaction with density distributions of
the emitted fragments. A potential determined from a-scattering experiments
is used for the nucleon-nucleon interaction, thus assuming that the a-particle
exists with a probability equal to unity. Actually, the particle forms with a
probability given by the spectroscopic factor

_ Pezp _ 'Tih
r!.h -Te:rp '

(2.11)

which is less than unity. Eq. (2.7) can be interpreted as a product between the
a-formation probability 4* and the probability P of the penetration through
the Coulomb barrier. Therefore the spectroscopic factor S and a-formation
probahility are proportional.

In Ref. [3] it has been shown analitically that the logarithm of the reduced
decay width is proportional to the fragmentation potential

Virag = Vo — (Qu — Ea). (212)

Vo (Rg) is the Coulomb barrier and E; the excitation energy in the daughter
nucleus. In Ref. [3] this correlation was evidenced for even-even emitters. A
similar picture holds for even-odd nuclei, as can be seen from Fig. 2 (a), as well
as for odd-even (b) and odd-odd emitters (c).

As a direct consequence of this law is the linear dependence between the
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Figure 3: Intensity T ; versus the excitation energy in the daughter nucleus E'j,
1 < J < 6, in even-even nuclei (a), for odd-mass favored (b) and unfavored
tramsitions (c).

intensity of the ground to excited state transition and the excitation energy [58]
'y

TJE].DEIDF—=QEJ+h. (2.13)
J

This correlation with a positive slope is clearly evidenced for even-even emitters
in Fig. 3 (a). A similar correlation remains valid for odd-mass emitters. This
feature is evidenced in Fig. 3 (b) for favored transitions to excited states of
rotational bands and in Fig. 3 (¢) for unfavored transitions to excited states of
rotational bands.

The most popular systematics for o-transitions between ground states is
given by the Viola-Seaborg rule [60], where the logarithm of the total half life
depends on the Coulomb parameter and charge number of the daughter nucleus.
It was used to describe transitions between ground states in the case of a-
decay [61], as well as proton [62] and heavy-cluster emission [63]. Other simple
formulas for a-emission have been provided in Refs. [64, 65]. The Viola-Seaborg
rule is a direct consequence of two facts, namely the exponential dependence
of the penetrability upon the Coulomb parameter and the dependence of the
squared reduced width upon the charge number, given by the fragmentation
potential in Eq. (2.12). Due to the fact that the channel Coulomb parameter
(2.5) depends on the excitation energy of the daughter nucleus, this rule can be
generalized for partial half-lives of transitions to excited states

log,o Ty = %+625+d51{;. (2.14)
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Figure 4: Logarithm of the partial half-life versus the generalized Viola-Seaborg
parameter (3.64) for even-even (a), odd-mass favored (b) and odd-mass unfa-
vored emitters (c). Here we considered data with 1 < .J < 6 in daughter nuclei.

This generalized Viola-Seaborg law is very well satisfied by all available experi-
mental data concerning transitions to excited states with 1 < J < 6, as can be
seen for even-even emitters in Fig. 4 (a), as well as for odd-mass emitters in
favored (b) and unfavored transitions (c). We notice that one obtains similar
values of the parameters both for even-even and odd-mass emitters, in the case
of favored as well as unfavored transitions.

3 Theoretical background

In this Section we describe the structure of even-even and odd-mass nuclel in
terms of the Coherent State Model (CSM) and we describe a-decay widths by
using the coupled channels method.

3.1 Coherent State Model for even-even nuclei

The CSM was proposed in Refs. [66, 67] as a tool to describe in a unified way the
spectra of vibrational, transitional and rotational nuclei. Tt treats the surface
vibrations of a deformed nucleus by using an exponential superposition of boson
operators [68, 69]. The model was later extensively developed in Refs. [70, 71]
for the description of low-lying as well as high spin states in nuclei, including
isospin degrees of freedom (for a review, see Ref. [72]).

The wave function of an axially deformed even-even nucleus in its intrinsic
systemn of coordinates is given by a coherent superposition of quadrupole boson
operators ba, with p = 0 acting on the vacuum state

[1y) = (b)) (3.1)
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in terms of the deformation parameter proportional to the static quadrupole
deformation [70]

d=rp, . (3.2)

Physical states which define the ground band are obtained by projecting out
the angular momentum

5"y = N5 Pioliba) (3.3)

in terms of the projection operator

- 27 +1 N
Pl = 5 [ @Dl (3.4

where DY, ;- (w) is a Wigner function and _fl'{u.l} is a rotation operator, parametrized
by the Euler angles w.
The norm of the wave function is given by [71]

NP = [wJ+1}r5°’{d}]_”ze”‘J“, (3.5)

in terms of the following integral
1
"y = f Py(z)e® Palm)dz | (3.6)
a

where Pj(r) are Legendre polynomials. The simplest estimate of the ground
band energy spectrum is given by

Ba(d) = A [P 1IN — (@6 1N 1) (3.7)
= AL -To(d)] .

where N is the operator for the number of bosons. Here, we defined the following
function depending on the deformation parameter

'Y

Is(d) rﬁ“”i di 3.8)
()

'y = %, r=d.

Notice that for small values of d the energy spectrum has a vibrational character
Ej ~ AyJ, while for large values it has a rotational shape Ej ~ A, J(J + 1)
[66]. A one parameter description of the CSM Hamiltonian leads to a universal
dependence of the energy ratio on the deformation parameter

Erv2 _ Tise(d) —To(d)
E; Ti(d) — Told)

(3.9)
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3.2 Electromagnetic transitions in even-even nuclei

The B(E2) value for electromagnetic transitions connecting ground band states
is given by [T1]

B(E2:J = J)

[ AP ||~,af*”}] (3.10)
JrN{ET} jN(E‘:l 2
JIN (9] + _j':N'Eg])l

in terms of the effective charge depending linearly on the deformation parameter

2
Qeff = do (1 - \/;ﬂqd) ’ (3.11)

and of the quadrupole transition operator with harmonic and anharmonic terms
Ty = golday (3.12)
Quu = bh, +bo+ag [(bi ® ag)m +(b2® bz}zp] :

lqe 17(J70:20J0)d (

where qp is the charge parameter, a, the anharmonic strength and f?zp =

bo_u(—). Here, J = V2T +1 and the braket stands for the standard Clebsch-
Gordan coefficient.
The reduced matrix element is defined in the usual convention

(' M5 Au| T M)
J

(JM[Tyu | M) = (T|TA|1T (3.13)

The excitation energy of the J = 2 state, given by Eq. (3.7}, can be con-
nected to the B(E2;2—0) value of Eq. (3.10) as follows:

B, _ 1 (V" -V B{EQ 2-0)
A 2 {51’3:“}' I{ﬂ'})z q: i

(3.14)

3.3 Nucleon coupled to a coherent state core

For an odd-mass nucleus, the state of total angular momentum I and projection
M is given by projecting out the product between the coherent state (3.1) and
the single particle state t;,,, where j is a shorthand notation for all of the
quantum numbers of the state, that is

Brar = Pigo [U504] (3.15)
A straighforward calculation leads to the following result

B =y X;” [sﬂﬂrg] ® #J‘jm] (3.16)

M’
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with normalization coefficients X }Ij given by

-1
N1 T Q0|0
i (M) s 0)19) | i

> (Mf%"J)_2 ((77700[10))?

where €1 is the fixed z-projection of the single-particle angular momentum j.
More details on this procedure can be consulted in Ref. [73].

The states built upon the bandhead I = j = Q) that follow the sequence
I'=004+1,0+2,... constitute a rotational band. In the Nilsson model, these
states are labeled by the set )™ [N'n.A], where 7 is the parity, N is the principal
quantum number, n. the number of nodes of the radial wavefunction in the 2
direction and A the projection of the single-particle orbital anpular momentum.
The last three numbers act only as labels, as the good quantum numbers are
only € and .

The simplest Hamiltonian that can describe such a rotational structure con-
sists of two terms [73]:

H = A} by— Aor® (b 4+ b ) - Ya. (3.18)

where by dot we denoted the scalar product. 4, is a strength parameter re-
quired to fit experimental data and A; is the strength of the particle-core QQQ
interaction.

For the description of the rotational band the only relevant parameter is 4,
due to the fact that the particle-core term is common. Instead of solving the
eigenvalue problem by a full diagonalization procedure, a simpler approach, in-

volving the analytical expression for the diagonal matrix elements of the Hamil-
tonian (3.18) in the basis of Eq. (3.16) suffices:

(UMH|IM) = Adfyor—d (N 4 %) x (3.19)
x G072 50073).
with fjor given by
S{15;92 - QJ0)TY (d)

oy = ) 3.20
har = S a0 @) -
J

The shape of such a spectrum is dependent both on the deformation parameter
and on the value of £2, as can be seen in Fig. 5.

While this approach is adequate, if a greater precision in the description
of the nuclear energy spectrum is required, then more terms can be added to
the Hamiltonian (3.18), as shown in Ref. [73]. Let us also mention that the
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Figure 5: Normalized energy levels E; as functlon of defnrmatlnn d for different

values of the single particle angular momentum projection 2.

development presented here and expanded upon in Ref. [73] is appropriate for
any rotational band built upon an angular momentum projection ) # % The
special case )} = % requires a modification of the formalism.

3.4 Electromagnetic transitions in odd-mass nuclei

The B (E2) values of electric quadrupole transitions follow from both collective
and single particle contributions

1
B(EXL —=1) = [5(hllaQzlll) + (3.21)

4

1
IT{II |las” Q37| 12)]%.
2

where g5 and g," are effective charges.
The collective quadrupole transition operator has both harmonic and anhar-
monic contributions

Q5 = bl +bau +aq [(bﬁ ® b;) + (b ® szzp} _. (3.22)

2p

with a; the anharmonic strength. Its reduced matrix elements on the states of
the core are

e
(P15l = m{m 00]J30) = (3.23)

) )]

b
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with geys given by a linear formula in d

2
eff = o (1 - \/;ﬂqd) : (3.24)

The single particle quadrupole transition operator has the occupation num-
her representation

1, . . -
Q=2 gl Yalliz) (%), (3.25)
j1ja
Explicit expressions for the matrix elements of these operators over the states
of the odd-mass nucleus follow from the above results and the use of standard
angular momentum algebra. For our particular case of fixed j, the final formulas
are

(Lllgs@QsIT2) = D XpoX LG (—)" x (3.26)
JiJa
x WL LJy 32) (09105051 e ),
(Mg QPN) = Y XpH XM RE (- x (3.27)
Ji

e

W (L1255 112) {llag v Yz||5),
with W a Racah coefficient.

3.5 Coupled channels approach to a-emission for even-
even emitters

Let us consider an a-decay process connecting the ground state to an excited
lewvel

P D(J)+a, (3.28)

where J denotes the spin of the excited level in the even-even axially deformed
daughter nucleus. The wave function of the a-daughter system has the total
spin of the ground state (i.e. zero)

U(b,R) = Z%Zﬂbz.‘ﬂ) (3.20)
"R
Zi(b2, ) = [gaif?'(bz}@mn}]u,

where R = ( H, {2} denotes the distance between the centers of the two fragments.
We describe the a-daughter dynamics by using the stationary Schrodinger equa-
tion, i.e.

H¥(b2,R) = Qu¥(b,R) , (3.30)
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where (), is the (Q-value of the decay process. The Hamiltonian

2
H= _g_#v§+ﬂﬂ(bgj + V(b R) . (3.31)

contains the kinetic operator, depending on the reduced mass

44p
4+ Ap’

0=my (3.32)

a term describing the dynamics of the nuclear core Hp(bz) and the o-core
interaction

V(by, R) = Vo(R) + Va(b2, R) . (3.33)
The monopole part of the interaction is given by a pocket-like shape [43]

Vo(R) = uVo(R), R>R, (3.34)
= C{R - -!I?r.rn'r';)2 — Un, R = Rm 1

where V7 is the Coulomb plus nuclear potential, estimated by using the double
folding procedure of the M3Y particle-particle interaction with Reid soft core
parametrisation [74, 75, 76] (see [57] for computational details).

The parameters of the nuclear interaction between the e-particle and daugh-
ter nucleus defining Vy were determined by using scattering experiments which
assumed that the a-particle exists with certainty, that is v, = 1. Therefore
the interaction should be multiplied by a factor v, < 1, which simulates the
tformation of the cluster on the nuclear surface. The value of v, is fixed by the
absolute value of the total decay width [44]. It is important to emphasize that
t-decay branching ratios to members of the ground band have a weak depen-
dence of this factor [43]. Another possibility is to leave the interaction potential
uncquenched and to consider the spectroscopic factor

8= F‘-‘_ff-“"_l (3.35)
rthear‘

as a measure of the particle formation probability, as in Ref. [70].

The second line of Eq. (3.34) is the repulsive core simulating the Pauli
principle, namely the fact that the a-particle can exist only on the nuclear
surface [3]. This core also fixes the energy of the first resonant state to the
experimental (}-value (J,.

We applied the procedure of Ref. [43] to determine the matching radius
Ky and the coordinate Ry, corresponding to the minimal value vg, by using
the equality between the external attractive potential and internal repulsion,
together with their derivatives. Therefore, the above interaction is continuous
and it depends on the repulsive strength ¢ and the potential depth vy [43]. We
considered a given value for ¢ and fixed vy by the QQ-value of the a-decay process.
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The A = 2 term is given by the quadrupole-quadrupole (QQ)) interaction

V(b R) = ~Co(R— Ronir) oG5[0, @ V@), . (336)

By using the orthonormality of the angular functions entering the superposition
(3.29), one obtains in a standard way the coupled system of differential equations
for radial components [57]

d*f5(R)
P ; Asp(R)fa(R) , (3.37)
where the coupling matrix is given by
ST +1) Vo(R)
Ajp(R) = [ P +Qa_E_if_1 LERT (3.38)
1
RSy o (Z.4|Va(b2, R)| 2}
in terms of the reduced radius
p;r = wyR, Ky;= W‘ (3.39)

The matrix element of the a-core coupling entering Eq. (3.38) is proportional
to the reduced matrix element defining electromagnetic transitions (3.10), but
with a different anharmonic parameter [66]

m 1
EValbs, RIZ) = ~ColR— Rmin) TG0 (3.40)
% (& P1Qal V(Y| [Yal V)
_ L dVo(R) d J
= —C(R— Rmin) —p— Wi

JNE st
% (J0;20/J°0)2 NMH + ,M‘;) :
JNE T N

where we defined the effective a-daughter coupling strength

C=0C (1 - \/gand) . (3.41)

3.6 Favored a-emission in the coupled channels approach
for odd-mass emitters

The decay phenomenon of interest connects the ground state of the parent
nucleus of angular momentum Ip to an excited state of angular momentum I
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of the daughter and an o-particle of angular momentum I, in such a way that
the total angular momentum [p is conserved

P(Ip) = D(I)+al(l). (3.42)

An important remark 1s that both the initial state of the parent and the final
state of the daughter are built upon the same single particle orbital j. This
is known as a favored a-transition, due to the fact that it usually has a large
branching ratio. The situation where the initial and final single particle orhitals
are different is known as an unfavored a-transition. For the favored case, the
transition from the ground state to the bandhead built atop the j orbital in
the daughter nucleus generally has the highest decay width, and transitions on
excited states of the band form the fine structure of the spectrum.

The total wavefunction of the a-daughter system can be assumed to be
separable in radial and angular parts and expanded in the angular momentum
basis

xIr(b;,R) =¥f”$mz“(b;,w),, (3.43)

where the angular components are given by the coupling to good angular mo-
mentum between a wave function for the odd-mass daughter nucleus and a
spherical harmonic for the a-particle

Zn (b;.,m) - [@m (a;) ® Yim {w)] (3.44)

IpMp
Here, R = (R,w) is the relative vector between the two fragments. Each pair
of angular momentum values defines a decay channel

(I =c. (3.45)

The function ¥ must satisfy the stationary Schrodinger equation (3.30),
where the Hamiltonian is given by (3.31) containing the potential energy (3.33).
The a-core part is given by the QQ interaction (3.36). The angular functions en-
tering the expansion of Eq. (3.43) are orthonormal. Using this, one obtains in a
standard way the system of coupled differential equations for radial components

2
% - E Anyinat (R) fron (), (3.46)
Iy

Ialy

with the coupling matrix having the expression

hih+1) Vo(R
Aoty () = |: 1 {F:? : * Q D—{ E]I - 1:| 81y 1y:1atn +
i 23 i
1
Ay s UL (5. R) |Z100). (3.47)

in terms of the reduced radius
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2p (Qa - Ej }

h? ‘
Notice that x; has the same value for all the channels of fixed I, so the supple-
mentary [-index can be omitted both for the wave number and reduced radius.

The coupling term of the matrix is found by the same method as in the
previous section to be

pr =k R, Ky = (3.48)

(ErulVz (BhR) 120n) = D XPTXP(e@NQ510E)  (349)
JiJz

x  (h||Ya|[l2) 31 Fj (=) Pt

oL
b Wl:rlflrgfz} IPQJ JZ IZ j
2 2 0

where the curly brackets denote a %j-symbol. Since the reduced matrix element
between the states of the core is a linear function of the deformation [71], one
can express this linearity in terms of an effective a-nucleus coupling strength

given by Eq. (3.41).

3.7 Resonant states

A state decaying by a-emission is ldentified with a narrow resonant solution
of the system of equations (3.37), containing only outgoing components. In
order to solve this system of equations we first define the internal and external
fundamental solutions which satisfy the boundary conditions

Ru(R) 20 6yey, (3.50)

HSO(R) = Gu(R) +iFu(R) =3° 6uH (kiR) = d51 x
x (G R) +iF;(sR)]

where £ ; are arbitrary small numbers. Here, the index J labels the component
and I the solution, G j(#sR) and F;(# ;s R) are the standard irregular and regular
spherical Coulomb functions, depending on the momentum & in the channel
J, defined by Eq. (3.39).

Each component of the solution is built as a superposition of N independent
fundamental solutions. We impose the matching conditions at some radius R,
inside the barrier and obtain

fi(R) = Y Ru(R)Mi= Z Hi (R (3.51)
1

dfs(B1)  _ ZMMI =ZMM.

dR 7 dR dR
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where N7 are called scattering amplitudes. One thus arrives at the following
secular equation

R(R) H'(R)
dR(Ry)  dH™M Ry
dit dR

R(R) G(R)
= | gR(R1) dG(Ri)
dR dR

=0. (3.52)

The first condition is fulfilled for the complex energies of the resonant states.
They practically coincide with the real scattering resonant states, due to the
fact that the imaginary parts of energies are much smaller than the correspond-
ing real parts, which implies vanishing regular Coulomb functions Fj inside
the barrier. The roots of the equation {3.52) do not depend upon the match-
ing radius R;, because both internal and external solutions satisfy the same
Schrodinger equation. The unknown coefficients My and Nj are obtained from
the normalisation of the wave function in the internal region

Ra
> f fr(R)PdR =1, (3.53)
7 YHo
where H» is the external turning point.

3.8 a-decay observables

We will use the CSM deformation parameter d to determine the a-decay fine
structure by calculating the logarithm of the ratio between decay widths to
ground and J* states, i.e.

T, =logo =2 | (3.54)
L'y
where partial widths are given by the rule [57]
0= =X fin 1R =S N, 65

with I' the total decay width and vy the center of mass velocity at infinity in
channel J, i.e.

_— (3.56)
H

We call the quantity T the intensity of the a-decay to the J-th state [43]. The
total half-life 1s related to the decay width through the formula
_ hin2

=5 -

In order to extract the influence of the Coulomb barrier one defines the
logarithm of the HF

T (3.57)

2
log, HF; =logy, lg =1I; —logy, i : (3.58)
Vi Py
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where the square of the reduced width {or preformation probability) is defined
by the standard factorisation [57]

T'y=2P;(R)v3(R) , (3.59)

in terms of the Coulomb penetrability

ryR rJR
Py(R) = . 3.60
)= R+ R - R (3.60)

computed at the touching radius
R=12(4"3 4+ A}%) (3.61)

where Ap is the mass number of the daughter nucleus.
Let us mention that the logarithm of the penetrahility depends linearly upon
the Coulomb parameter

AZ Z
logio Py ~ X = wa ~ = (3.62)

By fitting the realistic pocket-like potential (3.34) to a shifted harmonic oscil-
lator with frequency w, matched to the Coulomb barrier at the radius rg, one
obtains the universal law for reduced widths [3]

A%

log,e? [2Zpe?
Qeprp |

(3.63)

log,, ’]’3[’"5) = —(Qa — EJJ] + logq

fiw TE
where e = 2.71828, €2 = 1.44 MeV - fm, Zp denotes the charge mumber of the
daughter nucleus and Ay is the amplitude of the Gaussian-like wave function
peaked on the nuclear surface. This law together with (3.62) has the following
CONSequUences:

1) The Viola-Seaborg rule for the total half-life [60]

) _T_&ZD-I-b
Oglﬂ - @

2) The logarithm of the HF becomes proportional to the excitation energy
of the daughter nucleus [57]

+eZp+d; (3.64)

logipe? Az
logieHF; = "9 b0 | logio=0 3.65
= eyE;+fi;

3) By using Eq. (3.58) one obtains a similar rule for intensities

Tr=giE;+hy. (3.66)
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4 Transitions from even-even emitters

We considered only even-even emitters with known wq-decay half-lives, fulfilling
the vibrational/rotational condition within an error of 10% for the first four
excited states

J+2{1—D.1)£ Ejq2 < (J+2)(J+3)
7 E; J(J+1)

(1+0.1), J=2,4,6,8.  (4.1)

In the numerical analysis we chose the model parameters according to the fol-
lowing procedure:

- the CSM deformation parameter d defined by Eq. (3.1) and

- the CSM Hamiltonian parameter 4, defined by Eq. (3.7)

were determined by fitting the experimental energy levels Ey of the first
four excited states according to Eq. (3.7) for each nuclide where the data was
available. The relative errors of the 2+ state and the resulting parameters are

given in Table 2. In this Table the used notations are given below
n: nuclide label

D(J): even Z - even N daughter nuclide
d: CSM deformation parameter defined by Eq. (3.1), fitted for
each case

Ay (keV): CSM Hamiltonian parameter defined by Eq. (3.7) (keV),

fitted for each case

C a-daughter coupling strength defined by Eq. (3.41),

reproducing the intensity T

Q (MeV) : Q-Value of the decay process

log,yT, (s) :experimental and theoretical logarithm of total half-life

T4 Experimental and theoretical decay intensity

to the state of angular momentum J

In Fig. 6 we plotted the CSM deformation parameter d versus the standard
quadrupole deformation parameter 5s.

In Fig. 7 the ratio E4/E» is plotted versus the CSM deformation parameter
and shows a consensus with the prediction of Eq. (3.9), as is the situation for
ratios of higher states.

The effective charge g.5r defined by Eq. (3.11) was extracted from the
B(E2 : 2 — 0) value (3.10) for each nuclide. The dependence between the
effective charge and the CSM deformation parameter is given in Fig. 9. The
connection between the excitation energy Fs divided by the Hamiltonian pa-
rameter A; and the B(E2)-value divided by the effective charge, predicted by
Eq. (3.14), is plotted in Fig. 10.
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5 [W-126 o3<10% "

Figure 6: The CS5M deformation parameter versus quadrupole deformation pa-
rameter.

Table 2: Parameters and fine structure decay data for even-even daughter

nucled.
n  D{J) d Aq C Q |ngmT;IPlc.ngg"‘*T;?Tgfdf:jwifdT;jf ngj“
i(keV) (MeV)  (s) is)
1T %Ersg 1.311 GOR 236G 0507 4.172 6.7 7157 - 3833 - - - N
P i Yhsg 1.320 505.092 0.503 4002 3.1 3545 30 3000 - - - -
3 DByhee 1076 712,321 0360 4417 58 6183 2.3 2382 - - . -
4 %ﬁH[ﬁE 1.666 665.332 0.423 5674 0.5 0.816 - 2171 - - - -
5 o Hfss 1.914 720777 0.364 5270 2.9 2400 20 2027 - - - -
6 ;EEH@D 2900 781.036 0.207 4856 4.7 5.116 - 1482 - - . -
T ;4Hfgﬂ 2404 7T1.313 0.248 4506 6.3 6762 1.3 1382 - - . -
8 &:wgﬂ 2,108 802.813 0.318 5818 0.7 0.049 1.2 1541 - - - -
0 Woo 2.310 808548 0271 5530 1.0 2132 19 19275 - - - -
10 ;ﬁgwgd 2.411 743.663 0.247 5227 3.3 3546 10 1132 - - - -
11 I‘é ‘o 2536 680.780 0.217 4.872 53 5508 1.0 0022 - - L -
12 ﬁﬂosaa 0.596 G81.877 0.677 6000 9.7 a702 - 3471 - - - -
13 1660s=gp 1.827 750.231 0.385 G.708  -1.0 7500 - 282 - - - -
14 1880sg0 2.132 856.069 0.313 6464  -1.0 0774 14 1392 - - . -
15 1T00sg, 2.144 T57.750 0.310 6.184 0.1 0.267 2.0 1277 - - - -

1.375 26 1.154 - - - -
2.800 1.3 0.895 - - - -
4.481 0.8 0.791 - - - -
5803 0.7 0888 - - - -

168 1120sgg 2085 572757 0.324 5887 1.
17 1i%0sgg 2,262 402.509 0.282 5573 2.
18 .%? Osqpp 2,517 577.809 0.221 5.240 4.
18 Tﬁaﬁs'm 2,508 620.969 0.202 4.952 A

8.

DUt b

20 200sgpy 2.706 T13.724 0.177 4.602 8335 0.9 0818 - - - -
21 EEQOSHJE 2,892 520.202 0.133 4.320 a.7 10.164 0.9 0810 - - - -
22 Ptop -0.540 556.907 0948 7.525 3.6 -3.506 1.9 3.800 - - - -
23 Egﬂptgg L.773 822.277 0398 7.233 A% -2.622 - 2808 - - - -
24 1Py 1L.TTE TERTTL 0307 G008 -1.6 -1.565 L7 2745 - - - -

25 ﬁiPtg‘; 1.524 508.800 0.457 6578  -0.6 -0.330 14 1610 - - - -
26 ?EEPI‘,QE 1.803 408928 0.391 6.258 0.7 0.919 3.3 1195 - - - -
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n D{J) 4 Ay C @ logTEFlogyg Tf“‘T;P"rgf“ ::iPTJ:;“’T;?Tgf‘*
(keV) (MeV) (s) (s)
27 LPPtygp 2.290 502.074 0.275 5.997 1.0 1086 2.2 0816 - - - -
28 180pyyge 2,435 556.220 0.241 5.662 3.5 367 24 0701 - - - -
20 %Qmm 2.433 567.247 0.241 5205 57 6002 08 0816 - - - -
30 @:ptms 2374 556.438 0.255 4.705 8.9 0155 11 0913 - - - -
31 [T6Hg,, -0.847 607.326 1.010 7415  -2.4 2218 20 2069 - - - -
32 i Heyge -0.708 566.771 1.007 6.470 1.1 1268 28 1439 - - - -
33 E"Hglm-l.!’}dﬂ 582.367 1.183 6.100 2.4 2976 30 LT - - - -
34 ngHgm-Ls?s 623.792 1.102 5608 4.3 4524 31 2111 - - - -
35 ﬁE‘Hgm@-l_Qﬁﬂ 831,157 1.974 5221 4.6 5442 924 2668 - - - -
36 EEU'HgI 10 -0.875 570.462 1.025 4.73%  10.0 10493 28 2079 - - - -
37 206Phyay 0.296 540.153 0.748 5407 7.1 8524 50 3882 - - . .
38 Eﬁﬂpbm 0.576 506.032 0.798 8954 -6.5 6.625 - 2042 - 5542 - 11.190
39 ﬁ;}"‘bmﬂ 0.714 482.106 0.771 6.115 2.3 2651 50 4763 - 6705 - 15.190
40 %P‘”Ua _9.086 580.790 1.312 T.61T7 24 2524 - 114 - - - o
41 Hepanu 1.048 576.3604 0.356 7.340 1.2 1350 32 1477 - - - -
42 %pom 1.551 537.082 0.450 7.043 -0.000 0200 42 2606 - - - -
43 EﬂUlﬂmu 0.373 550.372 0.730 6.774 1.1 1523 37 2417 - - - -
44 %Pau.—, 0.450 552,197 0.709 6.545 2.0 2483 - 9281 - - - -
45 Eﬂe1:‘01151 0.450 552197 0.700 6.384 2.7 3.298 - 2097 - - - .
46 %Pom 0.200 548.082 0.771 6.385 3.2 3760 3.3 2843 - - - -
47 Eﬁanm-l.B:]'r 570.035 1.253 8.019  -1.8 713 - 1M - - - -
48 EEER“‘“'I'MI 503.863 1.207 7.636 -1.2 065 - 108 - - - -
49 8 Rnian -0.040 547.653 0.830 T7.152 0.6 0937 35 2128 - - - -
50 E%ﬁanﬂ 0.006 405.170 0.733 7.592  -1.8 1173 2.0 1889 - 4707 - 9.274
51 215Rnisn 1.532 385.300 0.608 6.679 1.6 2333 1.5 1.480 4.4 4320 - 8870
52 20Rngqq 1.835 308.646 0.548 5780 55 6368 1.3 1.310 4.1 4254 - 0,006
53 E&Qanﬁ 2.047 410,960 0.506 4.871  10.7 11644 1.2 1.270 4.2 4437 - 9000
54 ﬁﬂmm_u.zes 540718 1.634 7.052 15 -1.423 16 2967 - - - -
55 ﬁﬂmm 1.388 405.203 0.637 8.127 2.7 1062 1.6 1421 - 3970 - 8323
56 gﬂmm 1.050 344.753 0.523 7.205 0.4 0.806 06 0.600 - 2801 - 6.793
57 Eg?nam 2.353 376.272 0.445 G451 3.3 4153 05 0472 2.8 2606 - 6.744
58 224Rajas 2.616 402.858 0.302 5520 T.8 8660 04 0444 25 2677 6.5 G.767
50 %ﬂmm 2851 418,088 0.346 4.770 124 13242 0.5 0.442 2.8 2.737 7.0 7.232
60 22%Raiao 3.327 501.330 0.251 4.083  17.6 18449 0.6 0.572 3.1 3.205 8.033
61 §§DThm 1.502 437.194 0.614 8620 -3.1 2456 1.1 1.342 - 4087 - 9.008
62 EEEThm 2.018 391.376 0.511 7.715  -0.5 0321 08 0.680 - 2080 - 7.003
63 gg;n.m 2510 416.728 0.412 G.804 2.8 3571 04 0404 2.1 2408 - 7.858
64 EEBT}naa 2.805 464.030 0.337 5.003 63 TOT6 0.3 0.349 2.2 2442 6.0 G.868
65 EgﬂThm 3.991 402.731 0.272 5414 9.3 10,093 0.3 0.340 2.4 2,500 6.1 5.556
66 i Thiao 3.499 555.671 0.217 4860 129 13581 0.4 0415 2.6 2603 - 5706
67 agﬂThm 3608 555,040 0.195 4.573  14.0 15540 0.5 0.418 2.7 2.858 5.7 5.076
68 QB:'Thm. 2767 615.270 0.163 4.270 172 17.801 0.6 0.495 3.0 2912 - 6038
69 3&5”134 3.905 480365 0.275 T.175 2.0 2534 - 0216 - 2058 - 5403
70 agﬂuiss 3.405 533,305 0.217 6.716 3.0 4598 03 0320 - 2317 - 4793
1 aguthgg 3508 543.762 0.215 6.310 57 6321 03 0301 2.2 2351 - 5311
2 aggU”” 2.727 576.660 0.171 5.867 7.0 8512 0.3 0354 2.5 2.606 4.6 4.041
73 3&'”1“ 3787 B4T.554 0,150 5503 0.5 9991 04 0.368 2.9 2515 4.4 6.002
74 %SUM 3.088 640.660 0.119 5.256 113 11.864 0.4 0.472 2.9 2985 4.8 4.410
5 SESU“E 3.000 636.205 0.119 4.984 131 13622 0.5 0.490 3.4 2930 4.9 5355
76 2100145 4.132 608.530 0.001 4.665 154 15012 0.6 0.640 - 2776 - 3.648
i & Puign 3.878 620,106 0.141 6.620 5.3 5810 0.4 0381 - 2827 - 3.618
78 B&E‘Pu“g 4.012 640,608 0.115 6.398 6.4 6.513 04 0465 3.1 2424 3.7 3.319
i %ﬁpum 4.948 T18.871 0.068 6.216 7.2 720 0.5 0.682 3.3 3.310 4.2 5304
80 31'Pujge 4.138 650.043 0.000 5002 8.8 0178 0.5 0.554 3.6 2.623 4.3 3315
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eT PTed el red pex ed e red
n D(J) d A O Q logpTaTlogy T8 Yoy T IS T T e T

(keV) (MeV) (s) (=) "

&1 é;zpuug 4196 T06.800 0.078 547 112 11.602 0.7 0661 - 2620 - 2976
82 iMPugsg 3.864 614.520 0.144 5162 131 13.634 0.7 0425 3.0 2631 3.9 4875
83 5:"Cmyqp 3.862 616.268 0.144 7.7T19 1.8 2257 0.3 0345 - 2446 - 6253
84 %%ledﬂ 3.862 616.268 0.144 7.516 1.9 2705 0.6 0265 - 2188 - 3.7490
85 8 Cmyqq 4.000 651.917 0.117 7.320 32 3.608 05 0375 - 2672 - 4471
86 EQQCmHg 4.000 651.917 0.117 6.862 5.1 5510 0.6 0401 2.7 2.620 3.7 4483
87 Ei:Cmus 4.316 726.110 0.054 6.361 7.5 7787 0.6 0.841 2.3 2458 - 1.998
B8 B&meg 4.397 T52.888 0.047 6.128 8.6 B.O005 0.7 1.087 2.5 5424 41 3.361
80 3 Cmis2 4.260 710.991 0.038 6.217 7.9 8279 0.7 0662 2.5 4383 4.6 293
00 220 Cmygy 4.015 656.032 0.114 5.926 0.2 0705 0.7 0399 - 2758 - 4202
01 24206, 4.000 651.017 0.117 B.374 0.1 0.385 0.6 0340 - 2490 - 3385
92 E‘EJCEHE 4.153 694.452 0.087 8.002 1.6 1.848 0.6 0492 - 2846 - 5431
93 EESCfu.a 4.153 694.452 0.087 7.556 33 3.600 07 0542 - 2710 - 3571
04 EEaCh;g 4.168 GO8.875 0.084 7.153 5.0 5306 0.7 0580 1.9 2,571 3.6 2013
05 Z20Cfisa 4.184 G78.191 0.080 7.307 4.1 4354 0.8 0443 2.0 2.519 4.1 2.857
06 EEQCHEH 4.183 703.329 0.081 7.027 5.1 5395 08 0535 - 2600 - 3202
07 {ppFmi4s 4.168 GOR.875 0.084 8.549 0.6 0.881 0.5 0,538 - 2511 - 2813
08 E%Fmiw 4.168 GO8.875 0.084 8.226 1.8 2046 08 0563 - 2702 - 331
99 TopFmise 4.321 744.797 0.053 8.581 0.5 0.653 0.8 049 - 2002 - 3767
100 EE,El‘s'cqsg 4.537 874.740 0.010 8.930 0.3 -0.981 - 2317 - 1068 - -

101 355 Noisa 5.051 1042.172-0.082 9.250  -1.0 -0.946 - 0938 - 2857 - 3.389
102 {}EﬂRfis? 4.351 754.351 0.047 9923 21 -2.052 0.7 0823 - 2033 - 2456
103 ﬂ»ﬂﬂ.Rﬁsa 4.076 672.800 0.102 8.762 21 2.423 - DB6O - 1725 - 1.515
104 ESglm 4.229 716.874 0071 10.591 2.8 -2.733 - D607 - 3218 - 3716
105 Esglss 4.076 672.800 0.102 10.335 2.7 -2.501 - 0351 - 2205 - 3TTE
106 %EESEIEI} 4.092 677.069 0.099 9.300 0.6 0.820 - 0460 - 2505 - 3480
lﬂ?éﬂ Hspzs 4.092 677060 0,009 11.200 -4.0 -3.929 - 0357 - 2471 - 3.888
108 daEDS“-.D 2,227 383.511 0.470 9.349 1.0 2.043 - D281 - 2050 - 499
109775Cn 72 1.936 379.034 0.528 10.000 0.1 0.877 - D514 - 2486 - 5821
110 575 Flyvy 1.386 401.032 0.637 10.800 -1.8 0,767 - 0982 - 3117 - 6410
111 {{glvyrg 1677 384,440 0570 11.810  -2.8 -1.924 - 073 - 2872 - 6568

The monopole potential strength v, defined by Eq. (3.34) was fixed by the
total o-decay half-life. The repulsive strength ¢ defined by Eq. (3.34) has the
value ¢ = 50 MeV, suggested by Ref. [44]. The a-daughter coupling strength
C defined by Eq. (3.41) was obtained from the reproduced values of the o-
decay intensity T2 (3.54). We compared our results with the experimental data
available and made predictions for the nuclel where these observables have not
been measured to this date, separately for two regions, namely N < 126 and
N = 126. Thus, we computed

- the energies of the daughter nucleus E; by using

a) the linear dependence between d and 3, (given by Ref. [77]) predicted by
Eq. (3.2} and evidenced in Fig. 6, and

b) the quadratic dependence between the Hamiltonian strength 4, of Eq.
(3.7) and the CSM deformation parameter d evidenced in Fig. 8;

- the B(E2) values by using the linear relation (3.11) between the effective
charge g.r; and d evidenced in Fig. 9;
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- half-lives given in Fig. 14, by using the quadratic dependence between v,
and the square of the reduced width +3 in Fig. 13;

- intensities T (3.54) given in Fig. 16, by using the linear dependence
(3.41) between the a-daughter strength ' and d shown in Fig. 15, panel (a).
The logarithms of hindrance factors, given by Eq. (3.65), have a similar behavior
as the intensities and therefore we will not plot these quantities.
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Figure 7: Experimental energy ratio versus the CSM deformation parameter for
J=2.

The a-decay spectrum is a very sensitive tool for the investigation of nuclear
structure. Thus, the intriguing maximum of the HF, or equivalently, the maxi-
mum of the intensity Yy for the 41 state in the Pu region evidenced in Ref. [43]
was recently related to the two-neutron separation emergy, in connection to a
deformed subshell corresponding to N=142 [78]. This effect can be seen where
we plotted the experimental values of T4 as a function of the Casten parameter
P = NyN./(Np+ Ny).

In Fig. 15, panel (a), it can be observed that in the N < 126 region, for
¢ < 0.1, the nuclei follow the general rule given by (3.41), but with a smaller
slope.

For muclei obeying the rule (3.41) with a larger slope, the value of ' repro-
ducing T3 always corresponds to wave functions in antiphase. In panel (b) we
plotted the same dependence for 12*Po,ys. In this case, solutions in antiphase
do not exist for the given excitation energy, and T is reproduced by a value
of C' corresponding to a solution with the wave functions in phase. This is the
situation for all nuclei having O < 0.1, where the dependence C'(d) has a smaller
slope.

Notice that for nuclel where there is no experimental data concerning alpha-
branching ratios we assumed that the branch to the ground state is unity.
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Figure 9: Effective charge versus the CSM deformation parameter.

We clearly evidenced several a-clustering properties, 1.e.:

- a large correlation between the monopole potential strength v, (measuring
the departure from the "pure” a-core picture with v, = 1) and preformation
probability 47 in Fig. 13;

- a large correlation between the a-daughter quadrupole coupling strength
C' and preformation probability 42 in Fig. 15, panel (b).



Fine structure of a-transitions within the coupled channels formalism

31

£k,

logy T i)

Figure 11:

12z T T T T T T T

T He1® e
HeizE

0&

06

bz

Figure 10: Eyi fA:(d) versus B(E2;2 — 0)/q2; (d).

Logarithm of the half-life versus the Coulomb parameter for J=0.
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Figure 13: Potential parameter v, versus the logarithm of the squared reduced
width.
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square of the reduced width multiplied by 100.
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Figure 16: Panel (a) shows the intensity T, versus the number labeling each
mucleus. The same is true for panel (b) for J =4 and panel (c) for J =6.
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Figure 17: The mntensity Ts versus the excitation energy Es of the daughter
nucleus,
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5 Favored transitions from odd-mass emitters

We have studied favored transitions in 26 odd-mass o-emitters where the ro-
tational band in which the parent decays is built atop a single particle orbital
of angular momentum projection £ # % Additionally, this band must be de-
scribed in the formalism of an odd nucleon coupled to good angular momentum
with a CSM core.

The deformation parameter d was obtained by fitting available energy levels
relative to the bandhead. A number of about 4 levels is required for the deter-
mination of a reliable deformation. As can be seen from Fig. 5, there exists a
deformation range where a large shift of the parameter’s value has little impact
on the energy levels. Because of this, when fewer energy levels are available, the
fit becomes unreliable. In these circumstances we have determined the deforma-
tion parameter by studying the systematics of energy levels and deformations
for the neighboring nuclei with good experimental data. A quadratic trend 1s
observed in the dependence of the Hamiltonian stregth parameter 4, on the
deformation, as evidenced in Fig. 20, where we assign the nuclei with separate
symbols for each value of £1. The fitting formula agrees qualitatively with the
similar treatment made for the ground bands of even-even nuclei in Ref. [58].
The agreement between the ratio of experimental energy levels assigned to the
deformation parameter d and the theoretical ratio %4;—1 is shown in Fig. 21,
with separate panels for different values of €.

On the topic of electromagnetic transitions, one notices a surprising lack of
measured B{E2) values for odd-mass a-emitters. Only one such value can be
found in the database, for the transition %+ — %_" in the ground band of Thyag.
It is given hy

g+ 5+
B (EQ; 3 — 2 ) =170 30 W.u.. (5.1)

Using the systematics for the collective effective charge g7 as function of d es-
tablished in Ref. [58] our model predicts a value

9+ Kt
BlE2 - — - |=1178Wnu. (5.2)
2 2
The difference up to the experimental value can be obtained by tweaking the
value of the single particle effective charge g,", which in this case must be equal
1
to g;" = 7.004 (Wa)2. Due to the lack of experimental data, a systematics of
single particle effective charges cannot currently be made, but we present pre-
dictions for B (E2;{} 4+ 2 — (1) values based on the systematics of the collective
effective charge from Ref. [58].
To study a-transitions, we make use of the so-called decay intensities
Lao
(5.3)

T = logg .
I
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Table 3: Parameters and fine structure decay data for odd-mass daughter nuclei.

n D(I] d A C Qga_nlogyg TEoF logy, TET°F TETF TETeS y2=F ypred p2=F ypred
(MeV) (s) (s

1 3%%Rajgy 9.804 475876 0.107  4.081 11.4 10477 08 0779 1.8 1672 2.7 2830
2 3acyny 2496 181721 0.073  6.580 3.4 1.810 0.6 0819 1.3 1.287 2.1 2434
3 235acinp 3,066 305.552 0.085  5.670 7.4 £.168 0.6 0.842 1.3 1.334 - 2488
4 33%Thyag 3.716 458030 0.133  4.000 12.7 11677 0.8 0809 1.7 1.730 85 2795
5 31 Thygq 9.580 400657 0.112  4.200 16.3 16.291 1.3 1.301 2.6 2402 - 3.090
6 M pajgp 9.084 T02.273 0,052 5.011 12.1 11.892 1.2 1.281 21 213 - 8815
T 23%Pajap 3.700 587.086 0.061  4.720 13.8 13.994 1.2 1.288 2.3 2236 . 5.8M
& 2TUgy; 9775 480617 0114 4,980 13.3 12.085 0.8 0841 1.8 1.747 8.4 2847
9 2Npyga 9.824 463,486 0,107 5.874 56 7.006 0.8 0777 16 1.588 - 2.552
10 38 Npgas 3817 406,150 0104 5.578 10.1 5831 0.8 0814 17 1.647 3.8 2714
11 23%Npyyg 9.738 472.328 0.083  5.364 1.4 10046 0.9 0.898 1.8 1.736 4.0 2832
12 29Puy g 8704 478740 0,115 5883 2.0 7583 0.8 0783 17 1508 3.4 2.656
13 34 'Puray 3502 434,114 0.069  5.47 1.4 90907 1.9 1.267 2% 2114 4.5 5.736
14 331 Amyqp 3.440 432 807 0.033  5.083 &6 7337 1.2 1201 14 1470 - 55780
15 M3 amy g 3,465 400,453 0.061 5623 10.6 9447 0.8 0811 1.5 1.638 - 2700
16 243 4my 5y 9.380 467.004 0.042 5108 12.2 11887 1.7 1655 - 2656 - 4.660
17 249 0my gy 3.040 281795 0.070  6.400 7. 5600 1.9 1.283 - 2003 - 9.58%
18 335 Cm140 9667 305,780 0.003  5.008 10.0 5278 1.2 1241 24 1.9% 4.1 3477
19 2490my 0 3.511 460,624 0,065  6.077 87 7274 1.9 1950 - 2088 - 9.625
20 24'Bkyqq 9.433 380147 0.052 7858 2.2 0125 0.8 086 14 1.524 - 2634
21 24" Bkygp 3.251 332176 0.042 6387 7. 5.161 0.9 0930 14 1503 - 3.008
20 M98k 50 3.667 358.720 0.055  £.730 6.3 1.486 1.1 118 2.0 1978 8.0 9.179
25 351 Blygy 3771 312780 0.078  £.401 7. 6005 1.0 0052 1.5 1839 - 2507
24 247Cf 40 3.600 325.578 0.075 6845 6.0 1061 1.3 1.253 2.3 1800 -  9.530
25 2510f g 3.874 565584 0.044 7133 1.9 3.161 1.9 1965 2.2 2030 8.0 3553
26 AE°Ciigs 9.274 447757 0.080  6.622 6.0 5482 1.7 1674 2.5 2381 - 4528

a0 0-32 8 ! j j j j j

ase .
700 D=2 . o
m -

()

Figure 20: Hamiltonian strength parameter A, versus deformation d for rota-
tional bands built atop different values of the odd nucleon angular momentum
projection £2.
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Figure 21: Experimental energy level ratios %4;—1 as a function of the deforma-
tion parameter d together with the theoretical curves, separately for each value
of the single particle angular momentum projection £2.

and we will employ the notation T;, i = 1,2, 3 to refer to decay intensities for
the transitions to the first, second and third excited state respectively in any
rotational band of bandhead angular momentum projection {2 # % Notice that,
in principle, each intensity T; is given by the sum

T = Z T, (5.4)
1

where I is fixed by the angular momentum of the daughter nucleus in that
particular state and [ follows from the triangle rule for the coupling to total
angular momentum [p. However, it is sufficient to consider only one [-value for
each state. This is due to the fact that the standard penetrability Fj; through
the Coulomb barrier, defined by the usual factorization (2.7} decreases by one
order of magnitude for each increasing value of I. Therefore, one would expect
to be able to make a reasonable prediction of the fine structure of the a-emission
spectrum using a basis of just four states, one state for the bandhead and an
additional state for each excited energy level. In the cases where experimental
data concerning the energy of the last state was not available, we used the CSM
core 4+ particle prediction provided by the fit of the lower energies.

It turns out however that the basis suggested above needs to be enlarged,
due tot the fact that the parity of a resonance is fixed by whether the [-values
involved are even or odd. Since the QQ interaction conserves parity, one must
construct separate resonances of fixed even or odd parity. The even one follows
the sequence of minimal [-values in each channel as I = 0,2, 2. 4, while the odd
one follows the sequence [ = 1,1,3,3. Thus, each basis of four states having
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Figure 22: Solutions to the system (3.46) for the favored decay process UZy® —
Thgs® 4 a}. Solid lines represent radial functions of even orbital angular mo-
mentum [ while dashed lines represent radial functions of odd [. The sets of
functions fixed parity are obtained simultaneously for the same reaction energy
and QQ coupling strength.

a given parity constructs a separate resonant solution of the system (3.46). It
is important that both resonances are found at the same reaction energy @,
and same Q) coupling stregth C'. It 1s possible to achieve this for the potential
of Eq. (3.34) by adjusting the depth vy so that both resonances generated at
the same C' match in terms of the reaction energy. Using this, one can then
tweak the effective coupling strength €' of Eq. (3.41) to simultaneously generate
different sets of even and odd resonances for each a-decay process of energy Q.
in an attempt to fit experimental data. One will thus obtain a total of eight
radial functions in the solution, four in each resonance, as can be seen in Fig.
22 for the decay process

UZ® - Thyy® + ol (5.5)

We have observed that for 23 decay processes out of the total of 26 studied,
' can be tweaked in order to match the experimental value of T, for a decay
width with | = 0 corresponding to the a-transition to the bandhead and the first
decay width having [ = 2 obtained in the even resonance corresponding to the
a-transition to the first excited state. Simultaneously, the ratio between decay
widths corresponding to the same [ = ( for the decay to the bandhead and the
first value of [ = 3 for the decay to the second excited state obtained in the odd
resonance yielded a very good estimate of T;, while the ratio between decay
widths corresponding to [ = () for the bandhead decay and [ = 4 for the decay
to the third excited state found in the even resonance have given a reasonable
value for T5. One of the exceptions is the decay to the danghter nuclens Am22'

a5 ¢
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Figure 23: Panel (a) shows the effective a-nucleus coupling strength C versus
deformation parameter d. Panel (b) presents the effective o-nucleus coupling
strength €' versus the reduced width 2, for a-transitions to the bandhead.

where the available data concerning T;,i = 1,2 suggests a doublet structure
in the emission spectrum that can be reproduced by employing the same [ =0
width for the bandhead transition and the two decay widths with | = 2 obtained
in the even resonance. The other exception concerns the two Ac isotopes in our
data set. In these cases, the decay width of angular momentum I = (0 and the
first [ = 2 obtained in the even resonance can be used to reproduce the value
of T, situation in which the [ = 0 width and the second width of angular
momentum { = 1 in the odd resonance (which corresponds to the transition to
the first excited state) will reproduce T reasonably.

When plotted against the deformation parameter, the values of C' obtained
from the above fit follow the prediction of Eq. (3.41) by exhibiting a linear trend
with respect to d, as seen in Fig. 23 panel (a). This coupling strength can be
interpreted as a measure of a-clustering. To see this, we use the reduced width
v4p introduced in Eq. (2.7). It turns out that C shows a linear correlation with
vap With a positive slope, as can be seen in Fig. 23 panel (b).

In Fig. 24 we present in separate panels the values of the intensities T;, i =
1.2,3 obtained by the method presented above, versus the index number n
found in the first column of Table 3. With open circles we show experimental
data and with filled circles we give the values predicted by the coupled channels
method with a particle + CSM core structure model. Dark triangles present
the crudest barrier penetration calculation, where the intensities follow from
the ratios of penetrabilities computed at the same values of [ as in the coupled
channels approach
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Figure 24: Intensities of the favored a-transitions T; to the first three excited
states in rotational bands as function of the index number n in the first column
of Table 2. Open circles denote the experimental data, filled circles are the
values predicted by the coupled channels method with a particle + CSM core
structure model and dark triangles show the barrier penetration estimates.
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All emission data is presented in Table 3.

As we mentioned, the spectroscopic factor defined by Eq. (3.35) accounts for
clustering effects. One can define partial spectroscopic factors for each channel
and the logarithm of the hindrance factor as

log,, HFy; = log %‘:’ = THP — T (5.7)
This quantity shows the importance of the extra-clustering in the decay process
to excited states that is not considered within our model. In Fig. 25 we have
plotted these logarithms versus the neutron number. It is clearly shown that
coupling an a-particle to the daughter nucleus with the required strength needed
to reproduce one intensity (usually T, with the exception of Ac isotopes where
T: is reproduced) allows one to predict the values of the other intensities within
a factor usually less than 3.

We note that the universal decay law treated in Refs. [3] and [79] is once
again manifested in the dependence of the decay intensities on excitation en-
ergies. In Fig. 26 we have represented all of the T; values as function of the
corresponding excitation energy E; relative to the bandhead for each collective
structure analyzed in this paper. We observe a universal linear correlation with
parameters
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Figure 25: Logarithm of the hindrance factor HF; versus neutron number N —
126, separately for each excited state i = 1,2, 3.

T; = 0.017E; 4+ 0.169, & = 0.316. (5.8)

As a final remark, the logarithm of the spectroscopic factor of Eq. (3.35)
can be represented as a function of neutron number, like in Fig. 27. This
quantity shows a decreasing trend with the neutron number, meaning that the
unquenched potential predicts shorter half-lives for heavier nuclel than what 1s
observed experimentally.

6 Conclusions

We analyzed the available experimental a-decay widths to excited states for
even-even and odd-mass emitters. We have shown that a-intensities to excited
states depend linearly upon the excitation energy of the daughter nucleus in
all known a-emission processes. We generalized the well known Viola-Seaborg
law for a-transitions between ground states to the case of transitions to excited
states, allowing for reliable predictions concerning the half-lives of a-transitions
to any excited state.

We analyzed a-emitters with known decay widths between ground states by
using the CSM formalism. Thus, we described in a unified way electromagnetic
and a-transitions in vibrational, transitional and well deformed nuclei. We
shown that the simplest harmonic CSM Hamiltonian is able to describe all
available energy levels and electromagnetic transitions in terms of the CSM
deformation parameter d, proportional to the standard quadrupole parameter

Ba.
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We used the same value of the CSM deformation parameter to study the a-
decay fine structure in daughter nuclei within the coupled channels formalism.
The attractive part of the monopole interaction was treated using the dou-
ble folding procedure with a M3Y interaction, while a quadrupole-quadrupole
ansatz was considered for the a-core interaction. The Pauli principle was sim-
ulated by a repulsive potential depending on one independent parameter. The
first narrow resonant state in the resulting pocket-like potential was identified
with an a-decaying state. Its elgenvalue was fixed to the experimental (3-value
by using the depth of the monopole repulsive potential.

We reproduced the total half-life by using the parameter v, multiplying the
attractive monopole potential, and it turns out that this parameter is propor-
tional to the a-particle formation probability. The intensity of a-transitions
to 2% states was reproduced by using the quadrupole strength parameter '
depending linearly on the deformation parameter, as predicted by the CSM.
By using these values we were able to reproduce experimental intensities to 47
and 67 states with reasonable accuracy and we made theoretical predictions for
other o-emitters.

We analyzed the awvailable experimental data for favored a-transitions to
rotational bands built upon a single particle angular momentum projection {3 #
%. The nuclear structure was modeled as an odd-nucleon coupled to a coherent
state even-even core, the energy levels of each band being fitted through the use
of a deformation parameter d and Hamiltonian strength parameter A4, that is
related to the deformation through a quadratic dependence. B (E?2) values can
be predicted using the systematics of the collective effective charge as function
of deformation established in Ref. [58]. In the absence of experimental data
that allows the study of the single particle effective charge contribution, it is
expected that these predicted values are smaller than what will be ohserved in
reality.

The fine structure of the -emission spectrum was studied using the coupled
channels method, through a QQ interaction tweaked hy a coupling strength
that behaves linearly with respect to the deformation parameter and reduced
width for the g.s.— 1 transition. The predicted values of the intensities are in
reasonable agreement with experimental data, usually within a factor less than

3.
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